
Operators and Expressions:

Operators and expression using numeric and
relational operators, mixed operands, type
conversion, logical operators, bit
operations, assignment operator, operator
precedence and associativity.

1Computer System and programming in C

2

Objectives
♥ To be able to construct and evaluate

expressions.
♥ To master operator precedence and

associativity
♥ To understand implicit type conversion and

explicit type conversion.

Computer System and programming in C

Introduction
 An operator is a symbol that tells the computer to perform

certain manipulations.
 An expression is a sequence of operands and operators that

reduces to a single value.
 C operators can be classified into a number of categories.

 Arithmetic operators
 Relational operators
 Logical operators
 Assignment operators
 Increment and decrement operators
 Conditional operators
 Bitwise operators
 Special operators

3Computer System and programming in C

Arithmetic operators
 The arithmetic operators in C

Operator meaning
+ Addition or unary plus
- Subtraction or unary minus

* Multiplication

/ Division
% modulo division

4

Arithmetic operators
 Note:,

 Integer division truncates remainder
 The % operator cannot be applied to a float or double.
 The precedence of arithmetic operators

 Unary + or -
 * / %
 + -

5

#include<stdio.h>
main()
{

int months , days ;
printf ("Enter days \n “) ;
scanf ("%d“ , &days) ;
months = days / 30 ;
days = days % 30 ;
printf ("Months =%d Days= %d \n", months, days);

}

6Computer System and programming in C

Arithmetic expressions
 An arithmetic expression is a combination of variables,

constants, and operators.
 For example,
 a*b-c  a*b-c
 (m+n)(x+y)  (m+n)*(x+y)
 ax2+bx+c  a*x*x+b*x+c

7

Mathematical functions
 Mathematical functions such as cos, sqrt, log, etc. are

frequently used in analysis of real-life problems. Table
3.9 on page 72 lists some standard math functions.

 We should include the line

#include<math.h>

in the beginning of the program.

8

Mathematical functions
 for example
 the roots of ax2+bx+c =0 are

 x1= (-b + sqrt (b*b - 4*a*c)) / (2 * a)
 x2= (-b – sqrt (b*b - 4*a*c)) / (2 * a)

a
acbbx 2

42 

9

Relational Operators

Operator Meaning
< less that

<= less than or equal to
> greater than

>= greater than or equal to
== equal to
!= not equal to

10

• The relational operators in C are :

Relational Operators
 A relational expression yields a value of 1 or 0.

 5 < 6 1
 -34 + 8 > 23 - 5 0
 if a=3, b=2, c =1; then a > b > c is ?

 the associativity of relational operators is
left  right

 table3.8 on page71

11Computer System and programming in C

Relational Operators
 The relational operators >, >=, < and <= have the

same precedence. Just below them in precedence are
the equality operators: = = and !=.

 Relational operators have lower precedence than
arithmetic operators , so an expression like i <
lim-1 is taken as i < (lim-1).

 3 >= 2 = = -4 < 0

12Computer System and programming in C

Logical operators
 C has the following three logical operators
 && meaning logical and
 || meaning logical or
 ! meaning logical not (unary operator)

 Expressions connected by && or || are evaluated left to
right, and evaluation stops as soon as the truth or
falsehood of the result is known.

13Computer System and programming in C

Logical operators

op-1 op2 op-1&&op-2 op-1||op-2 !op-1
Non-zero Non-zero 1 1 0

Non-zero 0 0 1 0

0 Non-zero 0 1 1

0 0 0 0 1

14

Logical operators
 The precedence of && is higher than that of ||, and

both are lower than relational operators, so

 3 < 5 && -3 < -5 || 3 > 2
 char ch; to decide whether ch is an uppercase,

ch >= ‘A’ && ch <= ‘Z’
 to decide whether a year is leap year,

year% 4 ==0 && year % 100 != 0 || year % 400 = = 0

15Computer System and programming in C

Assignment operators
 Assignment operators are used to assign the result of an

expression to a variable.
 C has a set of ‘shorthand’ assignment operators of the form

v op= exp;
 where v is a variable, exp is an expression and op is a C

binary arithmetic operator. The operator op= is known as
the shorthand assignment operator.

 The assignment statement v op= exp; is equivalent to v
= v op (exp) ;

 For example, x += y + 1; This is same as the statement x =
x + (y + 1) ;

16Computer System and programming in C

Assignment operators

Statement with simple
assignment operator

Statement with shorthand
operator

a = a+1 a += 1
a = a-1 a -= 1

a = a * (n+1) a *= n+1
a = a / (n+1) a /= n+1

a = a % b a %= b

17

Assignment operators
 The use of shorthand assignment operators has three

advantages:
 1. What appears on the left-hand side need not

be repeated and therefore it becomes easier to
write.

 2. The statement is more concise and easier to
read.

 3. The statement is more efficient.

18Computer System and programming in C

Assignment operators
 int a=12, n=5;

 (1) a += a

 (2) a -= 2

 (3) a *= 2 + 3

 (4) a /= a + a

 (5) a % = (n %= 2)

 (6) a += a -= a *= a

19Computer System and programming in C

Increment and decrement
operators
 C provides two unusual operators for incrementing

and decrementing variables.
 The increment operator ++ adds 1 to its operand, while

the decrement operator -- subtracts 1.
 The unusual aspect is that ++ and -- may be used

either as prefix operators (before the variable, as in
++n), or postfix operators (after the variable: n++).

 In both cases, the effect is to increment n. But the
expression ++n increments n before its value is used,
while n++ increments n after its value has been used.

20Computer System and programming in C

 for example, if n is 5, then
x = n++;

is equivalent
x = n; n++;

but
x = ++n;

is equivalent
n++; x = n;

 The increment and decrement operators can only be
applied to variables; an expression like (i+j)++ is illegal.

21Computer System and programming in C

 The increment and decrement operators can be used
in complex statements. Example:

m=n++ -j +10;

 Consider the expression
m = - n++ ;

 The precedence of ++ and – operators are the same as
those of unary + and -.

 The associatively of them is right to left.
 m = - n++; is equivalent to m = - (n++)

22Computer System and programming in C

 suppose,
 int a, b, c ; a = b = c = 1;
 After execution the following statements, what are the

values of the expression and variables.
 (1) a>b && b>c++;

(2) a-- || c++;
(3) !a && b++;
(4) ++a && ++b && ++c;
(5) ++a && --b && ++c;

23Computer System and programming in C

Conditional operator
 a ternary operator pair “? : ” is available in C to

construct conditional expressions of the form
expr1 ? expr2 : expr3

 the expression expr1 is evaluated first. If it is non-zero
(true), then the expression expr2 is evaluated, and that
is the value of the conditional expression. Otherwise
expr3 is evaluated, and that is the value. Only one of
expr2 and expr3 is evaluated.

24Computer System and programming in C

Special operators
 1. The Comma Operator
 The comma operator can be used to link the related

expressions together. A comma-linked list of
expressions is evaluated left to right and the value of
right-most expression is the value of the combined
expression. For example, the statement

 value = (x=10, y=5, x+y);
 first assigns the value 10 to x, then assigns 5 to y, and

finally assigns 15 to value. Since comma operator has
the lowest precedence of all operators, the parentheses
are necessary.

25Computer System and programming in C

 2. The sizeof Operator
 The sizeof is a compile time operator and, when used

with an operand, it returns the number of bytes the
operand occupies. The operand may be variable, a
constant or a data type qualifier. Examples:

 m = sizeof (sum);
 n = sizeof (long int);
 k = sizeof (235L);

26Computer System and programming in C

Example 3.3

27

The different kinds of operators.

#include<stdio.h>
main()
{

int a, b, c, d;
a = 15;
b = 10;
c = ++a - b;
printf ("a=%d b=%d c=%d\n", a, b, c);
d = b++ +a;
printf("a = %d b = %d d = %d\n", a, b, d);
printf("a/b = %d\n", a / b);
printf("a%%b = %d\n", a%b);
printf("a *= b = %d\n", a *= b);
printf("%d\n", (c>d) ? 1 : 0);
printf("%d\n", (c<d) ? 1 : 0);

}

Computer System and programming in C

example3.4 variables in expressions and their evaluation

#include<stdio.h>
main()
{

float a, b, c, x, y, z;
a = 9;
b = 12;
c = 3;
x = a – b / 3 + c * 2 - 1;
y = a - b / (3+ c) * (2 - 1);
z = a - (b / (3 + c) * 2) - 1;
printf ("x = %f \n", x);
printf(" y = %f \n", y) ;
printf("z = %f \n", z) ;

}

28Computer System and programming in C

Some Computational Problems
 When expressions include real values, then it is

important to take necessary precautions to guard
against certain computational errors. For example,
consider the following statements:
 a = 1.0 / 3.0;
 b = a * 3.0;

 There is no guarantee that the value of b will equal 1.
 Another problem is division by zero.
 The third problem is to avoid overflow and underflow

errors.
29Computer System and programming in C

example3.5 round-off errors in computation of floating point numbers.
#include <stdio.h>
main()
{

float sum, n, term;
int count = 1;
sum = 0;
printf ("Enter value of n \n ") ;
scanf ("%f", &n) ;
term = 1.0 / n;
while (count <= n)
{

sum = sum + term ;
count++ ;

}
printf ("Sum = %f \n", sum) ;

}

30Computer System and programming in C

Type conversions in expressions
 1. Implicit Type Conversion
 C permits mixing of constants and variables of

different types in an expression. C automatically
converts any intermediate values to the proper type so
that the expression can be evaluated without loosing
any significance. This automatic conversion is known
as implicit type conversion.

 The rule of type conversion: the lower type is
automatically converted to the higher type.

31Computer System and programming in C

Type conversions in expressions
 for example,

 int i, x;
 float f;
 double d;
 long int li ;

 The final result of an expression is converted to the
type of the variable on the left of the assignment.

32

long

long

float

float

float

float

double

doubleint

x = li / i + i * f – d

Computer System and programming in C

Type conversions in expressions
 The sequence of rules is given on page 67.

 Conversion Hierarchy is given below

33

long int

Conversion hierarchy

charshort

float
double

long double

int

unsigned long int

Computer System and programming in C

Type conversions in expressions
 2. Explicit conversion
 We can force a type conversion in a way .
 The general form of explicit conversion is

(type-name) expression
 for example

 x = (int) 7.5 ;
 a = (int) 21.3 / (int) 4.5;
 a = (float) 3 / 2 ;
 a = float (3 / 2) ;

34Computer System and programming in C

Operator precedence and
Associativity
 Rules of Precedence and Associativity

 (1)Precedence rules decides the order in which different
operators are applied.

 (2)Associativity rule decide the order in which multiple
occurrences of the same level operator are applied.

 Table3.8 on page71 shows the summary of C Operators.
 for example,
 a = i +1== j || k and 3 != x

35Computer System and programming in C

Mathematical functions

 Mathematical functions such as cos, sqrt, log, etc. are
frequently used in analysis of real-life problems.

 Table 3.9 on page 72 lists some standard math
functions.

 All mathematical functions implement double type
parameters and return double type values.

 To use any of mathematical functions, we should
include the line:

#include < math. h >

36Computer System and programming in C

