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Runge-Kutta Methods 

 The Runge-Kutta integration process is the sum of two tasks: 

 Task 1: compute the s stage values (the time consuming part): 

 

 

 

 

 Task 2: compute the solution at tn (this is trivial…): 

 

 

 

 

 Note that these two tasks are carried out at each integration time step t1, t2, etc. 

 Consider the typical IVP that you want to solve: 



Runge-Kutta (RK) Methods 

 Three sets of parameters together define a RK method: aij, bi, and ci. 
 

 The coefficients defining a RK method are given to you and typically 

grouped together in what’s called Butcher’s Tableau 

 

 

 

 

 

 A, b, and c are defined to represent the corresponding blocks of 

Butcher’s Tableau (see above) 

 

 All properties of a RK scheme (stability, accuracy order, convergence 

order, etc.) are completely defined by the entries in A, b, and c 

 Nomenclature: number of stages s is defined by the number of rows in A 

Professor John Butcher,  

New Zealand, awesome guy 



Example:  

Classical Fourth  

Order RK Method 

 The Butcher Tableau representation looks like this:  

0 0 0 0 0 

1/2 1/2 0 0 0 

1/2 0 1/2 0 0 

1 0 0 1 0 

1/6 1/3 1/3 1/6 



Choosing A, b, and c for an Explicit RK 

 Purpose of this and next slide: point out how challenging it is to 

generate a good RK method 

 

 Recall that it boils down to choosing the coefficients in A, b, and c 

 

 It has been proved that given a number of stages “s” that you accept to 

have in an explicit RK method, a limit on the order of the method “p” 

ensues: 

s 1 2 3 4 5 6 7 8 9 10 

p 1 2 3 4 4 5 6 6 7 7 



 Example: 

 *Necessary* conditions for an explicit method to have order 5 

 Notation used: C=diag(c1,…,cs)   and   1=(1,1,…,1)T   

Choosing A, b, and c for RK 

 The number of *necessary* and *sufficient* conditions to guarantee a 

certain order for an RK method is as follows: 

Order p 1 2 3 4 5 6 7 8 9 10 

no. of conditions 1 2 4 8 17 37 85 200 486 1205 

 Conclusion: Building a high-order RK is tricky… 



Absolute Stability 

Regions 

 Plots report absolute stability regions 

for explicit RK  methods with s 

stages and of order p=s, for 

s=1,2,3,4 

 Blue: s=1 

 Red: s=2 

 Green: s=3 

 Cyan: s=4 

 Methods are stable inside the curves 

 Absolute stability region given by 



Absolute Stability Regions [Cntd.] 

 MATLAB script to generate the fourth order abs-stability region (cyan): 



Exercise 

 Generate the Convergence Plot of the fourth order RK 

provided a couple of slides ago for the following IVP: 

 Note that the exact solution of this IVP is: 



RK Method, A Different Possibility to 

Advance the Numerical Solution 

 Recall that in stage “i” of the s stage approach, we generated a 

value Yi .  We call this approach “y-flavored”: 

 First, for each of the s stages,  

 

 

 

 

 Next, a combination of these stage values leads to the solution at tn: 

 A different approach can be followed, this is “f-flavored” 

 It approximates derivatives at each stage rather than values y 

 See next slide… 



RK Method, A Different Possibility to 

Advance the Numerical Solution 

 At each of the s stages of the RK method, you need to figure out Fi:  

 Once the stage values are available, the solution is computed as 

 Personally, I find the f-flavor better than the y-flavor implementation 



RK Method, A Different Possibility to 

Advance the Numerical Solution 

 Exercise: show that the f-flavor is easily obtained from the y-flavor by 

using an appropriate notation.  



Exercises 

 Note that Forward Euler, Backward Euler, and Trapezoidal Formula can 

all be considered as belonging to the RK family 

 

 

 Provide the Butcher Tableau representation for Forward Euler 

 

 Provide the Butcher Tableau representation for Backward Euler 

 

 Provide the Butcher Tableau representation for the Trapezoidal Formula 



tspan = [0, 3000]; 

y0 = [2; 0]; 

Mu = 1000; 

ode = @(t,y) vanderpoldemo(t,y,Mu); 

[t,y] = ode15s(ode, tspan, y0); 

  

plot(t,y(:,1)) 

title('van der Pol Equation, \mu = 1000') 

axis([0 3000 -3 3]) 

xlabel('t') 

ylabel('solution y') 

 

Integration Error Control 

 The problem: imagine a dynamic system that varies rapidly 

every once in a while, but the remaining time is very tame 

 Example: solution of the van der Pole IVP 



 If you don’t adjust the integration step-size h you are forced to work 

during the entire simulation with a very conservative value of h 

 Basically, you have to work with that value of h that can negotiate the high 

transients 

 This would be for almost the entire simulation a waste of resources 

 

 

 Basic Idea:  

 When you have high transients, reduce h to make sure you are ok 

 When the dynamics is tame, increase the value of h and sail quickly through these 

intervals 

 

 

 On what should you base the selection of the step size h? 

 On the value of local error 

 It would be good to be able to use the actual error, but that’s impossible to do 

Integration Error Control 



 In the end, we need a mechanism that tries to guarantee that the local 

error at each time step stays below a user-prescribed threshold value 

 

 Computing the threshold value 

 Draws on two values specified by the user: absolute tolerance ATOL and 

relative tolerance RTOL (think of these as allowances) 

 If dealing with an m-dimensional problem, threshold value »i for component 

“i” of solution y is computed as 

Integration Error Control:  

The Details 

 The key observation: the entire error control effort concentrates on 
keeping an *approximation* of the local error at tn smaller than » 



 What’s left at this point is to somehow provide an approximation of the 

local error l[i]n at time step tn  

 

 To get l[i]n, you produce a *second* approximation of the solution at tn, 

and you pretend that that second solution is the actual solution(kind of 

funny).  Then you can get an approximation of the local error: 

Integration Error Control:  

The Details 

 Here we had: 



 A measure of the acceptability “a” of the solution given the user 

prescribed tolerance is obtained as 

Integration Error Control:  

The Details 

 Note that any reading             indicates an acceptable situation 

 Otherwise, if            , it’s an indication that the quality of the solution 

does not meet the user prescribed tolerance 

 If this is the case, the step size should be decrased, yn is rejected 
and it’s to be computed again… 

 Note that asymptotically, since the method we use is assumed to be 

order p, we have for v that (K is an unknown constant):  



 Summary of possible scenarios 

 

 Step-size is too small, you are being way more accurate than the user needs 

 

 

 Step-size is exactly where you want it to be, acceptability is on the margin 

 

 

 

 Step-size is too large, you are to aggressive and this leads to local errors that 

are exceeding the user specified tolerance 

Integration Error Control:  

The Details 



 Finally, how do you choose the optimal step-size hopt? 

 

 You want to be in the sweet spot, acceptability is 1.0 

 

 The step-size is chosen to meet this requirement: 

 

 

 

 

 Because there was some hand waving involved and these arguments are in 

general true only asymptotically, one usually uses a safety factor s=0.9 to 

play it conservatively.  Then the new step size is chosen as 

Integration Error Control:  

The Details 



Integration Error Control:  

The “Embedded Method” 

 How do you usually get the second approximate solution? 

 

 The idea is to use the same stage values you produce to generate 

the first solution 

 

 In other words, use the same A and c, but change only b 

 

 When using Butcher’s Tableau, this is captured by adding a new 

row for the new values of    : 

Original Method: 

Produces num solution 

Embedded Method:  

Produces second num solution 

(used in local error control) 
Typical notation used 

for Butcher’s Tableau  



Example 1:  

RK Embedded Methods 

 The Fehlberg 4(5) pair 

 Empty cells have a zero in them 

0 

1/4 1/4 

3/8 3/32 9/32 

12/13 1932/2197 -7200/2197 7296/2197 

1 439/216 -8 3680/513 -845/4104 

1/2 -8/27 2 -3544/2565 1859/4104 -11/40 

25/216 0 1408/2565 2197/4104 -1/5 0 

16/135 0 6656/12825 28561/56430 -9/50 2/55 



Example 2:  

RK Embedded Methods 

 The Dormand-Prince 4(5) pair 

 Empty cells have a zero in them 

 This is what’s used in MATLAB as the default for the ODE45 solver 

0 

1/5 1/5 

3/10 3/40 9/40 

4/5 44/45 -56/15 32/9 

8/9 19372/6561 -25360/2187 64448/6561 -212/729 

1 9017/3168 -355/33 46732/5247 49/176 -5103/18656 

1 35/384 0 500/1113 125/192 -2187/6784 11/84 

5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40 

35/384 0 500/1113 125/192 -2187/6784 11/84 0 



Explicit vs. Implicit RK 

 One can immediately figure out whether a RK method is explicit or 

implicit by simply inspecting Butcher’s Tableau 

 

 If the A matrix has nonzero entries on the diagonal or in the upper 

triangular side, the method is implicit 

 

 

 Implicit RK methods belong to several subfamilies 

 Gauss methods 

 They are maximum order methods: for s stages, you get order 2s (as good as it gets) 

 Radau methods 

 Attain order 2s-1 for s stages 

 Lobatto methods 

 Attain order 2s-2 for stages 



Examples, Implicit RK Methods 

 Members of the Gauss subfamily  

 

 

 

 

 

 

 Members of the Radau subfamily 

 

 

 

 

 

 Members of the Lobatto subfamily 

1/2 1/2 

1 

Implicit Midpoint 

s=1, p=2 

1/4 

1/4 

1/2 1/2 

No name, s=2, p=4 

1 1 

1 

Backward Euler 

s=1, p=1 

1/3 5/12 -1/12 

1 3/4 1/4 

3/4 1/4 

No name, s=2, p=3 

Trapezoidal Method 

s=2, p=2 

0 0 0 0 

1/2 5/24 1/3 0 

1 1/6 2/3 1/6 

1/6 2/3 1/6 

No name, s=3, p=4 

0 0 0 

1 1/2 1/2 

1/2 1/2 



Implicit RK Methods: 

Implementation Issues 

 Implicit RK methods are notoriously hard to implement 

 

 Suppose you have an IVP where the dimension of the unknown 

function is m: 

 Then, the dimension of the nonlinear system that you have to solve 

at each time step is of an s-stage implicit RK method is s*m 

 

 This is a serious drawback 

 A lot of research goes into parallelizing this process: rather than solving 

one nonlinear system of dimension s*m, the idea is to solve s systems 

of dimension m 

 This is still not that impressive, to be compared to the effort in multistep 

methods (to be covered shortly…) 



Exercise 

 Consider the van der Pol IVP, which is to be solved using the order 3 Radau 

formula 

 Write down the nonlinear system of equations that one has to solve when 

advancing the simulation by one time step h 
 Use the F-flavor representation of the RK method 



Diagonal Implicit RK Methods 

(DIRK Methods) 

 One immediate way to decouple the large nonlinear system and have 

s systems of dimension m is to use diagonal implicit RK methods 

 Called DIRK methods 

 If *all* the diagonal entries in the A matrix are the same, then the method is called 

SDIRK (singly diagonal implicit RK) method 

 Note that for SDIRK, each of the s decoupled nonlinear systems have the same 

iteration matrix (Jacobian is the same) 

 

 Example, SDIRK methods 

 Backward Euler 

 Also the following two look good… 

0 

1/2 1/2 

0 

s=2, p=3 s=2, p=2 



RK and Stiff Decay 

 Stiff Decay is also called in the literature L-stability 

 

 There is a theorem that provides sufficient conditions for stiff decay 

of a RK method 

 

 Specifically, the following are sufficient conditions for stiff decay 

 A matrix is nonsingular, and 

 The last row of the A matrix is identical to bT  

 

 Example, SDIRK with stiff decay: 

0 

s=2, p=2 



RK Methods – Final Thoughts 

 Explicit RK relatively straight forward to implement 

 Implicit RK are challenging to implement due to the large nonlinear 

system that ensues discretization 

 This family of methods is well understood 

 Reliable 

 On the expensive side in terms of computational effort (for each time step, you 

have to do multiple function evaluations) 

 

 

 Things of interest that we didn’t cover 

 Estimation of global error 

 Stiffness detection 

 Sensitivity to data perturbations (sensitivity analysis) 

 Symplectic methods for Hamiltonian systems 



Exercises 

 Problem 4.8 – tricky at times 

 Problem 4.12 – deals with step-size control for a sun-earth problem 

 Example 4.6: use MATLAB to generate an approximate solution of 

the IVP therein.  The solution is y(t)=sin(t).  If the approximate 

MATLAB solution doesn’t look good, try to tinker with MATLAB or 

implement your own numerical scheme to solve the problem 



New Topic:  

Linear Multistep Methods 



Multistep vs. RK Methods 

 Fewer function evaluations per time step 

 

 Simpler, more streamlined method design 

 Recall the table with number of conditions that the RK method coefficients had to 

satisfy to be guaranteed a certain order for the RK method 

 

 Error estimation and order control are much simpler 

 In fact, order control (the ability to change the order of the method on the fly) is 

something that is not typically done for RK 

 Order control is very common for Multistep Methods 

 

 On the negative side  

 There is high overhead when changing the integration step-size 

 Loses some of the flexibility of one RK methods (there you had many parameters 

to adjust, not that much the case for Multistep methods) 

 More simpleton in nature than their sophisticated RK cousins 

 



Review of Framework 

 Interested in finding a function y(t) over an interval [0,b] 

 This m-dimensional function y(t) must satisfy the following IVP: 

 We assume that f is bounded and smooth, so that y exists, is 

unique, and smooth 

 

 Given to you: 

 The constants c and b  

 The function f(t,y). 



Multistep Methods - Nomenclature 

 Notation used: 

 yl represents an approximation at time tl of the actual solution y(tl) 

 fl represents the value of the function f evaluated at tl and yl 

 

 We work with *multistep* methods.  We’ll use k to represent the 

number of steps in a particular Multistep method 

 

 The general form of a Multistep method (M-method) is as follows 

  ®j and ¯j are coefficients specific to each M method 



Examples - Multistep Methods 

 General Form: 

 

 

 

 BDF method 

 

 

 

 Adams-Bashforth method 

 

 

 

 Adams-Moulton method 



M Methods: Further Remarks 

 To eliminate arbitrary scaling, it is assumed that  

 Note that if ¯j=0 the method is explicit.  Otherwise, it is implicit 

 To truly talk about a k-step method, it is also assumed that  

 Finally, note that the step size over the last k integration step is 

assumed constant 

 This is going to give some headaches later on when you 

actually want to change the step size on the fly to control error 



Quick One Slide Review:  

Local Truncation Error, Forward Euler 

 Consider how the solution is obtained: 

 By definition, the quantity above is called the truncation error and is 

denoted by   

 Note that in general, if you stick the actual solution in the equation 

above it is not going to be satisfied:   

 Note that this depends on the function (y), the point where you care 

to evaluate the truncation error (tn), and the step size used (h) 



The Local Truncation Error: 

Multistep Methods 

 Consider the linear operator (assume y is scalar function, for 

simplicity of notation) 

 Then it follows that 

 Or, in other words, the local truncation error is  

 Equivalently, since y is the exact solution of the IVP, 



M Methods: Order Conditions 

 Recall that by definition a method is accurate of order p if  

 To assess the order of      , carry out a Taylor expansion of                  

and 

 This to be done for j=0,…,k, then collect terms to obtain the following 

representation of the linear operator  

 Then, we get the following 



M Methods: Order Conditions 

 From the Taylor series expansions, one can obtain in a straightforward 

fashion that 

 Nomenclature: 

 When the order is p, then Cp+1 is called the error constant of the method 

 Obviously, one would like a method that has Cp+1 as small as possible 



Exercises 

 Proof that the expression of Ci on the previous slide is correct 

 

 Pose the Forward Euler method as a M method and verify its order 

conditions (should be order 1) 

 

 Pose the Backward Euler method as a M method and verify its order 

conditions (should be order 1) 

 

 Pose the Trapezoidal method as a M method and verify its order 

conditions (should be order 2) 



Quick Review: 

Order “p” Convergence 

 Theorem: 

 Some more specifics: 

 If the method is accurate of order p and 0-stable, then it is 

convergent of order p: 



M Methods:  

Convergence Results 

 We saw what it takes for a M method to have a certain accuracy order 

 

 What’s left is to prove 0-stability 

 

 The concept of characteristic polynomial comes in handy: 

 Note that for the k stage M method, the characteristic polynomial only 
depends on ®j 

 



M Methods:  

The Root Condition 

 We provide without proof the following condition for a M-method to be 

0-stable (the “root condition”) 

 
 Let »i be the k roots of the characteristic polynomial.  That is,  

 

 

 

 

 

 

 Then, the M-method is 0-stable if and only if  



M Methods:  

Convergence Criterion 

 An M-method is convergent to order p if the following conditions hold: 
 

 The root condition holds 

 

 The method is accurate to order p 

 

 The initial values required by the k-step method are accurate to order p 

 

 

 

 Exercise: 

 Identify the convergence order of the Forward Euler, Backward Euler, and 

Trapezoidal Methods 



M Methods:  

Exercise, Root Condition 

 Consider the following M-method: 

 

 

 

 What is the accuracy order of the method? 

 

 

 Does the method satisfy the root condition? 

 

 

 Use the M-method above to find the solution of the simple IVP  

 

 
 

 For the M-method, take 



The Root Condition: 

Further Comments 

 Exercise: Generate the convergence plot for Milne’s method… 

 

 

 

 

 … in conjunction with the following IVP: 

 

 

 

 

 Compute the starting points using the exact solution of the above IVP 



Short Side Trip:  

Difference Equations 

 Difference equations, the framework 

 Someone gives you k initial values x0,…,xk-1  

 You find the next value xk by solving a “difference equation”: 

0 1 1 0k n kn na x a x a x   

 It’s obvious that the value of xn is uniquely defined once you have 

the first k values 

 How can we compute this unique value xn yet not explicitly reference 

the first k values? 

 Trick used: assume the following expression for xn: 

1

0 1Characteristic Equations: 0k k

kaa a    

n

nx 

 This choice of the expression of xn leads to the following equation 
that must be satisfied by » (typically called Characteristic Equation) 



Short Side Trip:  

Difference Equations  [Cntd.] 

 Characteristic Equation (CE): 
 Has degree k 

 Has k roots (might be distinct or multiple roots amongst them): »1, »2,…,»k 

 Exercise: show that the value of xn can be expressed as (assume no multiple roots) 

1

1

21 2

n n n n

n

k

k ik i

i

x c c c c   


   

 Expression of xn gets slightly more complicated for multiple roots: 

 Double root (say »1=»2): 

 

 

 Triple root (say »1 =»2 =»3): 

1 11 2

3

( ) n
k

i

i

n

n ix c c n c 


  
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4
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     

NOTE: This Difference Equations theory relevant when looking into absolute stability 



Absolute Stability [quick review] 

 The process used to find out the region of absolute stability 

 We started with the test problem 

 

 

 

 We required that for the test problem, the numerical approximation should 

behave like the exact solution.  That is, we required that 

 Used the discretization scheme to express how yn is related to yn-1 and impose the 

condition above 

 

 This leads to a condition that the step size should satisfy in relation to the parameter ¸ 

 

 Example: for Forward Euler, we obtained that for absolute stability that 



Region of Absolute Stability 

 Apply the methodology on previous slide for the test problem when 

used in conjunction with a multistep scheme 

 

 

 

 This leads to  

 

 

 Recall that we had the expression for xn Re 

 

 

 

 For us to hope that yn! 0, we need |»i| · 1 for 8 i ¸ k 
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Region of Absolute Stability [Cntd.] 

 Drop the subscript i for convenience.  The conclusion is that any root 
of the Characteristic Equation; i.e. any » that satisfies… 

 

 

 

 … must also satisfy |»| · 1 

 

 Note that if the above condition holds, then we will get to the desired 

condition that yn is monotonically decreasing in absolute value: 
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Region of Absolute Stability [Cntd.] 

 So in the end, it boils down to this simple sufficient condition: if h¸ is 

such that the roots of the CE all have the norm less than or equal to 
1, then h¸ belongs to the stability region 

 Recall that the CE assumes the form 

 

 

 

 How would you find the boundaries of the stability region?  
 This is precisely that situation where |»|=1, or in other words, where »=eiµ   

 So the boundary is given by those values of h¸ for which »=eiµ  

 Yet note that from the CE, one has that for µ2[0,2¼), 
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Exercise 

 Plot the region of absolute stability for Milne’s method 



Absolute Stability: 

Closing Comments 

 It is relatively straight forward to show that no explicit M method can 

be A-stable 

 

 

 Lindquist’s Barrier (1962, not simple to prove) 

 You cannot construct an A-stable M method that has order higher than 2 

 Note that there is no such barrier for RK methods 

 

 

 The second order A-stable implicit M method with smallest error 

constant (C3=1/12) is the trapezoidal integration method 

 The problem with the trapezoidal formula is that it does not have stiff decay (it is 

A-stable but not L-stable) 



How Did People Get M-Methods? 

 One early approach (about 1880): integrate the ordinary differential 

equation, and approximate the function f using a polynomial 

1

1( ) ( ) ( , ( )( , ))
n

n

t

n n

t

y t y t f t y t dty f t y



   

 Based on previous values f(tn-1,yn-1),…, f(tn-k,yn-k), one can fit a k-1 

degree polynomial in the variable t to approximate the unknown function 

f(t,y) 

 

 Once the polynomial is available, simply plug it back in the integral 

above and evaluate it to get yn (an approximation of y(tn)) 

 

 NOTE: this approach leads to a family of explicit integration formulas 

called Adams-Bashforth Multistep methods (AB-M methods) 
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Exercise 

 Derive the AB-M method for k=1, k=2, and k=3 

 

 

 

 

 

 

 Plot the absolute stability region for the AB-M methods above 



AB-M Method, Closing 

 Table below provides convergence order p, the number of 
steps k of the M method, the coefficients ¯n-j, and the value of 

the leading coefficient of the error term Cp+1 

 Example: based on the above table, the third order AB-M formula is 

p k j! 1 2 3 4 5 6 Cp+1 

1 1 ¯n-j 1 1/2 

2 2 2¯n-j 3 -1 5/12 

3 3 12¯n-j 23 -16 5 3/8 

4 4 24¯n-j 55 -59 37 -9 251/720 

5 5 720¯n-j 1901 -2774 2616 -1274 251 95/288 

6 6 1440¯n-j 4277 -7923 9982 -7298 2877 -475 19087/60480 



Starting a M Method 

 Implementation question: How do you actually start a M method? 

 In general, you need information for the first k steps to start a M method 

 

 If you work with a scheme of order p, you don’t want to have in your first 

k values y0, …, yk-1 error that is larger than O(hp) 

 

 

 Most common approach is to use for the first k-1 steps a RK method of 

order p. 

 

 A second approach starts using a method of order 1 with smaller step, 

than increases to order 2 when you have enough history, then increase 

to order 3, etc. 

 

 NOTE: for the previous exercise, you have the exact solution so you 

can use it to generate the first k steps 



Exercise 

 Generate the Convergence Plot of the AB-M method  for 

k=3 and k=4 for the following IVP: 

 Indicate whether your results come in line with the expected 

convergence behavior 

 Note that the exact solution of this IVP is: 



Exercise 

 Prove that the AB-M method with k=3 is convergent with order 3 



Exercise 

 Plot the absolute stability regions for the AB-M formulas up to order 6 

 Comment on the size of the absolute convergence regions 



The AM-M Method 

 The AB-M method is known for small absolute stability methods 

 

 Idea that partially addressed the issue:  

 Rather than only using the previous values f(tn-1,yn-1),…, f(tn-k,yn-k), one should 

include the extra point f(tn,yn) to fit a k degree polynomial in the variable t to 

approximate the unknown function f(t,y) 

 

 The side-effect of this approach: 

 The resulting scheme is implicit: you use f(tn,yn) in the process of finding yn 

 

 The resulting scheme will assume the following form: 

 

 

 

 This family of formulas is called Adams-Moulton Multistep (AM-M) 

methods 
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Exercise 

 Derive the AM-M method for k=2 and then k=3 

 

 

 

 

 

 

 Plot the absolute stability region for the AM-M methods above 



AM-M Method, Closing 

 Table below provides convergence order p, the number of 
steps k of the M method, the coefficients ¯n-j, and the value of 

the leading coefficient of the error term Cp+1 

 Example: based on the above table, the third order AM-M formula (k=2) is 

p k j! 0 1 2 3 4 5 Cp+1 

1 1 ¯n-j 1 -1/2 

2 1 2¯n-j 1 1 -1/12 

3 2 12¯n-j 5 8 -1 -1/24 

4 3 24¯n-j 9 19 -5 1 -19/720 

5 4 720¯n-j 251 646 -264 106 -19 -3/160 

6 5 1440¯n-j 475 1427 -798 482 -173 27 -863/60480 



Exercise 

 Prove that the AM-M method with k=3 is convergent with order 4 



Exercise 

 Generate the Convergence Plot of the AB-M method  for 

k=2 and k=3 for the following IVP: 

 Indicate whether your results come in line with the expected 

convergence behavior 

 Note that the exact solution of this IVP is: 

 NOTE: use the analytical solution to generate the first k 

steps of the integration formula 



Exercise 

 Plot the absolute stability regions for the AM-M formulas up to order 6 

 Comment on the size of the absolute convergence regions 



Implicit AM-M:  

Solving the Nonlinear System 

 Since the AM-M method is implicit it will require at each time step 

the solution of a system of equations 

 If f is nonlinear in y this system of equations will be nonlinear 

 This is almost always the case 

 

 Approaches used to solve this nonlinear system: 

 

 Functional iteration 

 

 Predictor Corrector schemes 

 

 Modified Newton iteration 

 

 Focus on first two, defer discussion of last for a couple of slides 



M Methods: Functional Iteration 

 Idea similar to the one introduced for the RK method 

 

 Iterative process carried out as follows: 

 

 

 Notation: K represents a constant pre-computed based on past information 

 It does not change during the iterative process 

 

 

 

 

 As a starting point, for º=0, typically one takes this value to by yn-1 

 This will be revisited shortly, when discussing predictor-corrector schemes 

 

 Stopping criteria identical to and discussed in relation to modified Newton 

iteration 



M Methods: Functional Iteration 

 This represents a fixed point iteration 

 

 Fixed point iteration converges to the fixed point provided it is a 

contraction, which is the case if the following condition holds 

 

 

 

 NOTE: this condition basically limits the Functional Iteration 

approach to nonstiff problems 



M Methods:  

The Predictor-Corrector Approach 

 The predictor corrector formula is very similar to the Functional 

Iteration approach 

 

 There are two differences: 

 

 The starting point is chosen in a more intelligent way 

 

 The number of iterations is predefined 

 This is unlike the Functional Iteration approach, where convergence is 
monitored and it is not clear how many iterations º will be necessary for 

convergence 



The Predictor-Corrector Approach: 

Choosing the Starting Point 

 The key question is how should one choose 

 

 An explicit method is used to this end 

 

 This step is called prediction (“P”), and the explicit M method  used 

to obtain        is called “predictor” 

 

 Most of the time, the predictor is an AB-M method: 

(0)

ny

(0)

ny

 The predicted value for y is immediately used to evaluate (“E”) the 

value of the function f: 



The Predictor-Corrector Approach: 

Carrying out Corrections 

 The second distinctive attribute of a Predictor-Corrector integration 
formula is that a predefined number º of corrections of are carried out 

 In other words, ºend is predetermined, and the final value for yn is  

 The corrector (“C”) formula is usually chosen to be the AM-M method 

 Starting with º=0, the correction step assumes then the expression 

 Typically, the C step is followed by an E step to obtain a new 

expression for f that goes hand in hand with the newly corrected; i.e., 

improved, value of y: 



The Predictor-Corrector Approach: 

Carrying out Corrections 

 The predictor-corrector integration method process just described is 

called PECE 

 It predicts (P), evaluates (E), corrects (C), and finally evaluates again (E) 

 Note that strictly speaking, the last (E) could be regarded as superfluous 

since it’s not used for computation of yn anymore 

 Last E is essential though since it’s used in the computation of yn+1 and it 

improves the stability properties of the integration method 

 

 Note that approach described (PECE), corresponds to choosing ºend=1  

 

 For larger values of ºend the “EC” part in PECE is executed ºend  times 

 The nomenclature used for these methods is P(EC)º E 

 Example: P(EC)3E refers to the following predictor-corrector integration 

formula: 

1 2 3st nd rd

EP C E C E C E      



Example: PECE Method 

 The following example combines a two step AB-M method, with the 

second-order one step AM-M method (the trapezoidal formula) 

 

 Given yn-1, fn-1, fn-2: 
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 It can be shown that the local truncation error for this method is  
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