Introduction to Spectral method.

- Finite difference method - approximate a function locally using lower order interpolating polynomials.
- Spectral method - approximate a function using global higher order interpolating polynomials.
- Using spectral method, a higher order approximation can be made with moderate computational resources.

Definitions:

$I:=[a, b] \in \mathbf{R}$, an interval.
$f, g: I \rightarrow \mathbf{R}$, smooth functions.
$w: I \rightarrow \mathbf{R}$, a weight function.
$(\forall x \in I, w(x) \geq 0$ and $\{x \mid w(x)=0\}$ are descrete points).

$$
(f, g):=\int_{a}^{b} f(x) g(x) w(x) d x
$$

Π_{N} : a family of all polynomials of degree N or less than N .
$\left\{\phi_{n} \mid n=0, \cdots, N\right\}$: a set of orthogonal basis of Π_{N} with respect to the weight $w(x)$,

$$
\left(\phi_{n}, \phi_{m}\right):=\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) w(x) d x\left\{\begin{array}{l}
=0 \text { for } n \neq m, \\
\neq 0 \text { for } n=m
\end{array}\right.
$$

- In spectral methods, a function $\mathrm{f}(\mathrm{x})$ is approximated by its projection to the polynomial basis

$$
P_{N} f(x):=\sum_{n=0}^{N} \widehat{f}_{n} \phi_{n}(x), \text { where } \widehat{f}_{n}:=\frac{\int_{a}^{b} f(x) \phi_{n}(x) w(x) d x}{\int_{a}^{b} \phi_{n}(x) \phi_{n}(x) w(x) d x}=\frac{\left(f, \phi_{n}\right)}{\left(\phi_{n}, \phi_{n}\right)}
$$

- Difference between $f(x)$ and the approximation $P_{N} f(x)$ is called the truncation error. For a well behaved function $f(x)$, the truncation error goes to zero as increasing N .

$$
\lim _{N \rightarrow \infty}\left\|f(x)-P_{N} f(x)\right\|=0
$$

Ex) an approximation for a function $u(x)=\cos ^{3}(\pi x / 2)-(x+1)^{3 / 8}$

Approximation $P_{N} f(x):=\sum_{n=0}^{N} \widehat{f}_{n} \phi_{n}(x)$ will be good, if the integrals $\left(f, \phi_{n}\right)=\int_{a}^{b} f(x) \phi_{n}(x) w(x) d x, \quad\left(\phi_{n}, \phi_{n}\right)=\int_{a}^{b} \phi_{n}(x) \phi_{n}(x) w(x) d x$ are evaluated accurately.

- Gaussian integration (quadrature) formula is used to achieve high precision.
- Gauss formula is less convenient since it doesn't include end points of $I=[a, b]$.

Recall: (Gauss formula, Gaussian quadrature)
Let $w(x)$: weight function on $[a, b] . \phi_{k}$: k-th degree polynomials.
$\left\{\phi_{0}, \cdots, \phi_{N+1}\right\} \subset \Pi_{N+1}$: Orthogonal family of polynomials.
Writing the roots of ϕ_{N+1} by $x_{0}, \cdots x_{N}$, and define

$$
L_{i}(x):=\prod_{j=0, j \neq, i}^{N} \frac{x-x_{j}}{x_{i}-x_{j}}, \quad \text { for } i=0, \cdots N
$$

the corresponding Gaussian quadrature formula is given by
$I(f)=\int_{a}^{b} f(x) w(x) d x \approx I_{N}(f)=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right)$, where, $w_{i}:=\int_{a}^{b} L_{i}(x) w(x) d x$.
The formula $I_{N}(f)$ has dgree of precision $D=2 N+1$, that is, $\forall f(x) \in \Pi_{2 N+1}, \quad I(f) \equiv I_{N}(f)$.

Gauss-Lobatto formula.

* Gauss Lobatto formula uses function values at the both end points

$$
I(f)=\int_{a}^{b} f(x) w(x) d x \approx I_{N}(f)=w_{0} f(a)+w_{N} f(b)+\sum_{i=1}^{N-1} w_{i} f\left(x_{i}\right),
$$

then optimize the values of weights $\left\{w_{i}\right\}, i=0, \cdots, N$, and the abscissas $\left\{x_{i}\right\}, i=1, \cdots, N-1$.

- Since we have two less free parameters compare to the Gauss formula, the degree of precision for the Gauss-Lobatto formula is $\mathrm{D}=2 \mathrm{~N}-1$.
- Since $\mathrm{N}-1$ roots are used for $\left\{\mathrm{x}_{\mathrm{i}}\right\}$, the basis is $\left\{\phi_{0}, \cdots, \phi_{N-1}\right\} \subset \Pi_{N-1}$:
- For $\mathrm{I}=[-1,1]$ and $\mathrm{w}(\mathrm{x})=1, \mathrm{x}_{\mathrm{i}}$ are roots of $\phi_{\mathrm{N}-1}=\mathrm{P}_{\mathrm{N}}(\mathrm{x})=0$.
* Gauss Radau formula uses a function value at one of the end points.
$\int_{a}^{b} f(x) w(x) d x=w_{0} f(a)+\sum_{i=2}^{N} w_{i} f\left(x_{i}\right)$, then optimize the values of weights $\left\{w_{i}\right\}, i=0, \cdots, N$, and the abscissas $\left\{x_{i}\right\}, i=1, \cdots, N$. The degree of precision $\mathrm{D}=2 \mathrm{~N}$.

$$
\forall f(x) \in \Pi_{2 n+k}, \quad I(f) \equiv I_{N}(f)=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right) \begin{cases}k=1 & \text { Gauss, } \\ k=0 & \text { Gauss-Radau } \\ k=-1 & \text { Gauss-Lobatto }\end{cases}
$$

"Exact" spectral expansion differs from numerically evaluated expansion.

$$
\begin{array}{r}
P_{N} f(x):=\sum_{n=0}^{N} \widehat{f}_{n} \phi_{n}(x), \quad \widehat{f}_{n}:=\frac{\int_{a}^{b} f(x) \phi_{n}(x) w(x) d x}{\int_{a}^{b} \phi_{n}(x) \phi_{n}(x) w(x) d x}=\frac{\left(f, \phi_{n}\right)}{\left(\phi_{n}, \phi_{n}\right)} \\
I_{N} f(x):=\sum_{n=0}^{N} \tilde{f}_{n} \phi_{n}(x), \quad \tilde{f}_{n}:=\frac{1}{\gamma_{n}} \sum_{i=0}^{N} w_{i} f\left(x_{i}\right) \phi_{n}\left(x_{i}\right)=\frac{\left(f, \phi_{n}\right)_{N}}{\left(\phi_{n}, \phi_{n}\right)_{N}}, \\
\gamma_{n}:=\sum_{i=0}^{N} w_{i}\left[\phi_{n}\left(x_{i}\right)\right]^{2}=:\left(\phi_{n}, \phi_{n}\right)_{N} .
\end{array}
$$

\hat{f} and \tilde{f} are different. [Aliasing error] $:=\left|I_{N} f-P_{N} f\right|$

- The Interpolant of $f(x), I_{N} f$, is called the spectral approximation of $f(x)$.
- Abscissas used in the Gauss quadrature formula $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ are also called collocation points.

Exc 6-1) Show that the value of interpolant agrees with the function value at each collocation points,

$$
I_{N} f\left(x_{i}\right)=f\left(x_{i}\right) \text { at each collocation point }\left\{x_{0}, \cdots, x_{N}\right\} .
$$

- A set of function values at collocation points $\left\{f\left(x_{0}\right), \cdots, f\left(x_{N}\right)\right\}$ is called configuration space.
- A set of coefficients of the spectral expansion $\left\{\tilde{f}_{0}, \cdots, \tilde{f}_{N}\right\}$ is called coefficient space.
The map between configuration space and coefficient space is a bijection (one to one and onto).

$$
\begin{array}{ll}
\tilde{f}_{n}:=\frac{1}{\gamma_{n}} \sum_{i=0}^{N} w_{i} f\left(x_{i}\right) \phi_{n}\left(x_{i}\right), & \text { configuration space } \rightarrow \text { coeffcient space } \\
I_{N} f\left(x_{n}\right):=\sum_{n=0}^{N} \tilde{f}_{n} \phi_{n}\left(x_{n}\right), & \text { coeffcient space } \rightarrow \text { configuration space }
\end{array}
$$

Ex) a derivative is calculated using a spectral expansion in the coefficient space.

$$
\frac{d f}{d x} \approx \frac{d}{d x}\left[I_{N} f(x)\right]=\sum_{n=0}^{N} \tilde{f}_{n} \frac{d \phi_{n}}{d x}(x) \neq I_{N} \frac{d f}{d x}(x)=\sum_{n=0}^{N}\left(\frac{\widetilde{d f}}{d x}\right)_{n} \phi_{n}(x) \approx \frac{d f}{d x} .
$$

Difference in $\mathrm{P}_{\mathrm{N}} \mathrm{f}$ (analytic) and $\mathrm{I}_{\mathrm{N}} \mathrm{f}$ (interpolant).

Choice for the polynomials:

1) Legendre polynomials. $\phi_{\mathrm{n}}(\mathrm{x})=\mathrm{P}_{\mathrm{n}}(\mathrm{x})$. Interval $\mathrm{I}=[-1,1]$, and weight $\mathrm{w}(\mathrm{x})=1$.
$\tilde{f}_{n}:=\frac{1}{\gamma_{n}} \sum_{i=0}^{N} w_{i} f\left(x_{i}\right) P_{n}\left(x_{i}\right)$,
$I_{N} f(x):=\sum_{n=0}^{N} \tilde{f}_{n} P_{n}(x)$,

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n m}
$$

Abscissas $\left\{x_{i}\right\}_{i=0, \cdots, N} \quad$ weight $\left\{w_{i}\right\}_{i=0, \cdots, N}$

Gauss-Legendre Roots of $P_{N+1}(x)=0 \quad w_{i}=\frac{2}{1-x_{i}^{2}}\left[P_{N+1}^{\prime}\left(x_{i}\right)\right]$
Gauss-Radau $\quad x_{0}=-1$ and the Roots of $w_{0}=\frac{2}{(N+1)^{2}}$, and
-Legendre

$$
P_{N}(x)+P_{N+1}(x)=0 \quad w_{i} \frac{1}{(N+1)^{2}}
$$

Gauss-Lobatto $\quad x_{0}=-1, x_{N}=1$ and the $w_{i}=\frac{2}{N(N+1)} \frac{1}{\left[P_{N}\left(x_{i}\right)\right]^{2}}$
-Legendre Roots of $P_{N}^{\prime}(x)=0$

Some linear operations to the Legendre interpolant.
For some linear operators L acting on the interpolant
$L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} a_{n} P_{n}(x)$, the coeffient a_{n} can be explicitly written
by \tilde{f}_{n} of $I_{N} f(x):=\sum_{n=0}^{N} \tilde{f}_{n} P_{n}(x)$.
(1) For L the multiplication of $\mathrm{x}, L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} \tilde{f}_{n} x P_{n}(x)$,

$$
a_{n}=\frac{n}{2 n-1} \tilde{f}_{n-1}+\frac{n+1}{2 n+3} \tilde{f}_{n+1}, \quad(n \geq 1) .
$$

(2) For L the derivative, $L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} \tilde{f}_{n} P_{n}^{\prime}(x)$,

$$
a_{n}=(2 n+1) \sum_{p=n+1, p+n=o d d}^{N} \tilde{f_{p}} .
$$

(3) For L the second derivative, $L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} \tilde{f}_{n} P_{n}^{\prime \prime}(x)$,

$$
a_{n}=(n+1 / 2) \sum_{p=n+2, p+n=\text { even }}^{N}[p(p+1)-n(n+1)] \tilde{f}_{p} .
$$

Exc 6-2) Show the above relations using recursion relations for $P_{n}(x)$.
2) Chebyshev polynomials. $\phi_{n}(x)=T_{n}(x)$. Interval $I=[-1,1]$, and weight $w(x)=\frac{1}{\sqrt{1-x^{2}}}$ $\tilde{f}_{n}:=\frac{1}{\gamma_{n}} \sum_{i=0}^{N} w_{i} f\left(x_{i}\right) T_{n}\left(x_{i}\right)$,

$$
\int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=\frac{\pi}{2}\left(1+\delta_{0 n}\right) \delta_{n m} .
$$

Abscissas $\left\{x_{i}\right\}_{i=0, \cdots, N}$ weight $\left\{w_{i}\right\}_{i=0, \cdots, N}$

Gauss-Chebyshev	$x_{i}=\cos \frac{(2 i+1) \pi}{2 N+2}$	$w_{i}=\frac{\pi}{N+1}$
Gauss-Radau	$x_{i}=\cos \frac{2 \pi i}{2 N+1}$	$w_{0}=\frac{\pi}{2 N+1}$, and
-Chebyshev	$w_{i} \frac{2 \pi}{2 N+1}$	
Gauss-Lobatto	$x_{i}=\cos \frac{\pi i}{N}$	$w_{0}=w_{N}=\frac{\pi}{2 N}$
-Chebyshev		$w_{i}=\frac{\pi}{N}$

Some linear operations to the Chebyshev interpolant.
For some linear operators L acting on the interpolant

$$
L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} a_{n} T_{n}(x), \quad I_{N} f(x):=\sum_{n=0}^{N} \tilde{f}_{n} T_{n}(x) .
$$

(1) For L the multiplication of $\mathrm{x}, L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} \tilde{f}_{n} x T_{n}(x)$,

$$
a_{n}=\frac{1}{2}\left[\left(1+\delta_{0 n-1}\right) \tilde{f}_{n-1}+\tilde{f}_{n+1}\right], \quad(n \geq 1) .
$$

(2) For L the derivative, $L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} \tilde{f}_{n} T_{n}^{\prime}(x)$,

$$
a_{n}=\frac{2}{1+\delta_{0 n}} \sum_{p=n+1, p+n=o d d}^{N} p \tilde{f_{p}} .
$$

(3) For L the second derivative, $L\left[I_{N} f(x)\right]:=\sum_{n=0}^{N} \tilde{f}_{n} T_{n}^{\prime \prime}(x)$,

$$
a_{n}=\frac{1}{1+\delta_{0 n}} \sum_{p=n+2, p+n=\text { even }}^{N} p\left(p^{2}-n^{2}\right) \tilde{f}_{p} .
$$

Exc 6-3) Show the above relations using recursion relations for $T_{n}(x)$.

Convergence property

For a function $f(x) \in C^{m}$, the truncation error is bounded as follows.

* For Legendre : $\left\|I_{N} f-f\right\|_{L^{2}} \leq \frac{C}{N^{m-1 / 2}} \sum_{k=0}^{m}\left\|f^{(k)}\right\|_{L^{2}}$.
* For Chebyshev : $\left\|I_{N} f-f\right\|_{L_{w}^{2}} \leq \frac{C}{N^{m}} \sum_{k=0}^{m}\left\|f^{(k)}\right\|_{L_{w}^{2}}$.

$$
\left\|I_{N} f-f\right\|_{\infty} \leq \frac{C}{N^{m-1 / 2}} \sum_{k=0}^{m}\left\|f^{(k)}\right\|_{\infty} .
$$

For C^{1} - functions, the error decays faster than any power of N . (evanescent error)

Differential equation solver.
Consider a system differential equations of the following form.

$$
\begin{array}{rll}
L f(x)=S(x) & \text { for } & x \in U \\
B f(x)=0 & \text { for } & x \in \partial U
\end{array}
$$

L and B are linear differential operators.
Numerically constructed function $f_{\text {num }}(x)$ is called admissible solution, if

1) $B f_{\text {num }}(x)=0$ at $x \in \partial U$ i.e. satisfies boundary condition exactly, and
2) Residual $R(x):=L f_{\text {num }}(x)-S(x)$ at $\forall x \in U$ is small.

Weighted residual method requires that, for $\mathrm{N}+1$ test functions $\xi_{\mathrm{n}}(\mathrm{x})$

$$
\left(\xi_{n}, R\right)_{N}=0 \text { for } \forall n=0, \cdots, N .
$$

(Or its continuum version $\left(\xi_{n}, R\right)=0$ for $\forall n=0, \cdots, N$.)
For the spectral method, $f_{\text {num }}(x) \rightarrow I_{N} f(x)$. Threfore For a system,

$$
\begin{aligned}
L\left(I_{N} f(x)\right) & =S(x), \quad x \in U, \\
B\left(I_{N} f(x)\right) & =0, \quad x \in \partial U,
\end{aligned}
$$

we impose

$$
\left(\xi_{n}, L\left(I_{N} f\right)-S\right)_{N}=0, \quad \text { for } \quad \forall n=0, \cdots, N .
$$

Recall: Notation for the spectral expansion.

$$
\begin{aligned}
I_{N} f(x):=\sum_{n=0}^{N} \tilde{f}_{n} \phi_{n}(x), \quad \tilde{f}_{n} & :=\frac{1}{\gamma_{n}} \sum_{i=0}^{N} w_{i} f\left(x_{i}\right) \phi_{n}\left(x_{i}\right)=\frac{\left(f, \phi_{n}\right)_{N}}{\left(\phi_{n}, \phi_{n}\right)_{N}}, \\
\left(f, \phi_{n}\right)_{N} & :=\sum_{i=0}^{N} w_{i} f\left(x_{i}\right) \phi_{n}\left(x_{i}\right) \\
\gamma_{n} & :=\sum_{i=0}^{N} w_{i}\left[\phi_{n}\left(x_{i}\right)\right]^{2}=:\left(\phi_{n}, \phi_{n}\right)_{N} .
\end{aligned}
$$

Gauss type quadrature formula (including Radau, Lobatto) is used.

Continuum.

$$
\begin{gathered}
P_{N} f(x):=\sum_{n=0}^{N} \widehat{f}_{n} \phi_{n}(x), \quad \widehat{f}_{n}:=\frac{\int_{a}^{b} f(x) \phi_{n}(x) w(x) d x}{\int_{a}^{b} \phi_{n}(x) \phi_{n}(x) w(x) d x}=\frac{\left(f, \phi_{n}\right)}{\left(\phi_{n}, \phi_{n}\right)} \\
\left(f, \phi_{n}\right):=\int_{a}^{b} f(x) \phi_{n}(x) w(x) d x
\end{gathered}
$$

Three types of solvers.

- Depending on the choice of the spectral basis ϕ_{n} and the test function ξ_{n}, one can generate various different types of spectral solvers.
- A manner of imposing boundary conditions also depend on the choice.
(i) The Tau-method.

Choose ϕ_{n} as one of the orthogonal basis such as $\mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{T}_{\mathrm{n}}(\mathrm{x})$.
Choose the test function ξ_{n} the same as the spectral basis ϕ_{n}.
(ii) The collocation method.

Choose ϕ_{n} as one of the orthogonal basis such as $\mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{T}_{\mathrm{n}}(\mathrm{x})$.
Choose the test function $\xi_{\mathrm{n}}=\delta\left(\mathrm{x}-\mathrm{x}_{\mathrm{n}}\right)$ fpr any spectral basis ϕ_{n}.
(iii) The Galerkin method.

Choose the spectral basis ϕ_{n} and the test function ξ_{n} as some linear combinations of orthogonal polynomial basis G_{n} that satisfies the boundary condition. The basis G_{n} is called Galerkin basis.
(G_{n} is not orthogonal in general.)
(i) The Tau-method.

Choose the test function ξ_{n} the same as the spectral basis ϕ_{n}. Then solve

$$
\left(\phi_{n}, L\left(I_{N} f\right)-S\right)_{N}=0, \quad n=0, \cdots, N \quad \cdots(*) .
$$

(Note: here we have $\mathrm{N}+1$ equations for $\mathrm{N}+1$ unknowns.)

- Linear operator, L, acting on the interpolant $I_{N} f(x)=\sum_{m=0}^{N} \tilde{f}_{m} \phi_{m}(x)$
can be replaced by a matrix $L_{n m}$.

$$
\begin{aligned}
& L\left(I_{N} f\right)(x)=\sum_{m=0}^{N} \tilde{f}_{m} L \phi_{m}(x)=\sum_{m=0}^{N} \sum_{p=0}^{N} L_{p m} \tilde{f}_{m} \phi_{p}(x) \\
& \left(\phi_{n}, L\left(I_{N} f\right)\right)_{N}=\sum_{m=0}^{N} \sum_{p=0}^{N} L_{p m} \tilde{f}_{m}\left(\phi_{n}, \phi_{p}\right)_{N}=\gamma_{n} \sum_{m=0}^{N} L_{n m} \tilde{f}_{m} \\
& \left(\phi_{n}, S\right)_{N}=\gamma_{n} \tilde{S}_{n}, \quad\left(\phi_{n}, \phi_{p}\right)_{N}=\gamma_{n} \delta_{n p}, \quad n=0, \cdots, N .
\end{aligned}
$$

Therefore (*) becomes

$$
\sum_{m=0}^{N} L_{n m} \tilde{f}_{m}=\tilde{S}_{n}, \quad n=0, \cdots, N
$$

- A few of these equations with the largest n are replaced by the boundary condition. (The number is that of the boundary condition.)
(i) The Tau-method (continued).

Boundary condition: suppose operator on the boundary B is linear,

$$
B\left(I_{N} f\right)(x)=\sum_{m=0}^{N} \tilde{f}_{m} B \phi_{m}(x)=\sum_{m=0}^{N} \sum_{p=0}^{N} B_{p m} \tilde{f}_{m} \phi_{p}(x)
$$

ex) Dirichlet boundary $\left.B f(x)\right|_{x=0}=f(a)-g=0$

$$
\sum_{m=0}^{N} \tilde{f}_{m} \phi_{m}(a)=g
$$

A test problem.
Consider 2 point boundary value problem of the second order ODE,

$$
\frac{d^{2} f}{d x^{2}}-4 \frac{d f}{d x}+4 f=\exp [x]+C
$$

with $x \in[-1,1], C=-4 e /\left(1+e^{2}\right)$, and boundary conditions, $f(-1)=0$, and $f(1)=0$.
$\begin{aligned} & \text { - This boundary value problem } \\ & \text { has unique exact solution, }\end{aligned} f_{\text {sol }}=\exp [x]-\frac{\sinh (1)}{\sinh (2)} \exp (2 x)+\frac{C}{4}$.
The linear operator $L:=\frac{d^{2}}{d x^{2}}-4 \frac{d}{d x}+4$ Id becomes a matrix when it operate to an Interpolant.

Example: Apply Tau-method to the test problem with the Chebyshev basis.
When the spectral basis is the Chebyshev polynomials, $L\left(I_{N} f\right)(x)=\sum_{m=0}^{N} \tilde{f}_{m} L T_{m}(x)$

Example: Apply Tau-method to the test problem with the Chebyshev (Continued)

$$
\begin{aligned}
& \text { The spectral expansion of the R.H.S } \\
& S(x)=\exp [x]-4 e /\left(1+e^{2}\right) \text { becomes } \quad \text { For } N=4, \widetilde{S}_{n}=\left(\begin{array}{c}
-0.03 \\
1.13 \\
0.27 \\
0.0449 \\
0.00547
\end{array}\right) \\
& \left(\begin{array}{ccccc}
4 & -4 & 4 & -12 & 32 \\
0 & 4 & -16 & 24 & -32 \\
0 & 0 & 4 & -24 & 48 \\
0 & 0 & 0 & 4 & -32 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)\left(\begin{array}{c}
\widehat{f}_{0} \\
\widehat{f}_{1} \\
\widehat{f}_{2} \\
\widehat{f}_{3} \\
\widehat{f}_{4}
\end{array}\right)=\left(\begin{array}{c}
-0.03 \\
1.13 \\
0.27 \\
0.0449 \\
0.0055
\end{array}\right) \\
& \cdots \sum_{m=1}^{4} L_{n m} \tilde{f}_{m}=\widetilde{S}_{n} \\
& \cdots=0, \cdots, 4
\end{aligned}
$$

Boundary conditions $f(-1)=0$, and $f(1)=0$

$$
\begin{array}{ll}
B\left(I_{N} f\right)(-1)=\sum_{m=0}^{N} \tilde{f}_{m} T_{m}(-1)=\sum_{m=0}^{N}(-1)^{m} \tilde{f}_{m}=0 & \\
B\left(I_{N} f\right)(1)=\sum_{m=0}^{N} \tilde{f}_{m} T_{m}(1)=\sum_{m=0}^{N} \tilde{f}_{m}=0 & T_{n}(1)=1
\end{array}
$$

$\begin{aligned} & \text { Replace two largest componets } \\ & (\mathrm{n}=4 \text { and } 3) \text { of }(* *) \text { with } \\ & \text { the two boundary conditions. }\end{aligned}\left(\begin{array}{ccccc}4 & -4 & 4 & -12 & 32 \\ 0 & 4 & -16 & 24 & -32 \\ 0 & 0 & 4 & -24 & 48 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}\right)\left(\begin{array}{c}\widehat{f}_{0} \\ \widehat{f}_{1} \\ \hat{f}_{2} \\ \widehat{f}_{3} \\ \widehat{f}_{4}\end{array}\right)=\left(\begin{array}{c}-0.03 \\ 1.13 \\ 0.27 \\ 0 \\ 0\end{array}\right)$ Done!
(ii) The collocation method.

Choose ϕ_{n} as one of the orthogonal basis such as $\mathrm{P}_{\mathrm{n}}(\mathrm{x}), \mathrm{T}_{\mathrm{n}}(\mathrm{x})$.
Choose the test function $\xi_{\mathrm{n}}=\delta\left(\mathrm{x}-\mathrm{x}_{\mathrm{n}}\right)$ fpr any spectral basis ϕ_{n}.
Then solve, $\quad\left(\delta\left(x-x_{n}\right), L\left(I_{N} f\right)-S\right)=0, \quad n=0, \cdots, N$.
This is rewritten $L\left(I_{N} f\right)\left(x_{n}\right)=S\left(x_{n}\right)$, or,

$$
\sum_{m=0}^{N} \sum_{p=0}^{N} L_{p m} \phi_{p}\left(x_{n}\right) \tilde{f}_{m}=S\left(x_{n}\right), \quad n=0, \cdots, N
$$

Note the difference from the Tau method.
LHS double sum. RHS not a spectral coefficients
The boundary points are also taken as the collocation points. (Lobatto)
The equations at the boundaries are replaced by the boundary conditions.
Ex). A test problem with Chebvshev basis.

$$
\left(\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
4 & -6.83 & 15.3 & -26.1 & 28 \\
4 & -4 & 0 & 12 & -12 \\
4 & -1.17 & -7.31 & 2.14 & 28 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\widetilde{f}_{0} \\
\widetilde{f}_{1} \\
\widetilde{f}_{2} \\
\widetilde{f}_{3} \\
\widetilde{f}_{4}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-0.80 \\
-0.30 \\
0.73 \\
0
\end{array}\right)
$$

Exc 6-4) Make a spectral code to solve the same test problem using the collocation method. Try both of Chebyshev and Legendre basis.
Estimate the norm $\left\|\mathrm{I}_{\mathrm{N}} \mathrm{f}-\mathrm{f}\right\|$ for the different N .
(iii) The Galerkin method.

Choose the spectral basis ϕ_{n} and the test function ξ_{n} as some linear combinations of orthogonal polynomial basis G_{n} that satisfies the boundary condition. The basis G_{n} is called Galerkin basis.

- The Galerkin basis is not orthogonal in general.
- It is usually better to construct G_{n} that relates to a certain orthogonal basis ϕ_{n} in a simple manner (no general recipe for the construction.)

$$
\mathrm{Ex}) \quad \begin{array}{ll}
G_{2 k}(x)=T_{2 k+2}(x)-T_{0}(x) \\
& G_{2 k+1}(x)=T_{2 k+3}(x)-T_{1}(x)
\end{array}
$$

- Highest order of the basis should be $\mathrm{N}-1$ to maintain a consistent degree of approximation. (so the highest basis appears is $\mathrm{T}_{\mathrm{N}}(\mathrm{x})$.)

Ex) Consider the case with two point boundary value problem.
Number of collocation points is $\mathrm{N}+1$.
Since two boundary condition is imposed on the Galerkin basis $\left\{\mathrm{G}_{\mathrm{n}}\right\}$ $\left\{\mathrm{G}_{\mathrm{n}}\right\}$: $\mathrm{N}-1$ are basis, $\mathrm{n}=0, \ldots, \mathrm{~N}-2$.
Assume that $\left\{\mathrm{G}_{\mathrm{n}}\right\}$ can be constructed from a linear combination of the orthogonal basis $\left\{\phi_{\mathrm{n}}\right\}$. Then we may introduce a matrix $M_{m n}$ such that

$$
G_{n}(x)=\sum_{m=0}^{N} M_{m n} \phi_{m}(x), \text { where } M_{m n} \text { is }(N+1) \times(N-1) \text { matrix }
$$

The interpolant is defined by $I_{N} f(x)=\sum_{n=0}^{N-2} \tilde{f}_{n}^{G} G_{n}(x)$.
Taking the test function ξ_{n} the same as Galerkin basis G_{n}, $\left(G_{n}, L\left(I_{N} f\right)-S\right)_{N}=0, \quad n=0, \cdots, N-2$, are solved for \tilde{f}_{n}^{G}.
Exc 6-5) Show that this equation is wrtten

$$
\sum_{m=0}^{N-2} \tilde{f}_{m}^{G} \sum_{p=0}^{N} \sum_{k=0}^{N} M_{k n} M_{p m} L_{k p}\left(\phi_{k}, \phi_{k}\right)_{N}=\sum_{m=0}^{N} M_{m n} \tilde{S}_{m}\left(\phi_{m}, \phi_{m}\right)_{N}
$$

Finally, using transformation matrix $M_{m n}$ again, we spectral coefficients

$$
I_{N} f(x)=\sum_{n=0}^{N-2} \tilde{f}_{n}^{G} G_{n}(x)=\sum_{m=0}^{N}\left(\sum_{n=0}^{N-2} M_{m n} \tilde{f}_{n}^{G}\right) \phi_{m}(x)=\sum_{m=0}^{N} \tilde{f}_{m} \phi_{m}(x)
$$

A comparison of erros of the different method.

