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Uses of interpolation 

 Plotting smooth curve through discrete data points 

 Reading between lines of table 

 Differentiating or integrating tabular data 

 Quick and easy evaluation of mathematical function 

 Replacing complicated function by simple one 

 

Comparing to approximation: 

 

 By definition, interpolating function fits given data points exactly 

 Interpolation is inappropriate if data points subject to significant errors 

 It is usually preferable to smooth noisy data, for example by least 
squares approximation 

 Approximation is also more appropriate for special function libraries 

 



Issues in interpolation 
Questions: 

 Arbitrarily many functions interpolate given set of data points 
 What form should interpolating function have? 

 How should interpolant behave between data points? 

 Should interpolant inherit properties of data, such as monotonicity, 
convexity, or periodicity? 

 Are parameters that define interpolating function meaningful? 

 If function and data are plotted, should results be visually pleasing? 

 

Choice of function for interpolation based on how easy interpolating 
function is to work with, i.e. 
 determining its parameters 

 evaluating interpolant 

 differentiating or integrating interpolant 

 

 How well properties of interpolant match properties of data to be fit 
(smoothness, monotonicity, convexity, periodicity, etc.) 

 



Basis functions 



Existence/uniqueness 

 Existence and uniqueness of interpolant depend on number of data 

points m and number of basis functions n 

 If m > n, interpolant might or might not exist 

 If m < n, interpolant is not unique 

 If m = n, then basis matrix A is nonsingular provided data points ti 

are distinct, so data can be fit exactly 

 Sensitivity of parameters x to perturbations in data depends on 

cond(A), which depends in turn on choice of basis functions 

 



Choices of basis functions 

 Families of functions commonly used for 

interpolation include 

 Polynomials 

 Piecewise polynomials 

 Trigonometric functions 

 Exponential functions 

 Rational functions 

 For now we will focus on interpolation by 

polynomials and piecewise polynomials 

 Then we will consider trigonometric interpolation 

 



Polynomial interpolation 
 Simplest and most common type of interpolation uses polynomials 

 Unique polynomial of degree at most n − 1 passes through n data 
points (ti, yi), i = 1, . . . , n, where ti are distinct 



Example 

O(n3) operations to solve 

linear system 



Conditioning 
 For monomial basis, matrix A is increasingly ill-conditioned as 

degree increases 

 Ill-conditioning does not prevent fitting data points well, since 
residual for linear system solution will be small 

 But it does mean that values of coefficients are poorly 
determined 

 Both conditioning of linear system and amount of computational 
work required to solve it can be improved by using different basis 

 Change of basis still gives same interpolating polynomial for 
given data, but representation of polynomial will be different 

 

Still not well-conditioned, 

Looking for better alternative 



Polynomial evaluation 



Lagrange interpolation 

Easy to determine, but expensive 

to evaluate, integrate and differentiate 

comparing to monomials 



Example 



Newton 

interpolation 

• Forward-substitution O(n2)  

• Nested evaluation scheme  

 

 

 

• Better balance between 

cost of computing interpolant 

and evaluating it 

 



Example 



Divided differences 



Orthogonal polynomials 



Choices for orthogonal basis 

• Orthogonality => 

natural for least 

squares 

approximation  

 

 

• Also useful for 

generating 

Gaussian 

quadrature 



Chebyshev 

polynomials 





Runge example 



Convergence issues 
 Interpolating polynomials of high 

degree are expensive to 
determine and evaluate 

 

 In some bases, coefficients of 
polynomial may be poorly 
determined due to ill-conditioning 
of linear system to be solved 

 

 High-degree polynomial 
necessarily has lots of “wiggles,” 
which may bear no relation to 
data to be fit 

 

 Polynomial passes through 
required data points, but it may 
oscillate wildly between data 
points 

 

 Polynomial interpolating continuous 

function may not converge to function 

as number of data points and 

polynomial degree increases 

 

 Equally spaced interpolation points 

often yield unsatisfactory results near 

ends of interval 

 

 If points are bunched near ends of 

interval, more satisfactory results are 

likely to be obtained with polynomial 

interpolation 

 

 Use of Chebyshev points distributes 

error evenly and yields convergence 

throughout interval for any sufficiently 

smooth function 



Piecewise polynomials 
 Fitting single polynomial to large number of data points is likely to yield 

unsatisfactory oscillating behavior in interpolant 

 

 Piecewise polynomials provide alternative to practical and theoretical 
difficulties with high-degree polynomial interpolation. Main advantage of 
piecewise polynomial interpolation is that large number of data points can 
be fit with low-degree polynomials 

 

 In piecewise interpolation of given data points (ti, yi), different function is 
used in each subinterval [ti, ti+1] 

 

 Abscissas ti are called knots or breakpoints, at which interpolant changes 
from one function to another 

 

 Simplest example is piecewise linear interpolation, in which successive 
pairs of data points are connected by straight lines 

 

 Although piecewise interpolation eliminates excessive oscillation and 
nonconvergence, it appears to sacrifice smoothness of interpolating function 

 

 We have many degrees of freedom in choosing piecewise polynomial 
interpolant, however, which can be exploited to obtain smooth interpolating 
function despite its piecewise nature 



Hermite vs. cubic spline 
Hermite cubic interpolant is piecewise cubic polynomial interpolant with  

continuous first derivative 

 

 Piecewise cubic polynomial with n knots has 4(n − 1) parameters to be 
determined 

 Requiring that it interpolate given data gives 2(n − 1) equations 

 Requiring that it have one continuous derivative gives n − 2 additional 
equations, or total of 3n − 4, which still leaves n free parameters 

 Thus, Hermite cubic interpolant is not unique, and remaining free parameters 
can be chosen so that result satisfies additional constraints 

 

Spline is piecewise polynomial of degree k that is k − 1 times  

continuously differentiable 

 

 For example, linear spline is of degree 1 and has 0 continuous derivatives, i.e., it 
is continuous, but not smooth, and could be described as “broken line” 

 Cubic spline is piecewise cubic polynomial that is twice continuously 
differentiable 

 As with Hermite cubic, interpolating given data and requiring one continuous 
derivative imposes 3n − 4 constraints on cubic spline 

 Requiring continuous second derivative imposes n − 2 additional constraints, 
leaving 2 remaining free parameters 

 

 



Spline example 



Example 



Example 



Hermite vs. spline 

 Choice between Hermite cubic and 
spline interpolation depends on 
data to be fit and on purpose for 
doing interpolation 

 

 If smoothness is of paramount 
importance, then spline 
interpolation may be most 
appropriate 

 

 But Hermite cubic interpolant may 
have more pleasing visual 
appearance and allows flexibility to 
preserve monotonicity if original 
data are monotonic 

 

 In any case, it is advisable to plot 
interpolant and data to help assess 
how well interpolating function 
captures behavior of original data 

 


