Introduction to Spectral method.



Finite difference method — approximate a function locally using lower
order interpolating polynomials.

Spectral method — approximate a function using global higher order
interpolating polynomials.

Using spectral method, a higher order approximation can be made with
moderate computational resources.

Definitions:
I :=1[a,b] € R, an interval. ~ w:I— R, a weight function.
f,g: I — R, smooth functions. (Vz eI, w(z) >0 and {z|w(x) = 0}

are descrete points).

(f,9):= [abf(a:)g(:c)w(a:)dx.

I, a family of all polynomials of degree N or less than N.
{¢n|n =0,---,N}: a set of orthogonal basis of Iy
with respect to the weight w(z),

b —_—
(Pn, Pm) = /a ¢n($)¢m(m)w(m)d${ 7_& 8 11:2:: z z 21



In spectral methods, a function f(x) is approximated by its projection to
the polynomial basis

N
Pyf(z) = Z frndn(z), where f, =

n=0

2 f(@) pn(x)w(@)de  (f, ¢n)

fc? tn(x) pn(z)w(x)d ~ (¢nyPn)

Difference between {(x) and the approximation Pf(x) 1s called the
truncation error. For a well behaved function f(x), the truncation error

goes to zero as increasing N.

im [|f(z) — Pyf(a)|| =0

N—o0

Ex) an approximation for a function u(x) = cos’(nw x/2) — (x+1)3/8
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N
Approximation Py f(z) := > fnén(2) will be good, if the integrals
n=0

b
o) = [ 1@ ba@u@dr,  Gndn) = [ nle) dule)u(a)ds

are evaluated accurately.

Gaussian integration (quadrature) formula 1s used to achieve high precision.
Gauss formula 1s less convenient since it doesn’t include end points of 1= [a,b].

Recall: (Gauss formula, Gaussian quadrature)

Let w(z) : weight function on [a,b]. ¢,: k-th degree polynomials.
{¢0, - dN+1} C Iy41: Orthogonal family of polynomials.
Writing the roots of ¢n41 by xg,---2xy, and define

N
xr — I,
Li(z):= [ J fori=0, N,
j=0,57,i Y1 T Y

the corresponding Gaussian quadrature formula is given by
N

b b
I(f) :/a f(x)w(z)dr =~ In(f) = Z w;f(x;), where, w; :=/a L;(z)w(x)dx.

i=0
The formula In(f) has dgree of precision D = 2N + 1, that is,
Vf(z) € ong1,  I(f) = In(S).



Gauss-Lobatto formula.
* Gauss Lobatto formula uses function values at the both end points

N-1

b
1) = [ f@w@)de ~ In(f) = wof(a) + wnf() + 3 wif (z:),
@ i=1
then optimize the values of weights {w;}, ¢ = 0,---, N, and the

abscissas {«z;}, +=1,--- N — 1.

« Since we have two less free parameters compare to the Gauss formula, the
degree of precision for the Gauss-Lobatto formula is D = 2N — 1.

 Since N — 1 roots are used for { x; }, the basisis {¢0, -, ¢n—1} C IIn_3:
* ForI=[-1,1Tand w(x) = 1, X; are roots of ¢y_; = P’ (x)=0.

* Gauss Radau formula uses a function value at one of the end

points.
N

b
/ f(@)w(z)dr = wof(a) + Y w;f(x;), then optimize the values of
a i=2
weights {w;}, i = 0,---, N, and the abscissas {z;}, i =1,---,N. The
degree of precision D=2N.

N =1 Gauss,

Vi(z) € Mopqp, I(f)=In(f) =) wif(z;) { k=0 Gauss-Radau,
1=0 k = —1 G@Gauss-Lobatto.



“"Exact” spectral expansion differs from numerically evaluated expansion.

N b
- - Ja f(@) dn(z)w(z)dz _ (f, ¢n)
NI ) ngof pnle) g 18 pn(@) pn(@)w(@)de (P, ¢n)
a7 T N € A% O 1
INf( ) -—ngofn(fbn( )a fn Ja Y 120 zf( 7,) an( z) - ((ﬁny(bn)]\f’
N
Tn = Z ’wz[@bn(%)]z =: (¢n, Pn)N-
1=0

f and f are different. [Aliasing error] ;= |Inf — Py f]

The Interpolant of f(x), I I, is called the spectral approximation of f(x).
Abscissas used in the Gauss quadrature formula {x;} are also called

collocation points.

Exc 6-1) Show that the value of interpolant agrees with the function value at

each collocation points,
Inf(z;) = f(x;) at each collocation point {zqg, - ,zx}-



* A set of function values at collocation points {/f(zo0), -, f(zn)}
is called configuration space.

A set of coefficients of the spectral expansion {fo, -, fx}
1s called coefficient space.

The map between configuration space and coefficient space 1s a bijection
(one to one and onto).

— Z w; f(z;) dn(x;), configuration space — coeffcient space

’Yn i=0

Inf(zn) = Z fndn(zn), coeffcient space — configuration space
n=0

Ex) a derivative 1s calculated using a spectral expansion in the coefficient space.

v o
Yo @l = 3 5w L w = 3 (2) o=t
v n=0 n=0 \“"/n
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Difference in Py f (analytic) and I f (interpolant).
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Choice for the polynomials:

1) Legendre polynomials. ¢,(x) =P,(x). Interval I=[-1,1],

) . N and weight w(x) = 1.

froi=— > wif(x;) Pu(x;),
T i=0

2
P P dx = :
N /_1 n(@) Bm(@) dv = o= onm
Inf(z) = Z fn Pn(x),
n=0
Abscissas {x;};=0,... N weight {w;};=o.... N
2 !
Gauss-Legendre Roots of Py i(z) =0 w; = ! 5[ Pr41(2q) ]
2
Gauss-Radau rg = —1 and the Roots of wg = 5 and
(Iif + 1)
-Legendre P P =0 -
2 1
Gauss-Lobatto zg= -1, xxy = 1 and the w;

~ N(N+ 1)[Py(2)]?
-Legendre Roots of Py(z) =0



Some linear operations to the Legendre interpolant.
For some linear operators L acting on the interpolant
N
L[Inf(z)] := > an Pn(z), the coeffient a, can be explicitly written
n=0

~ N ~
by frn of Inf(x) := Z fn Pn(x).
n=0

N
(1) For L the multiplication of x, L[Ixf(z)] := Y fazPa(z),

n=0
n+1 ~

n
fn—I—la (nZ 1)

an, = f_
" 2n—1fnl+2n—|—3

N
(2) For L the derivative, L[Inf(z)] := S fn P, (2),
n=0
N

an = (2n+ 1) > fp-

p=n—+1, pF+n=odd

N
(3) For L the second derivative, L[Ixf(z)] := > fn P?',:(:c),

n=0
N

an = (n+1/2) > [p(p+ 1) —n(n+ 1)1/
p=n—+2, pt+n=even

Exc 6-2) Show the above relations using recursion relations for P (x).



2) Chebyshev polynomials. ¢,(x) =T (x). Interval I=[-1,1],

and Welght w(gj) = L

1—=x

N 1 N
frni=—> wif(z;) Tn(z;),
=0

N /1 T(2) Tn(a)
Inf(z) =Y faTn(w), —1 /1 —a?

n=0
Abscissas {z;};=o.. n Weight {w;};—o.... N
2i+ 1
Gauss-Chebyshev  x; = COS( i+ D w; = W
2N + 2 N+1
o
Gauss-Radau x;, = cos "t wo = L, and
2N +1 22N +1
-Chebyshev P
2N + 1
Ug) s
Gauss-Lobatto x; = COS — wo = wWN = ——
N 2N

w
m
-Chebyshev w; = -



Some linear operations to the Chebyshev interpolant.

For some linear operators L acting on the interpolant

N N
LlInf(z)] := Z an Tn(z), Inf(z) = Z fn Tn(z).

n=0 n=0

N
(1) For L the multiplication of x, L[Ixf(z)] :== > fanaTn(z),
n=0

1 ~ -
an = 5[(1 + 0on—1)fn—1 + fnt1l, (n>1).

N
(2) For L the derivative, LIy f(2)] i= 3 fuTh(2),
R N n=0

> P fp-

adn — —————
1+ don p=n—+1, p+n=odd
N ~ "
(3) For L the second derivative, LIy f(z)] :== ) faT,(2),
. N ~n—0
> p(p? —n?) fp.

1 +d0n p=n—+2, pt+n=even

an

Exc 6-3) Show the above relations using recursion relations for T (x).



Convergence property

For a function f(xz) € C™, the truncation error is bounded as follows.

C m L
x For Legendre : ||Inf — fl|;2 < m=1/3 2 ||f( )||L2.

x For Chebyshev : [[Iyf — f]|z2 < Nm Z ||f(k)||L2
C
Vs =l < o 52 117 ® e
N s

For C'— functions, the error decays faster than any power of N.
(evanescent error)



O Differential equation solver.

Consider a system differential equations of the following form.
Lf(x) = S(x) for xe€U
Bf(z) =0 for x¢€dU

L and B are linear differential operators.

Numerically constructed function /num(2) is called admissible solution, if
1) Bfnum(z) = 0 at = € oU 1.e. satisfies boundary condition exactly, and

2) Residual R(z) := Lfnum(z) — S(x) at Vo € U is small.

Weighted residual method requires that, for N+1 test functions & (x)
(én,R)y =0 for Vn=20,---,N.
( Or its continuum version (¢,, R) =0 for Vvn =10,---,N.)

For the spectral method, faum(z) — Inf(x). Threfore For a system,
L(Inf(z)) = S(x), z€U,
B(INf(.GU)) = 0, z€ 8U,

we impose (&n, LUUNf)—S)y =0, for Vn=20,---,N.



Recall: Notation for the spectral expansion.

W@ = S Fabn@)s Foim 55 wif () dn(a) = L00N
n=0 7 Tn ,—0 "5 ' ' (an, an)]\f7
N
(fyon)N = D wif(z;) pn(z;)
=0
N
Tn = Z ’wz[ﬁbn(%)]Q =: (¢n, Pn)N-
1=0

Gauss type quadrature formula (including Radau, Lobatto) is used.

Continuum.

N b
o) = F o r o Ja f@) dn()w(x)de _ (f, ¢n)
PNf( ) . ngo fn ¢n( )7 fn . ff; ¢n($) (bn(:p)w(m)dm (Q’ﬁn, an)

b
(frn) = [ (@) dn(a)w(z)de



Three types of solvers.

« Depending on the choice of the spectral basis ¢,, and the test function &,
one can generate various different types of spectral solvers.

* A manner of imposing boundary conditions also depend on the choice.

(1) The Tau-method.
Choose ¢, as one of the orthogonal basis such as P (x), T, (x).

Choose the test function & the same as the spectral basis ¢,, .

(i1) The collocation method.
Choose ¢, as one of the orthogonal basis such as P (x), T, (x).

Choose the test function , = 0 ( x — x,, ) fpr any spectral basis ¢,..

(111) The Galerkin method.

Choose the spectral basis ¢, and the test function & as some linear
combinations of orthogonal polynomial basis G that satisties the
boundary condition. The basis G, 1s called Galerkin basis.

( G,, 1s not orthogonal in general. )



(1) The Tau-method.

Choose the test function & the same as the spectral basis ¢, . Then solve

(¢n, LUNS) —S)y =0, n=0,---,N 2o ().
(Note: here we have N+1 equations for N+1 unknowns.)
N
* Linear operator, L, acting on the interpolant I f(z) = Y findm(=)
can be replaced by a matrix L, . m=0

N
LN () = Y fnLom(z) = Z Z Lpm fm ¢p(x)

m=0 m=0 p=
N N
(én, LUNF))N = Z Z Lpm fm (én, Pp) N = Tn Z Linm fm
m=0p=0 m=0
(qbnaS)N:’Yngna (¢na¢p)N=’Yn5npa n=20,---,N.
Therefore (+) becomes

Z anfm = gﬂa n=20,---,N

m=0

« A few of these equations with the largest n are replaced by the
boundary condition. (The number is that of the boundary condition.)



(1) The Tau-method (continued).

Boundary condition: suppose operator on the boundary B i1s linear,

N N N N
B(Inf)(x) = Z fm B ¢m(x) = Z Z Bpmfm¢p($)
m=0 m=0 p=0
ex) Dirichlet boundary Bf(x)|z=0 = f(a) —g =0
N ~
Z Jm ﬁbm(@) — 9.

m=0



A test problem.

Consider 2 point boundary value problem of the second order ODE,

d? f

54 a4l =

dx?

df

= expl[z] + C

with ¢ € [-1,1], C = —4e/(1 + €2), and boundary conditions,

f(=1) =0, and f(1) = 0.

e This boundary value problem sinh(1
undary P! Fooy = expla] — SN D(2x)+—
has unique exact solution, inh(2)
d? ,
The linear operator L = d—2 — 4d— + 41d becomes a matrix when
1:1? I:B

it operate to an Interpolant.

Example: Apply Tau-method to the test problem with the Chebyshev basis.

When the spectral basis is the Chebyshev polynomials,

LUInf) () = > fm LTm(2)

m=0
N N N
= Z Z Lpm fm Tp(x)
m=0 p=0

For N =4, L;; =

[ 4 -4
0 4
0 O
0 0
0 0

4 -12
-16 24
4 24
0] 4
0] 0

32 )
32
48
32

4 )




Example: Apply Tau-method to the test problem with the Chebyshev (Continued)

The spectral expansion of the R.H.S ( _10 10:;?’ )
S(z) = exp[z] — 4¢/(1 + ¢°) becomes For N =4, S, = 0.27
~ 0.0449
(4 -4 4 -12 32\ (fo\ [ -0.03 ) | 0.00547
0 4 -16 24 -32 f1 1.13 .
0 0 4 -24 48 |l =1| o.27 " IF 3§
0 0 0 4 -32 fa 0.0449 mzz:l wimfm = Sn
\0 0 0 0 4 J\ f ) \00055 | ...(xx) n=0,---,4

Boundary conditior}g f(—1) = 0, and ]\f(l) =0
BUN)(=1) = Y fmTm(=1)= > (=1)"fm =0

m=0 m=0

Tn(=1) = (=1)"

N N
BUUN(1)= > fTm(l)= > fm=0 Th(1l) =1
m=0 m=0
(4 -4 4 -12 32\ (fo\ [-0.03)
Replace two largest componets | 0 4 -16 24 -32 f1 1.13
(n=4 and 3) of (**) with 0 0 4 -24 48 fa | = 0.27
. 1 -1 1 -1 1 fa 0
the two boundary conditions. 11 1 1 1 )\ F \ o

Done!



(11) The collocation method.

Choose ¢, as one of the orthogonal basis such as P_(x), T, (x).
Choose the test function £, = 6 ( x — x,, ) fpr any spectral basis ¢,,.

Then solve, (6(z — zn), L(INT)

This is rewritten LInf)(xn) = S(zn)

~S)=0, n=0,---,N.

Z Z Lpm ¢p(an) fm = S(an),

m=0 p=

n=0,--,N

Note the difference from the Tau method.
LHS double sum. RHS not a spectral coefficients

The boundary points are also taken as the collocation points. (Lobatto)
The equations at the boundaries are replaced by the boundary conditions.

Ex). A test problem with Chebyshev basis.

(1 -1 1 11 \(fo\ [ o
4 -6.83 15.3 -26.1 28 f1 -0.80
4 -4 0 12 -12 || f -0.30
4 -1.17 -7.31 2.14 28 fa 0.73

N A N 7R A N

Exc 6-4) Make a spectral code to solve the same test problem using the
collocation method. Try both of Chebyshev and Legendre basis.

Estimate the norm ||I f— { || for the different N.



(111) The Galerkin method.

Choose the spectral basis ¢, and the test function & as some linear
combinations of orthogonal polynomial basis G that satisties the
boundary condition. The basis G, is called Galerkin basis.

— The Galerkin basis 1s not orthogonal in general.

— It is usually better to construct G, that relates to a certain orthogonal
basis ¢,, 1n a simple manner (no general recipe for the construction.)

Ex) Gop(z) = Topqo(z) — To(x)
Gopy1(x) = Topq3(x) — T (2).

— Highest order of the basis should be N — 1 to maintain a consistent
degree of approximation. (so the highest basis appears 1s Ty(X) . )



Ex) Consider the case with two point boundary value problem.
Number of collocation points 1s N + 1.

Since two boundary condition 1s imposed on the Galerkin basis {G, }
{G,}: N—1are basis,n=0, ..., N—-2.

Assume that {G, } can be constructed from a linear combination of the
orthogonal basis {¢, }. Then we may introduce a matrix M, , such that

N
Gn(z) = > Mpmn¢m(z), where Mpyy, is (N + 1) x (N — 1) matrix
m=0
N—2
The interpolant is defined by Iyf(z) = ) 9 Gn(2).
n=0

Taking the test function &, the same as Galerkin basis G, ,
(Gn, L(INf)—S)y=0, n=0,---,N —2, are solved for f&.
Exc 6-5) Show that this equation 1s wrtten

N-2 N N N i
SFSST ST My Mpm Ly (3, 01)N = Y. Mimn Sm (¢, dm) N
m=0 p=0 k=0

m=0
Finally, using transformation matrix M,  again, we spectral coefficients
N-2

N—2 N N N
Infx) =Y fSan(@) =Y (z anfﬁ) dm(x) = 3 fmn dm().
=0

n m=0 \n=0 m=0



A comparison of erros of the different method.

Sy —-— Tau

N == Collocation
-—- Galerkin

— Interpolation




