
Runge-Kutta Methods 



Runge-Kutta Methods 

 The Runge-Kutta integration process is the sum of two tasks: 

 Task 1: compute the s stage values (the time consuming part): 

 

 

 

 

 Task 2: compute the solution at tn (this is trivial…): 

 

 

 

 

 Note that these two tasks are carried out at each integration time step t1, t2, etc. 

 Consider the typical IVP that you want to solve: 



Runge-Kutta (RK) Methods 

 Three sets of parameters together define a RK method: aij, bi, and ci. 
 

 The coefficients defining a RK method are given to you and typically 

grouped together in what’s called Butcher’s Tableau 

 

 

 

 

 

 A, b, and c are defined to represent the corresponding blocks of 

Butcher’s Tableau (see above) 

 

 All properties of a RK scheme (stability, accuracy order, convergence 

order, etc.) are completely defined by the entries in A, b, and c 

 Nomenclature: number of stages s is defined by the number of rows in A 

Professor John Butcher,  

New Zealand, awesome guy 



Example:  

Classical Fourth  

Order RK Method 

 The Butcher Tableau representation looks like this:  

0 0 0 0 0 

1/2 1/2 0 0 0 

1/2 0 1/2 0 0 

1 0 0 1 0 

1/6 1/3 1/3 1/6 



Choosing A, b, and c for an Explicit RK 

 Purpose of this and next slide: point out how challenging it is to 

generate a good RK method 

 

 Recall that it boils down to choosing the coefficients in A, b, and c 

 

 It has been proved that given a number of stages “s” that you accept to 

have in an explicit RK method, a limit on the order of the method “p” 

ensues: 

s 1 2 3 4 5 6 7 8 9 10 

p 1 2 3 4 4 5 6 6 7 7 



 Example: 

 *Necessary* conditions for an explicit method to have order 5 

 Notation used: C=diag(c1,…,cs)   and   1=(1,1,…,1)T   

Choosing A, b, and c for RK 

 The number of *necessary* and *sufficient* conditions to guarantee a 

certain order for an RK method is as follows: 

Order p 1 2 3 4 5 6 7 8 9 10 

no. of conditions 1 2 4 8 17 37 85 200 486 1205 

 Conclusion: Building a high-order RK is tricky… 



Absolute Stability 

Regions 

 Plots report absolute stability regions 

for explicit RK  methods with s 

stages and of order p=s, for 

s=1,2,3,4 

 Blue: s=1 

 Red: s=2 

 Green: s=3 

 Cyan: s=4 

 Methods are stable inside the curves 

 Absolute stability region given by 



Absolute Stability Regions [Cntd.] 

 MATLAB script to generate the fourth order abs-stability region (cyan): 



Exercise 

 Generate the Convergence Plot of the fourth order RK 

provided a couple of slides ago for the following IVP: 

 Note that the exact solution of this IVP is: 



RK Method, A Different Possibility to 

Advance the Numerical Solution 

 Recall that in stage “i” of the s stage approach, we generated a 

value Yi .  We call this approach “y-flavored”: 

 First, for each of the s stages,  

 

 

 

 

 Next, a combination of these stage values leads to the solution at tn: 

 A different approach can be followed, this is “f-flavored” 

 It approximates derivatives at each stage rather than values y 

 See next slide… 



RK Method, A Different Possibility to 

Advance the Numerical Solution 

 At each of the s stages of the RK method, you need to figure out Fi:  

 Once the stage values are available, the solution is computed as 

 Personally, I find the f-flavor better than the y-flavor implementation 



RK Method, A Different Possibility to 

Advance the Numerical Solution 

 Exercise: show that the f-flavor is easily obtained from the y-flavor by 

using an appropriate notation.  



Exercises 

 Note that Forward Euler, Backward Euler, and Trapezoidal Formula can 

all be considered as belonging to the RK family 

 

 

 Provide the Butcher Tableau representation for Forward Euler 

 

 Provide the Butcher Tableau representation for Backward Euler 

 

 Provide the Butcher Tableau representation for the Trapezoidal Formula 



tspan = [0, 3000]; 

y0 = [2; 0]; 

Mu = 1000; 

ode = @(t,y) vanderpoldemo(t,y,Mu); 

[t,y] = ode15s(ode, tspan, y0); 

  

plot(t,y(:,1)) 

title('van der Pol Equation, \mu = 1000') 

axis([0 3000 -3 3]) 

xlabel('t') 

ylabel('solution y') 

 

Integration Error Control 

 The problem: imagine a dynamic system that varies rapidly 

every once in a while, but the remaining time is very tame 

 Example: solution of the van der Pole IVP 



 If you don’t adjust the integration step-size h you are forced to work 

during the entire simulation with a very conservative value of h 

 Basically, you have to work with that value of h that can negotiate the high 

transients 

 This would be for almost the entire simulation a waste of resources 

 

 

 Basic Idea:  

 When you have high transients, reduce h to make sure you are ok 

 When the dynamics is tame, increase the value of h and sail quickly through these 

intervals 

 

 

 On what should you base the selection of the step size h? 

 On the value of local error 

 It would be good to be able to use the actual error, but that’s impossible to do 

Integration Error Control 



 In the end, we need a mechanism that tries to guarantee that the local 

error at each time step stays below a user-prescribed threshold value 

 

 Computing the threshold value 

 Draws on two values specified by the user: absolute tolerance ATOL and 

relative tolerance RTOL (think of these as allowances) 

 If dealing with an m-dimensional problem, threshold value »i for component 

“i” of solution y is computed as 

Integration Error Control:  

The Details 

 The key observation: the entire error control effort concentrates on 
keeping an *approximation* of the local error at tn smaller than » 



 What’s left at this point is to somehow provide an approximation of the 

local error l[i]n at time step tn  

 

 To get l[i]n, you produce a *second* approximation of the solution at tn, 

and you pretend that that second solution is the actual solution(kind of 

funny).  Then you can get an approximation of the local error: 

Integration Error Control:  

The Details 

 Here we had: 



 A measure of the acceptability “a” of the solution given the user 

prescribed tolerance is obtained as 

Integration Error Control:  

The Details 

 Note that any reading             indicates an acceptable situation 

 Otherwise, if            , it’s an indication that the quality of the solution 

does not meet the user prescribed tolerance 

 If this is the case, the step size should be decrased, yn is rejected 
and it’s to be computed again… 

 Note that asymptotically, since the method we use is assumed to be 

order p, we have for v that (K is an unknown constant):  



 Summary of possible scenarios 

 

 Step-size is too small, you are being way more accurate than the user needs 

 

 

 Step-size is exactly where you want it to be, acceptability is on the margin 

 

 

 

 Step-size is too large, you are to aggressive and this leads to local errors that 

are exceeding the user specified tolerance 

Integration Error Control:  

The Details 



 Finally, how do you choose the optimal step-size hopt? 

 

 You want to be in the sweet spot, acceptability is 1.0 

 

 The step-size is chosen to meet this requirement: 

 

 

 

 

 Because there was some hand waving involved and these arguments are in 

general true only asymptotically, one usually uses a safety factor s=0.9 to 

play it conservatively.  Then the new step size is chosen as 

Integration Error Control:  

The Details 



Integration Error Control:  

The “Embedded Method” 

 How do you usually get the second approximate solution? 

 

 The idea is to use the same stage values you produce to generate 

the first solution 

 

 In other words, use the same A and c, but change only b 

 

 When using Butcher’s Tableau, this is captured by adding a new 

row for the new values of    : 

Original Method: 

Produces num solution 

Embedded Method:  

Produces second num solution 

(used in local error control) 
Typical notation used 

for Butcher’s Tableau  



Example 1:  

RK Embedded Methods 

 The Fehlberg 4(5) pair 

 Empty cells have a zero in them 

0 

1/4 1/4 

3/8 3/32 9/32 

12/13 1932/2197 -7200/2197 7296/2197 

1 439/216 -8 3680/513 -845/4104 

1/2 -8/27 2 -3544/2565 1859/4104 -11/40 

25/216 0 1408/2565 2197/4104 -1/5 0 

16/135 0 6656/12825 28561/56430 -9/50 2/55 



Example 2:  

RK Embedded Methods 

 The Dormand-Prince 4(5) pair 

 Empty cells have a zero in them 

 This is what’s used in MATLAB as the default for the ODE45 solver 

0 

1/5 1/5 

3/10 3/40 9/40 

4/5 44/45 -56/15 32/9 

8/9 19372/6561 -25360/2187 64448/6561 -212/729 

1 9017/3168 -355/33 46732/5247 49/176 -5103/18656 

1 35/384 0 500/1113 125/192 -2187/6784 11/84 

5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40 

35/384 0 500/1113 125/192 -2187/6784 11/84 0 



Explicit vs. Implicit RK 

 One can immediately figure out whether a RK method is explicit or 

implicit by simply inspecting Butcher’s Tableau 

 

 If the A matrix has nonzero entries on the diagonal or in the upper 

triangular side, the method is implicit 

 

 

 Implicit RK methods belong to several subfamilies 

 Gauss methods 

 They are maximum order methods: for s stages, you get order 2s (as good as it gets) 

 Radau methods 

 Attain order 2s-1 for s stages 

 Lobatto methods 

 Attain order 2s-2 for stages 



Examples, Implicit RK Methods 

 Members of the Gauss subfamily  

 

 

 

 

 

 

 Members of the Radau subfamily 

 

 

 

 

 

 Members of the Lobatto subfamily 

1/2 1/2 

1 

Implicit Midpoint 

s=1, p=2 

1/4 

1/4 

1/2 1/2 

No name, s=2, p=4 

1 1 

1 

Backward Euler 

s=1, p=1 

1/3 5/12 -1/12 

1 3/4 1/4 

3/4 1/4 

No name, s=2, p=3 

Trapezoidal Method 

s=2, p=2 

0 0 0 0 

1/2 5/24 1/3 0 

1 1/6 2/3 1/6 

1/6 2/3 1/6 

No name, s=3, p=4 

0 0 0 

1 1/2 1/2 

1/2 1/2 



Implicit RK Methods: 

Implementation Issues 

 Implicit RK methods are notoriously hard to implement 

 

 Suppose you have an IVP where the dimension of the unknown 

function is m: 

 Then, the dimension of the nonlinear system that you have to solve 

at each time step is of an s-stage implicit RK method is s*m 

 

 This is a serious drawback 

 A lot of research goes into parallelizing this process: rather than solving 

one nonlinear system of dimension s*m, the idea is to solve s systems 

of dimension m 

 This is still not that impressive, to be compared to the effort in multistep 

methods (to be covered shortly…) 



Exercise 

 Consider the van der Pol IVP, which is to be solved using the order 3 Radau 

formula 

 Write down the nonlinear system of equations that one has to solve when 

advancing the simulation by one time step h 
 Use the F-flavor representation of the RK method 



Diagonal Implicit RK Methods 

(DIRK Methods) 

 One immediate way to decouple the large nonlinear system and have 

s systems of dimension m is to use diagonal implicit RK methods 

 Called DIRK methods 

 If *all* the diagonal entries in the A matrix are the same, then the method is called 

SDIRK (singly diagonal implicit RK) method 

 Note that for SDIRK, each of the s decoupled nonlinear systems have the same 

iteration matrix (Jacobian is the same) 

 

 Example, SDIRK methods 

 Backward Euler 

 Also the following two look good… 

0 

1/2 1/2 

0 

s=2, p=3 s=2, p=2 



RK and Stiff Decay 

 Stiff Decay is also called in the literature L-stability 

 

 There is a theorem that provides sufficient conditions for stiff decay 

of a RK method 

 

 Specifically, the following are sufficient conditions for stiff decay 

 A matrix is nonsingular, and 

 The last row of the A matrix is identical to bT  

 

 Example, SDIRK with stiff decay: 

0 

s=2, p=2 



RK Methods – Final Thoughts 

 Explicit RK relatively straight forward to implement 

 Implicit RK are challenging to implement due to the large nonlinear 

system that ensues discretization 

 This family of methods is well understood 

 Reliable 

 On the expensive side in terms of computational effort (for each time step, you 

have to do multiple function evaluations) 

 

 

 Things of interest that we didn’t cover 

 Estimation of global error 

 Stiffness detection 

 Sensitivity to data perturbations (sensitivity analysis) 

 Symplectic methods for Hamiltonian systems 



Exercises 

 Problem 4.8 – tricky at times 

 Problem 4.12 – deals with step-size control for a sun-earth problem 

 Example 4.6: use MATLAB to generate an approximate solution of 

the IVP therein.  The solution is y(t)=sin(t).  If the approximate 

MATLAB solution doesn’t look good, try to tinker with MATLAB or 

implement your own numerical scheme to solve the problem 



New Topic:  

Linear Multistep Methods 



Multistep vs. RK Methods 

 Fewer function evaluations per time step 

 

 Simpler, more streamlined method design 

 Recall the table with number of conditions that the RK method coefficients had to 

satisfy to be guaranteed a certain order for the RK method 

 

 Error estimation and order control are much simpler 

 In fact, order control (the ability to change the order of the method on the fly) is 

something that is not typically done for RK 

 Order control is very common for Multistep Methods 

 

 On the negative side  

 There is high overhead when changing the integration step-size 

 Loses some of the flexibility of one RK methods (there you had many parameters 

to adjust, not that much the case for Multistep methods) 

 More simpleton in nature than their sophisticated RK cousins 

 



Review of Framework 

 Interested in finding a function y(t) over an interval [0,b] 

 This m-dimensional function y(t) must satisfy the following IVP: 

 We assume that f is bounded and smooth, so that y exists, is 

unique, and smooth 

 

 Given to you: 

 The constants c and b  

 The function f(t,y). 



Multistep Methods - Nomenclature 

 Notation used: 

 yl represents an approximation at time tl of the actual solution y(tl) 

 fl represents the value of the function f evaluated at tl and yl 

 

 We work with *multistep* methods.  We’ll use k to represent the 

number of steps in a particular Multistep method 

 

 The general form of a Multistep method (M-method) is as follows 

  ®j and ¯j are coefficients specific to each M method 



Examples - Multistep Methods 

 General Form: 

 

 

 

 BDF method 

 

 

 

 Adams-Bashforth method 

 

 

 

 Adams-Moulton method 



M Methods: Further Remarks 

 To eliminate arbitrary scaling, it is assumed that  

 Note that if ¯j=0 the method is explicit.  Otherwise, it is implicit 

 To truly talk about a k-step method, it is also assumed that  

 Finally, note that the step size over the last k integration step is 

assumed constant 

 This is going to give some headaches later on when you 

actually want to change the step size on the fly to control error 



Quick One Slide Review:  

Local Truncation Error, Forward Euler 

 Consider how the solution is obtained: 

 By definition, the quantity above is called the truncation error and is 

denoted by   

 Note that in general, if you stick the actual solution in the equation 

above it is not going to be satisfied:   

 Note that this depends on the function (y), the point where you care 

to evaluate the truncation error (tn), and the step size used (h) 



The Local Truncation Error: 

Multistep Methods 

 Consider the linear operator (assume y is scalar function, for 

simplicity of notation) 

 Then it follows that 

 Or, in other words, the local truncation error is  

 Equivalently, since y is the exact solution of the IVP, 



M Methods: Order Conditions 

 Recall that by definition a method is accurate of order p if  

 To assess the order of      , carry out a Taylor expansion of                  

and 

 This to be done for j=0,…,k, then collect terms to obtain the following 

representation of the linear operator  

 Then, we get the following 



M Methods: Order Conditions 

 From the Taylor series expansions, one can obtain in a straightforward 

fashion that 

 Nomenclature: 

 When the order is p, then Cp+1 is called the error constant of the method 

 Obviously, one would like a method that has Cp+1 as small as possible 



Exercises 

 Proof that the expression of Ci on the previous slide is correct 

 

 Pose the Forward Euler method as a M method and verify its order 

conditions (should be order 1) 

 

 Pose the Backward Euler method as a M method and verify its order 

conditions (should be order 1) 

 

 Pose the Trapezoidal method as a M method and verify its order 

conditions (should be order 2) 



Quick Review: 

Order “p” Convergence 

 Theorem: 

 Some more specifics: 

 If the method is accurate of order p and 0-stable, then it is 

convergent of order p: 



M Methods:  

Convergence Results 

 We saw what it takes for a M method to have a certain accuracy order 

 

 What’s left is to prove 0-stability 

 

 The concept of characteristic polynomial comes in handy: 

 Note that for the k stage M method, the characteristic polynomial only 
depends on ®j 

 



M Methods:  

The Root Condition 

 We provide without proof the following condition for a M-method to be 

0-stable (the “root condition”) 

 
 Let »i be the k roots of the characteristic polynomial.  That is,  

 

 

 

 

 

 

 Then, the M-method is 0-stable if and only if  



M Methods:  

Convergence Criterion 

 An M-method is convergent to order p if the following conditions hold: 
 

 The root condition holds 

 

 The method is accurate to order p 

 

 The initial values required by the k-step method are accurate to order p 

 

 

 

 Exercise: 

 Identify the convergence order of the Forward Euler, Backward Euler, and 

Trapezoidal Methods 



M Methods:  

Exercise, Root Condition 

 Consider the following M-method: 

 

 

 

 What is the accuracy order of the method? 

 

 

 Does the method satisfy the root condition? 

 

 

 Use the M-method above to find the solution of the simple IVP  

 

 
 

 For the M-method, take 



The Root Condition: 

Further Comments 

 Exercise: Generate the convergence plot for Milne’s method… 

 

 

 

 

 … in conjunction with the following IVP: 

 

 

 

 

 Compute the starting points using the exact solution of the above IVP 



Short Side Trip:  

Difference Equations 

 Difference equations, the framework 

 Someone gives you k initial values x0,…,xk-1  

 You find the next value xk by solving a “difference equation”: 

0 1 1 0k n kn na x a x a x   

 It’s obvious that the value of xn is uniquely defined once you have 

the first k values 

 How can we compute this unique value xn yet not explicitly reference 

the first k values? 

 Trick used: assume the following expression for xn: 

1

0 1Characteristic Equations: 0k k

kaa a    

n

nx 

 This choice of the expression of xn leads to the following equation 
that must be satisfied by » (typically called Characteristic Equation) 



Short Side Trip:  

Difference Equations  [Cntd.] 

 Characteristic Equation (CE): 
 Has degree k 

 Has k roots (might be distinct or multiple roots amongst them): »1, »2,…,»k 

 Exercise: show that the value of xn can be expressed as (assume no multiple roots) 

1

1

21 2

n n n n

n

k

k ik i

i

x c c c c   


   

 Expression of xn gets slightly more complicated for multiple roots: 

 Double root (say »1=»2): 

 

 

 Triple root (say »1 =»2 =»3): 

1 11 2

3

( ) n
k

i

i

n

n ix c c n c 


  

11 3 12

4

[ ( 1)( 2)] n

n

i

n

i

k

ix c c n c n n n c 


     

NOTE: This Difference Equations theory relevant when looking into absolute stability 



Absolute Stability [quick review] 

 The process used to find out the region of absolute stability 

 We started with the test problem 

 

 

 

 We required that for the test problem, the numerical approximation should 

behave like the exact solution.  That is, we required that 

 Used the discretization scheme to express how yn is related to yn-1 and impose the 

condition above 

 

 This leads to a condition that the step size should satisfy in relation to the parameter ¸ 

 

 Example: for Forward Euler, we obtained that for absolute stability that 



Region of Absolute Stability 

 Apply the methodology on previous slide for the test problem when 

used in conjunction with a multistep scheme 

 

 

 

 This leads to  

 

 

 Recall that we had the expression for xn Re 

 

 

 

 For us to hope that yn! 0, we need |»i| · 1 for 8 i ¸ k 

00

k

n j n j

j

k

j j

j

y h y   

 

 

1

1

21 2

n n n n

n

k

k ik i

i

y c c c c   


   



Region of Absolute Stability [Cntd.] 

 Drop the subscript i for convenience.  The conclusion is that any root 
of the Characteristic Equation; i.e. any » that satisfies… 

 

 

 

 … must also satisfy |»| · 1 

 

 Note that if the above condition holds, then we will get to the desired 

condition that yn is monotonically decreasing in absolute value: 

00

k

j

k
n j n j

j j

j

h     

 

 

11

1

| || |
| 1 | | | |

| | | |
|

n

n
n nn

n

y
y y

y









    



Region of Absolute Stability [Cntd.] 

 So in the end, it boils down to this simple sufficient condition: if h¸ is 

such that the roots of the CE all have the norm less than or equal to 
1, then h¸ belongs to the stability region 

 Recall that the CE assumes the form 

 

 

 

 How would you find the boundaries of the stability region?  
 This is precisely that situation where |»|=1, or in other words, where »=eiµ   

 So the boundary is given by those values of h¸ for which »=eiµ  

 Yet note that from the CE, one has that for µ2[0,2¼), 

00

k

j

k
n j n j

j j

j

h     

 

 

0

( )

( )

0 0

0

n j i n j

j j

k k
n j i n j

j

j

k

j

j

k

j

j

e

h

e





  



  

 

 



 



 



 





Exercise 

 Plot the region of absolute stability for Milne’s method 



Absolute Stability: 

Closing Comments 

 It is relatively straight forward to show that no explicit M method can 

be A-stable 

 

 

 Lindquist’s Barrier (1962, not simple to prove) 

 You cannot construct an A-stable M method that has order higher than 2 

 Note that there is no such barrier for RK methods 

 

 

 The second order A-stable implicit M method with smallest error 

constant (C3=1/12) is the trapezoidal integration method 

 The problem with the trapezoidal formula is that it does not have stiff decay (it is 

A-stable but not L-stable) 



How Did People Get M-Methods? 

 One early approach (about 1880): integrate the ordinary differential 

equation, and approximate the function f using a polynomial 

1

1( ) ( ) ( , ( )( , ))
n

n

t

n n

t

y t y t f t y t dty f t y



   

 Based on previous values f(tn-1,yn-1),…, f(tn-k,yn-k), one can fit a k-1 

degree polynomial in the variable t to approximate the unknown function 

f(t,y) 

 

 Once the polynomial is available, simply plug it back in the integral 

above and evaluate it to get yn (an approximation of y(tn)) 

 

 NOTE: this approach leads to a family of explicit integration formulas 

called Adams-Bashforth Multistep methods (AB-M methods) 

1

1

j

k

n n n j

j

y y f 



 



Exercise 

 Derive the AB-M method for k=1, k=2, and k=3 

 

 

 

 

 

 

 Plot the absolute stability region for the AB-M methods above 



AB-M Method, Closing 

 Table below provides convergence order p, the number of 
steps k of the M method, the coefficients ¯n-j, and the value of 

the leading coefficient of the error term Cp+1 

 Example: based on the above table, the third order AB-M formula is 

p k j! 1 2 3 4 5 6 Cp+1 

1 1 ¯n-j 1 1/2 

2 2 2¯n-j 3 -1 5/12 

3 3 12¯n-j 23 -16 5 3/8 

4 4 24¯n-j 55 -59 37 -9 251/720 

5 5 720¯n-j 1901 -2774 2616 -1274 251 95/288 

6 6 1440¯n-j 4277 -7923 9982 -7298 2877 -475 19087/60480 



Starting a M Method 

 Implementation question: How do you actually start a M method? 

 In general, you need information for the first k steps to start a M method 

 

 If you work with a scheme of order p, you don’t want to have in your first 

k values y0, …, yk-1 error that is larger than O(hp) 

 

 

 Most common approach is to use for the first k-1 steps a RK method of 

order p. 

 

 A second approach starts using a method of order 1 with smaller step, 

than increases to order 2 when you have enough history, then increase 

to order 3, etc. 

 

 NOTE: for the previous exercise, you have the exact solution so you 

can use it to generate the first k steps 



Exercise 

 Generate the Convergence Plot of the AB-M method  for 

k=3 and k=4 for the following IVP: 

 Indicate whether your results come in line with the expected 

convergence behavior 

 Note that the exact solution of this IVP is: 



Exercise 

 Prove that the AB-M method with k=3 is convergent with order 3 



Exercise 

 Plot the absolute stability regions for the AB-M formulas up to order 6 

 Comment on the size of the absolute convergence regions 



The AM-M Method 

 The AB-M method is known for small absolute stability methods 

 

 Idea that partially addressed the issue:  

 Rather than only using the previous values f(tn-1,yn-1),…, f(tn-k,yn-k), one should 

include the extra point f(tn,yn) to fit a k degree polynomial in the variable t to 

approximate the unknown function f(t,y) 

 

 The side-effect of this approach: 

 The resulting scheme is implicit: you use f(tn,yn) in the process of finding yn 

 

 The resulting scheme will assume the following form: 

 

 

 

 This family of formulas is called Adams-Moulton Multistep (AM-M) 

methods 

1

0

j

k

n n n j

j

y y f 



 



Exercise 

 Derive the AM-M method for k=2 and then k=3 

 

 

 

 

 

 

 Plot the absolute stability region for the AM-M methods above 



AM-M Method, Closing 

 Table below provides convergence order p, the number of 
steps k of the M method, the coefficients ¯n-j, and the value of 

the leading coefficient of the error term Cp+1 

 Example: based on the above table, the third order AM-M formula (k=2) is 

p k j! 0 1 2 3 4 5 Cp+1 

1 1 ¯n-j 1 -1/2 

2 1 2¯n-j 1 1 -1/12 

3 2 12¯n-j 5 8 -1 -1/24 

4 3 24¯n-j 9 19 -5 1 -19/720 

5 4 720¯n-j 251 646 -264 106 -19 -3/160 

6 5 1440¯n-j 475 1427 -798 482 -173 27 -863/60480 



Exercise 

 Prove that the AM-M method with k=3 is convergent with order 4 



Exercise 

 Generate the Convergence Plot of the AB-M method  for 

k=2 and k=3 for the following IVP: 

 Indicate whether your results come in line with the expected 

convergence behavior 

 Note that the exact solution of this IVP is: 

 NOTE: use the analytical solution to generate the first k 

steps of the integration formula 



Exercise 

 Plot the absolute stability regions for the AM-M formulas up to order 6 

 Comment on the size of the absolute convergence regions 



Implicit AM-M:  

Solving the Nonlinear System 

 Since the AM-M method is implicit it will require at each time step 

the solution of a system of equations 

 If f is nonlinear in y this system of equations will be nonlinear 

 This is almost always the case 

 

 Approaches used to solve this nonlinear system: 

 

 Functional iteration 

 

 Predictor Corrector schemes 

 

 Modified Newton iteration 

 

 Focus on first two, defer discussion of last for a couple of slides 



M Methods: Functional Iteration 

 Idea similar to the one introduced for the RK method 

 

 Iterative process carried out as follows: 

 

 

 Notation: K represents a constant pre-computed based on past information 

 It does not change during the iterative process 

 

 

 

 

 As a starting point, for º=0, typically one takes this value to by yn-1 

 This will be revisited shortly, when discussing predictor-corrector schemes 

 

 Stopping criteria identical to and discussed in relation to modified Newton 

iteration 



M Methods: Functional Iteration 

 This represents a fixed point iteration 

 

 Fixed point iteration converges to the fixed point provided it is a 

contraction, which is the case if the following condition holds 

 

 

 

 NOTE: this condition basically limits the Functional Iteration 

approach to nonstiff problems 



M Methods:  

The Predictor-Corrector Approach 

 The predictor corrector formula is very similar to the Functional 

Iteration approach 

 

 There are two differences: 

 

 The starting point is chosen in a more intelligent way 

 

 The number of iterations is predefined 

 This is unlike the Functional Iteration approach, where convergence is 
monitored and it is not clear how many iterations º will be necessary for 

convergence 



The Predictor-Corrector Approach: 

Choosing the Starting Point 

 The key question is how should one choose 

 

 An explicit method is used to this end 

 

 This step is called prediction (“P”), and the explicit M method  used 

to obtain        is called “predictor” 

 

 Most of the time, the predictor is an AB-M method: 

(0)

ny

(0)

ny

 The predicted value for y is immediately used to evaluate (“E”) the 

value of the function f: 



The Predictor-Corrector Approach: 

Carrying out Corrections 

 The second distinctive attribute of a Predictor-Corrector integration 
formula is that a predefined number º of corrections of are carried out 

 In other words, ºend is predetermined, and the final value for yn is  

 The corrector (“C”) formula is usually chosen to be the AM-M method 

 Starting with º=0, the correction step assumes then the expression 

 Typically, the C step is followed by an E step to obtain a new 

expression for f that goes hand in hand with the newly corrected; i.e., 

improved, value of y: 



The Predictor-Corrector Approach: 

Carrying out Corrections 

 The predictor-corrector integration method process just described is 

called PECE 

 It predicts (P), evaluates (E), corrects (C), and finally evaluates again (E) 

 Note that strictly speaking, the last (E) could be regarded as superfluous 

since it’s not used for computation of yn anymore 

 Last E is essential though since it’s used in the computation of yn+1 and it 

improves the stability properties of the integration method 

 

 Note that approach described (PECE), corresponds to choosing ºend=1  

 

 For larger values of ºend the “EC” part in PECE is executed ºend  times 

 The nomenclature used for these methods is P(EC)º E 

 Example: P(EC)3E refers to the following predictor-corrector integration 

formula: 

1 2 3st nd rd

EP C E C E C E      



Example: PECE Method 

 The following example combines a two step AB-M method, with the 

second-order one step AM-M method (the trapezoidal formula) 

 

 Given yn-1, fn-1, fn-2: 

(0)

1 1 2

(0) (0)

(0)

1 1

P: (3 )
2

E: ( , )

C: ( )
2

E: ( , )

n n n n

n n n

n n n n

n n n

h
y y f f

f f t y

h
y y f f

f f t y

  

 

  



  



 It can be shown that the local truncation error for this method is  

2
3( ) ( )

12
n n

h
d y t O h  


