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Interpolation 



Uses of interpolation 

 Plotting smooth curve through discrete data points 

 Reading between lines of table 

 Differentiating or integrating tabular data 

 Quick and easy evaluation of mathematical function 

 Replacing complicated function by simple one 

 

Comparing to approximation: 

 

 By definition, interpolating function fits given data points exactly 

 Interpolation is inappropriate if data points subject to significant errors 

 It is usually preferable to smooth noisy data, for example by least 
squares approximation 

 Approximation is also more appropriate for special function libraries 

 



Issues in interpolation 
Questions: 

 Arbitrarily many functions interpolate given set of data points 
 What form should interpolating function have? 

 How should interpolant behave between data points? 

 Should interpolant inherit properties of data, such as monotonicity, 
convexity, or periodicity? 

 Are parameters that define interpolating function meaningful? 

 If function and data are plotted, should results be visually pleasing? 

 

Choice of function for interpolation based on how easy interpolating 
function is to work with, i.e. 
 determining its parameters 

 evaluating interpolant 

 differentiating or integrating interpolant 

 

 How well properties of interpolant match properties of data to be fit 
(smoothness, monotonicity, convexity, periodicity, etc.) 

 



Basis functions 



Existence/uniqueness 

 Existence and uniqueness of interpolant depend on number of data 

points m and number of basis functions n 

 If m > n, interpolant might or might not exist 

 If m < n, interpolant is not unique 

 If m = n, then basis matrix A is nonsingular provided data points ti 

are distinct, so data can be fit exactly 

 Sensitivity of parameters x to perturbations in data depends on 

cond(A), which depends in turn on choice of basis functions 

 



Choices of basis functions 

 Families of functions commonly used for 

interpolation include 

 Polynomials 

 Piecewise polynomials 

 Trigonometric functions 

 Exponential functions 

 Rational functions 

 For now we will focus on interpolation by 

polynomials and piecewise polynomials 

 Then we will consider trigonometric interpolation 

 



Polynomial interpolation 
 Simplest and most common type of interpolation uses polynomials 

 Unique polynomial of degree at most n − 1 passes through n data 
points (ti, yi), i = 1, . . . , n, where ti are distinct 



Example 

O(n3) operations to solve 

linear system 



Conditioning 
 For monomial basis, matrix A is increasingly ill-conditioned as 

degree increases 

 Ill-conditioning does not prevent fitting data points well, since 
residual for linear system solution will be small 

 But it does mean that values of coefficients are poorly 
determined 

 Both conditioning of linear system and amount of computational 
work required to solve it can be improved by using different basis 

 Change of basis still gives same interpolating polynomial for 
given data, but representation of polynomial will be different 

 

Still not well-conditioned, 

Looking for better alternative 



Polynomial evaluation 



Lagrange interpolation 

Easy to determine, but expensive 

to evaluate, integrate and differentiate 

comparing to monomials 



Example 



Newton 

interpolation 

• Forward-substitution O(n2)  

• Nested evaluation scheme  

 

 

 

• Better balance between 

cost of computing interpolant 

and evaluating it 

 



Example 



Divided differences 



Orthogonal polynomials 



Choices for orthogonal basis 

• Orthogonality => 

natural for least 

squares 

approximation  

 

 

• Also useful for 

generating 

Gaussian 

quadrature 



Chebyshev 

polynomials 





Runge example 



Convergence issues 
 Interpolating polynomials of high 

degree are expensive to 
determine and evaluate 

 

 In some bases, coefficients of 
polynomial may be poorly 
determined due to ill-conditioning 
of linear system to be solved 

 

 High-degree polynomial 
necessarily has lots of “wiggles,” 
which may bear no relation to 
data to be fit 

 

 Polynomial passes through 
required data points, but it may 
oscillate wildly between data 
points 

 

 Polynomial interpolating continuous 

function may not converge to function 

as number of data points and 

polynomial degree increases 

 

 Equally spaced interpolation points 

often yield unsatisfactory results near 

ends of interval 

 

 If points are bunched near ends of 

interval, more satisfactory results are 

likely to be obtained with polynomial 

interpolation 

 

 Use of Chebyshev points distributes 

error evenly and yields convergence 

throughout interval for any sufficiently 

smooth function 



Piecewise polynomials 
 Fitting single polynomial to large number of data points is likely to yield 

unsatisfactory oscillating behavior in interpolant 

 

 Piecewise polynomials provide alternative to practical and theoretical 
difficulties with high-degree polynomial interpolation. Main advantage of 
piecewise polynomial interpolation is that large number of data points can 
be fit with low-degree polynomials 

 

 In piecewise interpolation of given data points (ti, yi), different function is 
used in each subinterval [ti, ti+1] 

 

 Abscissas ti are called knots or breakpoints, at which interpolant changes 
from one function to another 

 

 Simplest example is piecewise linear interpolation, in which successive 
pairs of data points are connected by straight lines 

 

 Although piecewise interpolation eliminates excessive oscillation and 
nonconvergence, it appears to sacrifice smoothness of interpolating function 

 

 We have many degrees of freedom in choosing piecewise polynomial 
interpolant, however, which can be exploited to obtain smooth interpolating 
function despite its piecewise nature 



Hermite vs. cubic spline 
Hermite cubic interpolant is piecewise cubic polynomial interpolant with  

continuous first derivative 

 

 Piecewise cubic polynomial with n knots has 4(n − 1) parameters to be 
determined 

 Requiring that it interpolate given data gives 2(n − 1) equations 

 Requiring that it have one continuous derivative gives n − 2 additional 
equations, or total of 3n − 4, which still leaves n free parameters 

 Thus, Hermite cubic interpolant is not unique, and remaining free parameters 
can be chosen so that result satisfies additional constraints 

 

Spline is piecewise polynomial of degree k that is k − 1 times  

continuously differentiable 

 

 For example, linear spline is of degree 1 and has 0 continuous derivatives, i.e., it 
is continuous, but not smooth, and could be described as “broken line” 

 Cubic spline is piecewise cubic polynomial that is twice continuously 
differentiable 

 As with Hermite cubic, interpolating given data and requiring one continuous 
derivative imposes 3n − 4 constraints on cubic spline 

 Requiring continuous second derivative imposes n − 2 additional constraints, 
leaving 2 remaining free parameters 

 

 



Spline example 



Example 



Example 



Hermite vs. spline 

 Choice between Hermite cubic and 
spline interpolation depends on 
data to be fit and on purpose for 
doing interpolation 

 

 If smoothness is of paramount 
importance, then spline 
interpolation may be most 
appropriate 

 

 But Hermite cubic interpolant may 
have more pleasing visual 
appearance and allows flexibility to 
preserve monotonicity if original 
data are monotonic 

 

 In any case, it is advisable to plot 
interpolant and data to help assess 
how well interpolating function 
captures behavior of original data 

 


