Introduction to Spectral method.

- Finite difference method approximate a function locally using lower ٠ order interpolating polynomials.
- Spectral method approximate a function using global higher order • interpolating polynomials.
- Using spectral method, a higher order approximation can be made with • moderate computational resources.

Definitions:

 $I := [a, b] \in \mathbf{R}$, an interval.

 $w: I \to \mathbf{R}$, a weight function. $f, g: I \to \mathbf{R}$, smooth functions. $(\forall x \in I, w(x) \ge 0 \text{ and } \{x \mid w(x) = 0\}$ are descrete points).

$$(f,g) := \int_a^b f(x)g(x)w(x)dx.$$

 Π_N : a family of all polynomials of degree N or less than N. $\{\phi_n \mid n = 0, \cdots, N\}$: a set of orthogonal basis of Π_N with respect to the weight w(x),

$$(\phi_n, \phi_m) := \int_a^b \phi_n(x) \phi_m(x) w(x) dx \begin{cases} = 0 \text{ for } n \neq m, \\ \neq 0 \text{ for } n = m. \end{cases}$$

• In spectral methods, a function f(x) is approximated by its projection to the polynomial basis

$$P_N f(x) := \sum_{n=0}^N \widehat{f}_n \phi_n(x), \text{ where } \widehat{f}_n := \frac{\int_a^b f(x) \phi_n(x) w(x) dx}{\int_a^b \phi_n(x) \phi_n(x) w(x) dx} = \frac{(f, \phi_n)}{(\phi_n, \phi_n)}$$

• Difference between f(x) and the approximation $P_N f(x)$ is called the truncation error. For a well behaved function f(x), the truncation error goes to zero as increasing N.

$$\lim_{N \to \infty} ||f(x) - P_N f(x)|| = 0$$

Ex) an approximation for a function $u(x) = \cos^3(\pi x/2) - (x+1)^3/8$

Approximation $P_N f(x) := \sum_{n=0}^{N} \hat{f}_n \phi_n(x)$ will be good, if the integrals $(f, \phi_n) = \int_a^b f(x) \phi_n(x) w(x) dx, \quad (\phi_n, \phi_n) = \int_a^b \phi_n(x) \phi_n(x) w(x) dx$ are evaluated accurately.

- Gaussian integration (quadrature) formula is used to achieve high precision.
- Gauss formula is less convenient since it doesn't include end points of I = [a,b].

Recall: (Gauss formula, Gaussian quadrature) Let w(x): weight function on [a, b]. ϕ_k : k-th degree polynomials. $\{\phi_0, \dots, \phi_{N+1}\} \subset \Pi_{N+1}$: Orthogonal family of polynomials. Writing the roots of ϕ_{N+1} by $x_0, \dots x_N$, and define

$$L_i(x) := \prod_{j=0, j \neq i}^N \frac{x - x_j}{x_i - x_j}, \text{ for } i = 0, \dots N,$$

the corresponding Gaussian quadrature formula is given by

$$I(f) = \int_{a}^{b} f(x)w(x)dx \approx I_{N}(f) = \sum_{i=0}^{N} w_{i}f(x_{i}), \text{ where, } w_{i} := \int_{a}^{b} L_{i}(x)w(x)dx.$$

The formula $I_N(f)$ has dgree of precision D = 2N + 1, that is, $\forall f(x) \in \Pi_{2N+1}, \quad I(f) \equiv I_N(f).$ Gauss-Lobatto formula.

★ Gauss Lobatto formula uses function values at the both end points

$$I(f) = \int_{a}^{b} f(x)w(x)dx \approx I_{N}(f) = w_{0}f(a) + w_{N}f(b) + \sum_{i=1}^{N-1} w_{i}f(x_{i}),$$

then optimize the values of weights $\{w_i\}$, $i = 0, \dots, N$, and the abscissas $\{x_i\}$, $i = 1, \dots, N-1$.

- Since we have two less free parameters compare to the Gauss formula, the degree of precision for the Gauss-Lobatto formula is D = 2N 1.
- Since N 1 roots are used for $\{x_i\}$, the basis is $\{\phi_0, \dots, \phi_{N-1}\} \subset \Pi_{N-1}$:
- For I = [-1,1] and w(x) = 1, x_i are roots of $\phi_{N-1} = P'_N(x) = 0$.

 \star Gauss Radau formula uses a function value at one of the end points.

 $\int_{a}^{b} f(x)w(x)dx = w_{0}f(a) + \sum_{i=2}^{N} w_{i}f(x_{i}), \text{ then optimize the values of weights } \{w_{i}\}, i = 0, \dots, N, \text{ and the abscissas } \{x_{i}\}, i = 1, \dots, N.$ The degree of precision D=2N.

$$\forall f(x) \in \Pi_{2n+k}, \ I(f) \equiv I_N(f) = \sum_{i=0}^N w_i f(x_i) \begin{cases} k = 1 & \text{Gauss,} \\ k = 0 & \text{Gauss-Radau,} \\ k = -1 & \text{Gauss-Lobatto.} \end{cases}$$

``Exact'' spectral expansion differs from numerically evaluated expansion.

$$P_N f(x) := \sum_{n=0}^{N} \hat{f}_n \phi_n(x), \qquad \hat{f}_n := \frac{\int_a^b f(x) \phi_n(x) w(x) dx}{\int_a^b \phi_n(x) \phi_n(x) w(x) dx} = \frac{(f, \phi_n)}{(\phi_n, \phi_n)}$$
$$I_N f(x) := \sum_{n=0}^{N} \tilde{f}_n \phi_n(x), \qquad \tilde{f}_n := \frac{1}{\gamma_n} \sum_{i=0}^{N} w_i f(x_i) \phi_n(x_i) = \frac{(f, \phi_n)_N}{(\phi_n, \phi_n)_N},$$
$$\gamma_n := \sum_{i=0}^{N} w_i [\phi_n(x_i)]^2 =: (\phi_n, \phi_n)_N.$$

 \widehat{f} and \widetilde{f} are different. [Aliasing error] := $|I_N f - P_N f|$

- The Interpolant of f(x), $I_N f$, is called the spectral approximation of f(x).
- Abscissas used in the Gauss quadrature formula $\{x_i\}$ are also called collocation points.

Exc 6-1) Show that the value of interpolant agrees with the function value at each collocation points,

 $I_N f(x_i) = f(x_i)$ at each collocation point $\{x_0, \dots, x_N\}$.

- A set of function values at collocation points {f(x₀), ..., f(x_N)}
 is called configuration space.
- A set of coefficients of the spectral expansion $\{\tilde{f}_0, \dots, \tilde{f}_N\}$ is called coefficient space.

The map between configuration space and coefficient space is a bijection (one to one and onto).

$$\widetilde{f}_n := \frac{1}{\gamma_n} \sum_{i=0}^N w_i f(x_i) \phi_n(x_i), \quad \text{configuration space} \to \text{coeffcient space}$$
$$I_N f(x_n) := \sum_{n=0}^N \widetilde{f}_n \phi_n(x_n), \quad \text{coeffcient space} \to \text{configuration space}$$

Ex) a derivative is calculated using a spectral expansion in the coefficient space.

$$\frac{df}{dx} \approx \frac{d}{dx} [I_N f(x)] = \sum_{n=0}^N \tilde{f}_n \frac{d\phi_n}{dx} (x) \neq I_N \frac{df}{dx} (x) = \sum_{n=0}^N \left(\frac{\widetilde{df}}{dx}\right)_n \phi_n(x) \approx \frac{df}{dx}.$$

Difference in P_N f (analytic) and I_N f (interpolant).

Choice for the polynomials:

1) Legendre polynomials. $\phi_n(x) = P_n(x)$. Interval I = [-1,1],

\sim 1 $\frac{N}{N}$	and weight $w(x) = 1$.				
$\widetilde{f}_n := \frac{1}{\gamma_n} \sum_{i=0}^{N} w_i f(x)$ $I_N f(x) := \sum_{n=0}^{N} \widetilde{f}_n$	$x_i) P_n(x_i),$ $\int_{-1}^1 P_n(x) P_m(x) P_m(x)$	$(x) dx = \frac{2}{2n+1}\delta_{nm}.$			
	Abscissas $\{x_i\}_{i=0,\cdots,N}$	weight $\{w_i\}_{i=0,\cdots,N}$			
Gauss-Legendre	Roots of $P_{N+1}(x) = 0$	$w_i = \frac{2}{1 - x_i^2} [P'_{N+1}(x_i)]$			
Gauss-Radau	$x_0 = -1$ and the Roots of	$w_0 = \frac{2}{(N+1)^2}$, and			
-Legendre	$P_N(x) + P_{N+1}(x) = 0$	$w_i \frac{1}{(N+1)^2}$			
Gauss-Lobatto	$x_0 = -1$, $x_N = 1$ and the	$w_i = \frac{2}{N(N+1)} \frac{1}{[P_N(x_i)]^2}$			
-Legendre	Roots of $P'_N(x) = 0$				

Some linear operations to the Legendre interpolant.

For some linear operators L acting on the interpolant

 $L[I_N f(x)] := \sum_{n=1}^{N} a_n P_n(x)$, the coefficient a_n can be explicitly written by \tilde{f}_n of $I_N f(x) := \sum_{n=0}^N \tilde{f}_n P_n(x)$. (1) For L the multiplication of x, $L[I_N f(x)] := \sum_{n=1}^{N} \tilde{f}_n x P_n(x)$, $a_n = \frac{n}{2n-1}\tilde{f}_{n-1} + \frac{n+1}{2n+3}\tilde{f}_{n+1}, \quad (n \ge 1).$ (2) For L the derivative, $L[I_N f(x)] := \sum_{n=1}^{N} \widetilde{f}_n P'_n(x)$, $a_n = (2n+1)$ $\sum^N \tilde{f_p}.$ p=n+1, p+n=odd(3) For L the second derivative, $L[I_N f(x)] := \sum_{n=1}^{N} \widetilde{f}_n P_n''(x)$, $a_n = (n+1/2)$ $\sum^N [p(p+1) - n(n+1)]\tilde{f}_p.$ p=n+2. p+n=even

Exc 6-2) Show the above relations using recursion relations for $P_n(x)$.

2) Chebyshev polynomials. $\phi_n(x) = T_n(x)$. Interval I = [-1,1], and weight $w(x) = \frac{1}{\sqrt{1 - x^2}}$ $\widetilde{f}_{n} := \frac{1}{\gamma_{n}} \sum_{i=0}^{N} w_{i} f(x_{i}) T_{n}(x_{i}), \qquad \sqrt{1 - x^{2}}$ $I_{N} f(x) := \sum_{n=0}^{N} \widetilde{f}_{n} T_{n}(x), \qquad \int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1 - x^{2}}} dx = \frac{\pi}{2} (1 + \delta_{0n}) \delta_{nm}.$ Abscissas $\{x_i\}_{i=0,\dots,N}$ weight $\{w_i\}_{i=0,\dots,N}$ Gauss-Chebyshev $x_i = \cos \frac{(2i+1)\pi}{2N+2}$ $w_i = \frac{\pi}{N+1}$

Gauss-Radau	$x_i = \cos\frac{2\pi i}{2N+1}$	$w_0 = \frac{\pi}{2N+1}$, and
-Chebyshev		$w_i \ \frac{2\pi}{2N+1}$
Gauss-Lobatto	$x_i = \cos\frac{\pi i}{N}$	$w_0 = w_N = \frac{\pi}{2N}$
-Chebyshev		$w_i = \frac{\pi}{N}$

Some linear operations to the Chebyshev interpolant.

For some linear operators *L* acting on the interpolant

$$L[I_N f(x)] := \sum_{n=0}^{N} a_n T_n(x), \qquad I_N f(x) := \sum_{n=0}^{N} \tilde{f}_n T_n(x).$$

(1) For L the multiplication of x, $L[I_N f(x)] := \sum_{n=0}^N \tilde{f}_n x T_n(x)$,

$$a_n = \frac{1}{2} [(1 + \delta_{0n-1})\tilde{f}_{n-1} + \tilde{f}_{n+1}], \quad (n \ge 1).$$

(2) For L the derivative, $L[I_N f(x)] := \sum_{n=0}^N \widetilde{f}_n T'_n(x)$,

$$a_n = \frac{2}{1 + \delta_{0n}} \sum_{p=n+1, p+n=odd}^N p \widetilde{f}_p.$$

(3) For *L* the second derivative, $L[I_N f(x)] := \sum_{n=0}^N \tilde{f}_n T_n''(x)$,

$$a_n = \frac{1}{1 + \delta_{0n}} \sum_{p=n+2, p+n=even}^{n} p(p^2 - n^2) \tilde{f}_p.$$

Exc 6-3) Show the above relations using recursion relations for $T_n(x)$.

Convergence property

For a function $f(x) \in C^m$, the truncation error is bounded as follows.

* For Legendre :
$$||I_N f - f||_{L^2} \le \frac{C}{N^{m-1/2}} \sum_{k=0}^m ||f^{(k)}||_{L^2}.$$

* For Chebyshev :
$$||I_N f - f||_{L^2_w} \le \frac{C}{N^m} \sum_{k=0}^m ||f^{(k)}||_{L^2_w}.$$

$$||I_N f - f||_{\infty} \le \frac{C}{N^{m-1/2}} \sum_{k=0}^m ||f^{(k)}||_{\infty}.$$

For C¹ – functions, the error decays faster than any power of N. (evanescent error)

Differential equation solver.

we impose

Consider a system differential equations of the following form.

$$Lf(x) = S(x)$$
 for $x \in U$
 $Bf(x) = 0$ for $x \in \partial U$

L and B are linear differential operators.

Numerically constructed function $f_{num}(x)$ is called admissible solution, if 1) $Bf_{num}(x) = 0$ at $x \in \partial U$ i.e. satisfies boundary condition exactly, and 2) Residual $R(x) := Lf_{num}(x) - S(x)$ at $\forall x \in U$ is small.

Weighted residual method requires that, for N+1 test functions $\xi_n(x)$ $(\xi_n, R)_N = 0$ for $\forall n = 0, \dots, N$.

(Or its continuum version $(\xi_n, R) = 0$ for $\forall n = 0, \dots, N$.)

For the spectral method, $f_{num}(x) \rightarrow I_N f(x)$. Threfore For a system,

$$L(I_N f(x)) = S(x), \quad x \in U,$$

$$B(I_N f(x)) = 0, \quad x \in \partial U,$$

$$(\xi_n, L(I_N f) - S)_N = 0, \quad \text{for} \quad \forall n = 0, \dots, N.$$

Recall: Notation for the spectral expansion.

$$I_N f(x) := \sum_{n=0}^N \tilde{f}_n \phi_n(x), \qquad \tilde{f}_n := \frac{1}{\gamma_n} \sum_{i=0}^N w_i f(x_i) \phi_n(x_i) = \frac{(f, \phi_n)_N}{(\phi_n, \phi_n)_N},$$
$$(f, \phi_n)_N := \sum_{i=0}^N w_i f(x_i) \phi_n(x_i)$$
$$\gamma_n := \sum_{i=0}^N w_i [\phi_n(x_i)]^2 =: (\phi_n, \phi_n)_N.$$

Gauss type quadrature formula (including Radau, Lobatto) is used.

Continuum.

$$P_N f(x) := \sum_{n=0}^N \widehat{f}_n \phi_n(x), \qquad \widehat{f}_n := \frac{\int_a^b f(x) \phi_n(x) w(x) dx}{\int_a^b \phi_n(x) \phi_n(x) w(x) dx} = \frac{(f, \phi_n)}{(\phi_n, \phi_n)}$$
$$(f, \phi_n) := \int_a^b f(x) \phi_n(x) w(x) dx$$

Three types of solvers.

- Depending on the choice of the spectral basis ϕ_n and the test function ξ_n , one can generate various different types of spectral solvers.
- A manner of imposing boundary conditions also depend on the choice.
- (i) The Tau-method.

Choose ϕ_n as one of the orthogonal basis such as $P_n(x)$, $T_n(x)$. Choose the test function ξ_n the same as the spectral basis ϕ_n .

(ii) The collocation method.

Choose ϕ_n as one of the orthogonal basis such as $P_n(x)$, $T_n(x)$. Choose the test function $\xi_n = \delta (x - x_n)$ for any spectral basis ϕ_n .

(iii) The Galerkin method.

Choose the spectral basis ϕ_n and the test function ξ_n as some linear combinations of orthogonal polynomial basis G_n that satisfies the boundary condition. The basis G_n is called Galerkin basis.

 $(G_n \text{ is not orthogonal in general.})$

(i) The Tau-method.

Choose the test function ξ_n the same as the spectral basis ϕ_n . Then solve $(\phi_n, L(I_N f) - S)_N = 0, \quad n = 0, \dots, N \quad \dots (*).$

(Note: here we have N+1 equations for N+1 unknowns.)

• Linear operator, L, acting on the interpolant $I_N f(x) = \sum_{m=0}^N \tilde{f}_m \phi_m(x)$ can be replaced by a matrix L_{nm} .

$$L(I_N f)(x) = \sum_{m=0}^{N} \tilde{f}_m L\phi_m(x) = \sum_{m=0}^{N} \sum_{p=0}^{N} L_{pm} \tilde{f}_m \phi_p(x)$$

$$(\phi_n, L(I_N f))_N = \sum_{m=0}^{N} \sum_{p=0}^{N} L_{pm} \tilde{f}_m (\phi_n, \phi_p)_N = \gamma_n \sum_{m=0}^{N} L_{nm} \tilde{f}_m$$

$$(\phi_n, S)_N = \gamma_n \tilde{S}_n, \qquad (\phi_n, \phi_p)_N = \gamma_n \delta_{np}, \quad n = 0, \cdots, N.$$

Therefore (*) becomes

$$\sum_{m=0}^{N} L_{nm} \widetilde{f}_m = \widetilde{S}_n, \quad n = 0, \cdots, N$$

• A few of these equations with the largest n are replaced by the boundary condition. (The number is that of the boundary condition.)

(i) The Tau-method (continued).

Boundary condition: suppose operator on the boundary B is linear,

$$B(I_N f)(x) = \sum_{m=0}^{N} \tilde{f}_m B \phi_m(x) = \sum_{m=0}^{N} \sum_{p=0}^{N} B_{pm} \tilde{f}_m \phi_p(x)$$

ex) Dirichlet boundary $Bf(x)|_{x=0} = f(a) - g = 0$ $\sum_{m=0}^{N} \tilde{f}_m \phi_m(a) = g.$

A test problem.

Consider 2 point boundary value problem of the second order ODE,

$$\frac{d^2f}{dx^2} - 4\frac{df}{dx} + 4f = \exp[x] + C$$

with $x \in [-1, 1]$, $C = -4e/(1 + e^2)$, and boundary conditions, f(-1) = 0, and f(1) = 0.

• This boundary value problem has unique exact solution, $f_{sol} = \exp[x] - \frac{\sinh(1)}{\sinh(2)} \exp(2x) + \frac{C}{4}$.

The linear operator $L := \frac{d^2}{dx^2} - 4\frac{d}{dx} + 4$ Id becomes a matrix when it operate to an Interpolant.

Example: Apply Tau-method to the test problem with the Chebyshev basis.

When the spectral basis is the Chebyshev polynomials,

$$L(I_N f)(x) = \sum_{m=0}^{N} \tilde{f}_m LT_m(x)$$

= $\sum_{m=0}^{N} \sum_{p=0}^{N} L_{pm} \tilde{f}_m T_p(x)$ For $N = 4$, $L_{ij} = \begin{pmatrix} 4 & -4 & 4 & -12 & 32 \\ 0 & 4 & -16 & 24 & -32 \\ 0 & 0 & 4 & -24 & 48 \\ 0 & 0 & 0 & 4 & -32 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$

Example: Apply Tau-method to the test problem with the Chebyshev (Continued)

The spectral expansion of the R.H.S

$$S(x) = \exp[x] - 4e/(1 + e^2) \text{ becomes For } N = 4, \ \tilde{S}_n = \begin{pmatrix} -0.03 \\ 1.13 \\ 0.27 \\ 0.0449 \\ 0.00547 \end{pmatrix}.$$

$$\begin{pmatrix} 4 & -4 & 4 & -12 & 32 \\ 0 & 4 & -16 & 24 & -32 \\ 0 & 0 & 4 & -24 & 48 \\ 0 & 0 & 0 & 4 & -32 \\ 0 & 0 & 0 & 4 & -32 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} \hat{f}_0 \\ \hat{f}_1 \\ \hat{f}_2 \\ \hat{f}_3 \\ \hat{f}_4 \end{pmatrix} = \begin{pmatrix} -0.03 \\ 1.13 \\ 0.27 \\ 0.0449 \\ 0.0055 \end{pmatrix} \xleftarrow{4}_{m=1} L_{nm} \tilde{f}_m = \tilde{S}_n$$

$$\leftarrow \sum_{m=1}^4 L_{nm} \tilde{f}_m = \tilde{S}_n$$

$$\cdots (**) \quad n = 0, \cdots, 4$$

Boundary conditions
$$f(-1) = 0$$
, and $f(1) = 0$
 $B(I_N f)(-1) = \sum_{m=0}^{N} \tilde{f}_m T_m(-1) = \sum_{m=0}^{N} (-1)^m \tilde{f}_m = 0$
 $B(I_N f)(1) = \sum_{m=0}^{N} \tilde{f}_m T_m(1) = \sum_{m=0}^{N} \tilde{f}_m = 0$
 $T_n(-1) = (-1)^n$
 $T_n(1) = 1$
Replace two largest componets
(n = 4 and 3) of (**) with
the two boundary conditions.
 $\begin{pmatrix} 4 & -4 & 4 & -12 & 32 \\ 0 & 4 & -16 & 24 & -32 \\ 0 & 0 & 4 & -24 & 48 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \hat{f}_0 \\ \hat{f}_1 \\ \hat{f}_2 \\ \hat{f}_3 \\ \hat{f}_4 \end{pmatrix} = \begin{pmatrix} -0.03 \\ 1.13 \\ 0.27 \\ 0 \\ 0 \end{pmatrix}$

Done!

(ii) The collocation method.

Choose ϕ_n as one of the orthogonal basis such as $P_n(x)$, $T_n(x)$. Choose the test function $\xi_n = \delta (x - x_n)$ for any spectral basis ϕ_n . Then solve, $(\delta(x - x_n), L(I_N f) - S) = 0, n = 0, \dots, N$.

This is rewritten $L(I_N f)(x_n) = S(x_n)$, or,

$$\sum_{m=0}^{N}\sum_{p=0}^{N}L_{pm}\phi_p(x_n)\tilde{f}_m = S(x_n), \quad n = 0, \cdots, N$$

Note the difference from the Tau method. LHS double sum. RHS not a spectral coefficients

The boundary points are also taken as the collocation points. (Lobatto) The equations at the boundaries are replaced by the boundary conditions.

Ex). A test problem with Chebyshev basis.

$\left(1\right)$	-1	1	-1	1 `	$\int \int f_{c}$		
4	-6.83	15.3	-26.1	28	$ \widetilde{f}_1$.	-0.80
4	-4	0	12	-12	\widetilde{f}_2	=	-0.30
4	-1.17	-7.31	2.14	28	\widetilde{f}	2	0.73
$\left(1 \right)$	1	1	1	1	$\int \int \widetilde{f}_{\Delta}$	ĺ)	0

Exc 6-4) Make a spectral code to solve the same test problem using the collocation method. Try both of Chebyshev and Legendre basis. Estimate the norm $||I_N f - f||$ for the different N.

(iii) The Galerkin method.

Choose the spectral basis ϕ_n and the test function ξ_n as some linear combinations of orthogonal polynomial basis G_n that satisfies the boundary condition. The basis G_n is called Galerkin basis.

- The Galerkin basis is not orthogonal in general.
- It is usually better to construct G_n that relates to a certain orthogonal basis ϕ_n in a simple manner (no general recipe for the construction.)

Ex)
$$G_{2k}(x) = T_{2k+2}(x) - T_0(x)$$
$$G_{2k+1}(x) = T_{2k+3}(x) - T_1(x)$$

– Highest order of the basis should be N-1 to maintain a consistent degree of approximation. (so the highest basis appears is $T_N(x)$.)

Ex) Consider the case with two point boundary value problem. Number of collocation points is N + 1.

Since two boundary condition is imposed on the Galerkin basis $\{G_n\}$ $\{G_n\}\colon N-1$ are basis, n= 0, ..., N-2 .

Assume that $\{G_n\}$ can be constructed from a linear combination of the orthogonal basis $\{\phi_n\}$. Then we may introduce a matrix M_{mn} such that

 $G_n(x) = \sum_{m=0}^N M_{mn} \phi_m(x)$, where M_{mn} is $(N+1) \times (N-1)$ matrix

The interpolant is defined by $I_N f(x) = \sum_{n=0}^{N-2} \tilde{f}_n^G G_n(x).$

Taking the test function ξ_n the same as Galerkin basis G_n , $(G_n, L(I_N f) - S)_N = 0, \quad n = 0, \dots, N-2$, are solved for \tilde{f}_n^G .

Exc 6-5) Show that this equation is wrtten

$$\sum_{m=0}^{N-2} \tilde{f}_m^G \sum_{p=0}^N \sum_{k=0}^N M_{kn} M_{pm} L_{kp} (\phi_k, \phi_k)_N = \sum_{m=0}^N M_{mn} \tilde{S}_m (\phi_m, \phi_m)_N$$

Finally, using transformation matrix M_{mn} again, we spectral coefficients $I_N f(x) = \sum_{n=0}^{N-2} \tilde{f}_n^G G_n(x) = \sum_{m=0}^N \left(\sum_{n=0}^{N-2} M_{mn} \tilde{f}_n^G \right) \phi_m(x) = \sum_{m=0}^N \tilde{f}_m \phi_m(x).$

