Interpolation



Interpolation

@ Basic interpolation problem: for given data

(t1.y1), (t2.y2), oo (tms Um) with ¢ <t < .- <1,
determine function f: E — R such that

flti)=u;,, i=1,..., m
@ [ is interpolating function, or interpolant, for given data

@ Additional data might be prescribed, such as slope of
interpolant at given points

@ Additional constraints might be imposed, such as
smoothness, monotonicity, or convexity of interpolant

@ f could be function of more than one variable, but we will
consider only one-dimensional case



Uses of interpolation

Plotting smooth curve through discrete data points
Reading between lines of table

Differentiating or integrating tabular data

Quick and easy evaluation of mathematical function
Replacing complicated function by simple one

Comparing to approximation:

By definition, interpolating function fits given data points exactly
Interpolation is inappropriate if data points subject to significant errors

It is usually preferable to smooth noisy data, for example by least
squares approximation

e Approximation is also more appropriate for special function libraries



Issues In interpolation

Questions:

e Arbitrarily many functions interpolate given set of data points
What form should interpolating function have?
How should interpolant behave between data points?

Should interpolant inherit properties of data, such as monotonicity,
convexity, or periodicity?

Are parameters that define interpolating function meaningful?

If function and data are plotted, should results be visually pleasing?

Choice of function for interpolation based on how easy interpolating
function is to work with, i.e.

determining its parameters
evaluating interpolant
differentiating or integrating interpolant

e How well properties of interpolant match properties of data to be fit
(smoothness, monotonicity, convexity, periodicity, etc.)



Basis functions

@ Family of functions for interpolating given data points is
spanned by set of basis functions ¢(t),..., ¢n(t)

@ Interpolating function f is chosen as linear combination of
basis functions,

HOEDPEITI0
i=1
@ Requiring f to interpolate data (¢;, y;) means

which is system of linear equations Ax = y for n-vector =
of parameters z;, where entries of m x n matrix A are
given by a;; = ¢;(t;)



Existence/uniqgueness

e Existence and uniqueness of interpolant depend on number of data
points m and number of basis functions n

e If m > n, interpolant might or might not exist
e If m <n, interpolant is not unique

e If m = n, then basis matrix A is nonsingular provided data points t,
are distinct, so data can be fit exactly

e Sensitivity of parameters x to perturbations in data depends on
cond(A), which depends in turn on choice of basis functions



Choices of basis functions

e Families of functions commonly used for
iInterpolation include
Polynomials
Piecewise polynomials
Trigonometric functions
Exponential functions
Rational functions

e For now we will focus on interpolation by
polynomials and piecewise polynomials

e Then we will consider trigonometric interpolation



Polynomial interpolation e

e Simplest and most common type of interpolation uses polynomials

e Unique polynomial of degree at most n — 1 passes through n data
points (t, y;,),i=1, ..., n, where t; are distinct

@ Monomial basis functions
@i(t) = =t j=1.....n
give interpolating polynomial of form
Pn_i1(t) =21 + 2ot + - + 2pt" 1

with coefficients @ given by n < n linear system

(1t - f-rf_:l- EN Y1 |
ty - thTH| |22 Y2

Ax = = =y
_1 b - t:i_l_ | | Yn |

@ Matrix of this form is called Vandermonde matrix



Example :

@ Determine polynomial of degree two interpolating three
data points (—2, —27), (0, —1), (1,0)

@ Using monomial basis, linear system is

271 I | :

1 1 1‘-% 1 U1 O(n3) operations to solve
Ar =11 t G [*2| = |42 =Y linear system
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@ For these particular data, system is )
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whose solutionis z = [-1 5 —4]", so interpolating
polynomial is
paft) = —1 45t — 4t?



Conditioning

e For monomial basis, matrix A is increasingly ill-conditioned as
degree increases

e |ll-conditioning does not prevent fitting data points well, since
residual for linear system solution will be small

e But it does mean that values of coefficients are poorly
determined

e Both conditioning of linear system and amount of computational
work required to solve it can be improved by using different basis

e Change of basis still gives same interpolating polynomial for
given data, but representation of polynomial will be different

@ Conditioning with monomial basis can be improved by

shifting and scaling independent variable ¢ _ »
Still not well-conditioned,

oIl
() = (t ") Looking for better alternative

d

where, ¢ = (t; +t,)/2 is midpoint and d = (t,, —t1)/2is
half of range of data



Polynomial evaluation

@ When represented in monomial basis, polynomial

Pn_tlt) =21+ a2t +--- + ;?fnfﬂ_l

can be evaluated efficiently using Horner's nested
evaluation scheme

Pa_1lt)=mx1 +t{zo + s+t (Tp_1 +txp)---)))
which requires only n additions and n multiplications
@ For example,
1 — 4t +5t2 =285+ 3t =1+ t(—44+t(5+t(—2+ 31)))

@ Other manipulations of interpolating polynomial, such as
differentiation or integration, are also relatively easy with
monomial basis representation
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Lagrange interpolation :
@ For given set of data points (¢;,v;),i=1,....n, Lagrange
basis functions are defined by
Giy= I =t/ [] t—t), d=1.....m
k=1,kj k=1,k#j

Easy to determine, but expensive
@ For Lagrange basis, to evaluate, integrate and differentiate
comparing to monomials

1 iti=j .
li(t:) {U ity i,j=1,....n

so matrix of linear system Ax = y Is identity matrix

@ Thus, Lagrange polynomial interpolating data points (t;, y;)
IS given by

Pr—1(t) =y €1(t) + y2la(t) + -+ ynlnlt)



Example

@ Use Lagrange interpolation to determine interpolating
polynomial for three data points (-2, —27), (0, —1), (1,0)

@ Lagrange polynomial of degree two interpolating three
points (t1.y1). (t2,y2), (t3,y3) Is given by po(t) =
(t —ta)(t —t3) (t —t1)(t — 3] (t —t1)(t —ta)
+ Y2 — -+ U3 ﬂ x
(t1 — t2)(t1 —13) (T2 — t1)(t2 — 13) (T3 —t1){tz —12)

Y1

@ For these particular data, this becomes

, t(t—1) (t+2)(t —1)
t)= 27— 4 (1) —
p2(t) o —2-n TV
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@ For given set of data points (#;.y;), i = 1,...,n, Newton
basis functions are defined by
j—1  Forward-substitution O(n?)
mi(t) = H[t —tr), j=1,..., n  + Nested evaluation scheme

where value of product is taken to be 1 when limits make it

Vacuous » Better balance between

e Newton interpolating polynomial has form cost of computing interpolant
and evaluating it
Pn-1(t) = @z +x2(t — 1) + 23t — 1)t —t2) +

ctxg(t =t )t — o) (F—Th1)

@ Fori < j, mj(t;) = 0, so basis matrix A is lower triangular,
where a;; = m;(t;)



Example

@ Use Newton interpolation to determine interpolating
polynomial for three data points (-2, —27), (0, —1), (1.0}

@ Using Newton basis, linear system is

1

0 0 T 1
1ty — 1 0 T Y2
1tz —ty (f3 —t1)(t3 —t2)]| | =3 Y3
@ For these particular data, system is
(1 0 0] [x] [ —27]
1 2 0 Iy = —1
_1 3 3_ | L3 ] i U_

whose solution by forward substitution is
- AT . . .
r=[-27 13 —4] , so interpolating polynomial is

plt)= 27T+ 13(t +2) — 4(t + 2)t



Divided differences

@ Given data points (t;,y;). i =1...., n, divided differences,

denoted by f[ ], are defined recursively by

to,ta,.... tr] — flt1, ta,. ... th_
f[tl,tj?...\tk]zf[z 3 In.:l f[l 2 k 1]
. — 11
where recursion begins with f{t;] =w., k=1,...,n

@ Coefficient of jth basis function in Newton interpolant is
given by

‘E._.i' = f[fl*tﬂ'*' v "'fl_j':l

@ Recursion requires ©(n?) arithmetic operations to compute
coefficients of Newton interpolant, but is less prone to
overflow or underflow than direct formation of triangular
Newton basis matrix



Orthogonal polynomials

@ Inner product can be defined on space of polynomials on
interval [a, b] by taking

b
(P, q) =f plt)qg(t)wl(t)dt
[

where w(t) is nonnegative weight function
@ Two polynomials p and q are orthogonal if (p,q) =0
@ Set of polynomials {p; | is orthonormal if
. \ 1 ifi=j
\PisPj) = { 0 otherwise

@ Given set of polynomials, Gram-Schmidt orthogonalization
can be used to generate orthonormal set spanning same
space



Choices for orthogonal basis

@ For example, with inner product given by weight function
w(t) =1 oninterval [-1, 1], applying Gram-Schmidt
process to set of monomials 1,t,t2,¢%, ... yields Legendre
polynomials

1, t, (32 —1)/2, (5t —3t)/2, (356t* — 30t* +3)/8,

(63t° — 70t7 + 15¢)/8, ...

first n of which form an orthogonal basis for space of
polynomials of degree at most n — 1

@ Other choices of weight functions and intervals yield other
orthogonal polynomials, such as Chebyshev, Jacobi,
Laguerre, and Hermite

* Orthogonality =>
natural for least
squares
approximation

* Also useful for
generating
Gaussian
quadrature



Chebyshev HE
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polynom jals :
_;/\_ o ___ T/ N\ JT/ _/’i Chebyshev points are zeros of T}, given by
osh NS\ A / /i )
TRV AN AN 2% — 1)m
‘g/ N \ VAN A T‘-\ z,” /] t; = cos u , i=1,....k
0o _J'Jl1l" _flrF h \\ ,-'; /:,’J\/ T: \ / TUII J';Il|il Zk
e\ 7 N NS i or extrema of T}, given by
051/ X / N by \r, /T
/ P / \ ~ > <N #'f i
R et —LIJ.S\ T - 05 o X ti = cos (E) i=0,1,..., k
@ kth Chebyshev polynomial of first kind, defined on interval
[—1.1] by
T.(t) = cos(karccos(t))
: : . . I
are orthogonal with respect to weight function (1 — ¢2)~1/2 ra | T“‘\.R
JU N
@ First few Chebyshev polynomials are given by £ N
he—d—s o+ L 4 4+ o+ o4
1, ¢, 221, 4% 3¢, 818241, 16t° — 20¢° +5t, | |
@ Equi-oscillation property . successive extrema of T, are

equal in magnitude and alternate in sign, which distributes
error uniformly when approximating arbitrary continuous
function
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@ If data points are discrete sample of continuous function, 'YX
how well does interpolant approximate that function ::'
between sample points? ®

@ If fis smooth function, and p,,_1 is polynomial of degree at
most n — 1 interpolating f at n points #4,...,1,, then

0

n!

flt) — pn_1lt) = (t—ty)(t —tg) - (t —1y)

where f is some (unknown) point in interval [tq, ;]

@ Since point ¢ is unknown, this result is not particularly
useful unless bound on appropriate derivative of f is
known

o If |f")(t)| < M for all ¢t  [ty,t,]. and
h=max{t;;y —t;: i=1,...,n—1}, then

< t) —pn-1ll _4
zéﬁf‘i]m:’ Pr-1(t)] = =

@ Error diminishes with increasing n and decreasing h, but
only if | f{™)(¢)| does not grow too rapidly with



Runge example

@ Polynomial interpolants of Runge’s function at equally ¢ Polynomial interpolants of Runge’s function at Chebyshev

spaced points do not converge points do converge
20~ N e 2.0 :
P — flt) = 1/(1+ 25¢%) e F#) = 1/(1 + 25¢2)

_ psit) I it palt]
1.5 = : nlt) Do 1.5+ prolt)
1.0 1.0+ e

VA
0.5 0.5 S N
B N

0.0 0.0 P | B —




Convergence issues

Interpolating polynomials of high
degree are expensive to
determine and evaluate

In some bases, coefficients of
polynomial may be poorly
determined due to ill-conditioning
of linear system to be solved

High-degree polynomial
necessarily has lots of “wiggles,”
which may bear no relation to
data to be fit

Polynomial passes through
required data points, but it may
oscillate wildly between data
points

[ Polynomial interpolating continuous
function may not converge to function
as number of data points and
polynomial degree increases

[ Equally spaced interpolation points
often yield unsatisfactory results near
ends of interval

O If points are bunched near ends of
interval, more satisfactory results are
likely to be obtained with polynomial
interpolation

[ Use of Chebyshev points distributes
error evenly and yields convergence
throughout interval for any sufficiently
smooth function



Piecewise polynomials

Fitting single polynomial to large number of data points is likely to yield
unsatisfactory oscillating behavior in interpolant

Piecewise polynomials provide alternative to practical and theoretical
difficulties with high-degree polynomial interpolation. Main advantage of
piecewise polynomial interpolation is that large number of data points can
be fit with low-degree polynomials

In piecewise interpolation of given data points (t, y,), different function is
used in each subinterval [t;, t., 4]

Abscissas t; are called knots or breakpoints, at which interpolant changes
from one function to another

Simplest example is piecewise linear interpolation, in which successive
pairs of data points are connected by straight lines

Although piecewise interpolation eliminates excessive oscillation and _
nonconvergence, it appears to sacrifice smoothness of interpolating function

We have many degrees of freedom in choosing piecewise polynomial
interpolant, however, which can be exploited to obtain smooth interpolating
function despite its piecewise nature



Hermite vs. cubic spline

Hermite cubic interpolant is piecewise cubic polynomial interpolant with
continuous first derivative

e Piecewise cubic polynomial with n knots has 4(n — 1) parameters to be
determined

e Requiring that it interpolate given data gives 2(n — 1) equations
Requiring that it have one continuous derivative gives n — 2 additional
equations, or total of 3n — 4, which still leaves n free parameters

e Thus, Hermite cubic interpolant is not unique, and remaining free parameters
can be chosen so that result satisfies additional constraints

Spline is piecewise polynomial of degree k that is k — 1 times
continuously differentiable

e For example, linear spline is of degree 1 and has 0 continuous derivatives, i.e., it
is continuous, but not smooth, and could be described as “broken line”

e Cubic spline is piecewise cubic polynomial that is twice continuously
differentiable

e As with Hermite cubic, interpolating given data and requiring one continuous
derivative imposes 3n — 4 constraints on cubic spline

e Requiring continuous second derivative imposes n — 2 additional constraints,
leaving 2 remaining free parameters



Spline example

@ Determine natural cubic spline interpolating three data
points (t;, ), i =1,2.3

@ Required interpolant is piecewise cubic function defined by
separate cubic polynomials in each of two intervals [y, 3]
and [f-g, ig]

@ Denote these two polynomials by
plt) = a4+ ast + -‘.‘ngE + -‘_'J:';l?fﬂ

pa(t) = By + Bot + Bat* + Byt

@ Eight parameters are to be determined, so we need eight
equations



Example

@ Requiring first cubic to interpolate data at end points of first
interval [t1.,?2] gives two equations

k] + 2l + &31‘-% + &41‘-? =11

] + ato + &31‘-3 + Cr,if-g = 12

@ Requiring second cubic to interpolate data at end points of
second interval [t2, t3] gives two equations

31 + Gata + .—"33?f% + .f"ﬂ% =12

31 + Gatg + I:'Eg?f% + ,qug = 13

@ Requiring first derivative of interpolant to be continuous at
t2 gives equation

g + 2asty + 3ayty = B2 + 263ty + 34t



Example

@ Requiring second derivative of interpolant function to be
continuous at t5 gives equation

203 4 Goyto = 235 4+ 63415

@ Finally, by definition natural spline has second derivative
equal to zero at endpoints, which gives two equations

2009 + Gayty = 0

205 + 60413 =0

@ When particular data values are substituted for ¢; and v,
system of eight linear equations can be solved for eight
unknown parameters «; and j3;



Hermite vs. spline

e Choice between Hermite cubic and

spline interpolation depends on
data to be fit and on purpose for
doing interpolation

If smoothness is of paramount
importance, then spline
interpolation may be most
appropriate

But Hermite cubic interpolant may
have more pleasing visual
appearance and allows flexibility to
preserve monotonicity if original
data are monotonic

In any case, it is advisable to plot
interpolant and data to help assess
how well interpolating function
captures behavior of original data




