
Interpolation

Interpolation

Uses of interpolation

 Plotting smooth curve through discrete data points

 Reading between lines of table

 Differentiating or integrating tabular data

 Quick and easy evaluation of mathematical function

 Replacing complicated function by simple one

Comparing to approximation:

 By definition, interpolating function fits given data points exactly

 Interpolation is inappropriate if data points subject to significant errors

 It is usually preferable to smooth noisy data, for example by least
squares approximation

 Approximation is also more appropriate for special function libraries

Issues in interpolation
Questions:

 Arbitrarily many functions interpolate given set of data points
 What form should interpolating function have?

 How should interpolant behave between data points?

 Should interpolant inherit properties of data, such as monotonicity,
convexity, or periodicity?

 Are parameters that define interpolating function meaningful?

 If function and data are plotted, should results be visually pleasing?

Choice of function for interpolation based on how easy interpolating
function is to work with, i.e.
 determining its parameters

 evaluating interpolant

 differentiating or integrating interpolant

 How well properties of interpolant match properties of data to be fit
(smoothness, monotonicity, convexity, periodicity, etc.)

Basis functions

Existence/uniqueness

 Existence and uniqueness of interpolant depend on number of data

points m and number of basis functions n

 If m > n, interpolant might or might not exist

 If m < n, interpolant is not unique

 If m = n, then basis matrix A is nonsingular provided data points ti

are distinct, so data can be fit exactly

 Sensitivity of parameters x to perturbations in data depends on

cond(A), which depends in turn on choice of basis functions

Choices of basis functions

 Families of functions commonly used for

interpolation include

 Polynomials

 Piecewise polynomials

 Trigonometric functions

 Exponential functions

 Rational functions

 For now we will focus on interpolation by

polynomials and piecewise polynomials

 Then we will consider trigonometric interpolation

Polynomial interpolation
 Simplest and most common type of interpolation uses polynomials

 Unique polynomial of degree at most n − 1 passes through n data
points (ti, yi), i = 1, . . . , n, where ti are distinct

Example

O(n3) operations to solve

linear system

Conditioning
 For monomial basis, matrix A is increasingly ill-conditioned as

degree increases

 Ill-conditioning does not prevent fitting data points well, since
residual for linear system solution will be small

 But it does mean that values of coefficients are poorly
determined

 Both conditioning of linear system and amount of computational
work required to solve it can be improved by using different basis

 Change of basis still gives same interpolating polynomial for
given data, but representation of polynomial will be different

Still not well-conditioned,

Looking for better alternative

Polynomial evaluation

Lagrange interpolation

Easy to determine, but expensive

to evaluate, integrate and differentiate

comparing to monomials

Example

Newton

interpolation

• Forward-substitution O(n2)

• Nested evaluation scheme

• Better balance between

cost of computing interpolant

and evaluating it

Example

Divided differences

Orthogonal polynomials

Choices for orthogonal basis

• Orthogonality =>

natural for least

squares

approximation

• Also useful for

generating

Gaussian

quadrature

Chebyshev

polynomials

Runge example

Convergence issues
 Interpolating polynomials of high

degree are expensive to
determine and evaluate

 In some bases, coefficients of
polynomial may be poorly
determined due to ill-conditioning
of linear system to be solved

 High-degree polynomial
necessarily has lots of “wiggles,”
which may bear no relation to
data to be fit

 Polynomial passes through
required data points, but it may
oscillate wildly between data
points

 Polynomial interpolating continuous

function may not converge to function

as number of data points and

polynomial degree increases

 Equally spaced interpolation points

often yield unsatisfactory results near

ends of interval

 If points are bunched near ends of

interval, more satisfactory results are

likely to be obtained with polynomial

interpolation

 Use of Chebyshev points distributes

error evenly and yields convergence

throughout interval for any sufficiently

smooth function

Piecewise polynomials
 Fitting single polynomial to large number of data points is likely to yield

unsatisfactory oscillating behavior in interpolant

 Piecewise polynomials provide alternative to practical and theoretical
difficulties with high-degree polynomial interpolation. Main advantage of
piecewise polynomial interpolation is that large number of data points can
be fit with low-degree polynomials

 In piecewise interpolation of given data points (ti, yi), different function is
used in each subinterval [ti, ti+1]

 Abscissas ti are called knots or breakpoints, at which interpolant changes
from one function to another

 Simplest example is piecewise linear interpolation, in which successive
pairs of data points are connected by straight lines

 Although piecewise interpolation eliminates excessive oscillation and
nonconvergence, it appears to sacrifice smoothness of interpolating function

 We have many degrees of freedom in choosing piecewise polynomial
interpolant, however, which can be exploited to obtain smooth interpolating
function despite its piecewise nature

Hermite vs. cubic spline
Hermite cubic interpolant is piecewise cubic polynomial interpolant with

continuous first derivative

 Piecewise cubic polynomial with n knots has 4(n − 1) parameters to be
determined

 Requiring that it interpolate given data gives 2(n − 1) equations

 Requiring that it have one continuous derivative gives n − 2 additional
equations, or total of 3n − 4, which still leaves n free parameters

 Thus, Hermite cubic interpolant is not unique, and remaining free parameters
can be chosen so that result satisfies additional constraints

Spline is piecewise polynomial of degree k that is k − 1 times

continuously differentiable

 For example, linear spline is of degree 1 and has 0 continuous derivatives, i.e., it
is continuous, but not smooth, and could be described as “broken line”

 Cubic spline is piecewise cubic polynomial that is twice continuously
differentiable

 As with Hermite cubic, interpolating given data and requiring one continuous
derivative imposes 3n − 4 constraints on cubic spline

 Requiring continuous second derivative imposes n − 2 additional constraints,
leaving 2 remaining free parameters

Spline example

Example

Example

Hermite vs. spline

 Choice between Hermite cubic and
spline interpolation depends on
data to be fit and on purpose for
doing interpolation

 If smoothness is of paramount
importance, then spline
interpolation may be most
appropriate

 But Hermite cubic interpolant may
have more pleasing visual
appearance and allows flexibility to
preserve monotonicity if original
data are monotonic

 In any case, it is advisable to plot
interpolant and data to help assess
how well interpolating function
captures behavior of original data

