
Simpson’s 1/3rd Rule of 
Integration 



Basis of Simpson’s 1/3rd Rule 
Trapezoidal rule was based on approximating the integrand by a first 

order polynomial, and then integrating the polynomial in the interval of 

integration.  Simpson’s 1/3rd rule is an extension of Trapezoidal rule 

where the integrand is approximated by a second order polynomial. 

Hence 
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Basis of Simpson’s 1/3rd Rule 
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Basis of Simpson’s 1/3rd Rule 

Solving the previous equations for a0, a1 and a2 give 
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Basis of Simpson’s 1/3rd Rule 

Then 
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Basis of Simpson’s 1/3rd Rule 

Substituting values of a0, a1, a 2 give 
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Since for Simpson’s 1/3rd Rule, the interval [a, b] is broken 

into 2 segments, the segment width 
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Basis of Simpson’s 1/3rd Rule 
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Because the above form has 1/3 in its formula, it is called Simpson’s 1/3rd Rule. 

 



Example 1 

a) Use Simpson’s 1/3rd Rule to find the approximate value of x  

The distance covered by a rocket from t=8 to t=30 is given by  
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b) Find the true error,   tE

c) Find the absolute relative true error,  t
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a) 


30

8

)( dttfx

















 








 
 )b(f

ba
f)a(f

ab
x

2
4

6

 )(f)(f)(f 301948
6

830








 


 6740901745548442667177
6

22
.).(. 










m.7211065



Solution (cont) 

b) The exact value of the above integral is 
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True Error 
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Solution (cont) 

a)c)  Absolute relative true error, 
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Multiple Segment Simpson’s 
1/3rd Rule 

 



Multiple Segment Simpson’s 1/3rd 
Rule 

Just like in multiple segment Trapezoidal Rule, one can subdivide the interval  

[a, b] into  n segments and apply Simpson’s 1/3rd Rule repeatedly over 

every two segments.  Note that n needs to be even.  Divide interval 

[a, b] into  equal segments, hence the segment width  
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Multiple Segment Simpson’s 1/3rd 
Rule 

Apply Simpson’s 1/3rd Rule over each interval, 
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Multiple Segment Simpson’s 1/3rd 
Rule 
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Multiple Segment Simpson’s 1/3rd 
Rule 

Then 
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Multiple Segment Simpson’s 1/3rd 
Rule 
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a)    Use four segment Simpson’s 1/3rd Rule to find the approximate 
value  of x. 

b)    Find the true error,      for part (a). 
c) Find the absolute relative true error,      for part (a). 

 

Example 2 
 Use 4-segment Simpson’s 1/3rd Rule to approximate the distance 

tE

covered by a rocket from t= 8 to t=30 as given by 
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Solution 
Using n segment Simpson’s 1/3rd Rule, 
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Solution (cont.) 
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Solution (cont.) 
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cont. 



Solution (cont.) 

In this case, the true error is 

64.1106134.11061 tE
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Solution (cont.) 

Table 1: Values of Simpson’s 1/3rd Rule for Example 2 with multiple segments 

n Approximate Value Et |Єt | 

2 
4 
6 
8 
10 

11065.72 
11061.64 
11061.40 
11061.35 
11061.34 

4.38 
0.30 
0.06 
0.01 
0.00 

0.0396% 
0.0027% 
0.0005% 
0.0001% 
0.0000% 



Error in the Multiple Segment 
Simpson’s 1/3rd Rule 

The true error in a single application of Simpson’s 1/3rd Rule is given as 
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In Multiple Segment Simpson’s 1/3rd Rule, the error is the sum of the errors 

in each application of Simpson’s 1/3rd Rule.  The error in n segment Simpson’s 

1/3rd Rule is given by  
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Error in the Multiple Segment 
Simpson’s 1/3rd Rule 
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Error in the Multiple Segment 
Simpson’s 1/3rd Rule 

Hence, the total error in Multiple Segment Simpson’s 1/3rd Rule is  
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Error in the Multiple Segment 
Simpson’s 1/3rd Rule 

The term  
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Additional Resources 

For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit 

 
http://numericalmethods.eng.usf.edu/topics/simpsons_
13rd_rule.html 
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