
Runge-Kutta Methods

Runge-Kutta Methods

 The Runge-Kutta integration process is the sum of two tasks:

 Task 1: compute the s stage values (the time consuming part):

 Task 2: compute the solution at tn (this is trivial…):

 Note that these two tasks are carried out at each integration time step t1, t2, etc.

 Consider the typical IVP that you want to solve:

Runge-Kutta (RK) Methods

 Three sets of parameters together define a RK method: aij, bi, and ci.

 The coefficients defining a RK method are given to you and typically

grouped together in what’s called Butcher’s Tableau

 A, b, and c are defined to represent the corresponding blocks of

Butcher’s Tableau (see above)

 All properties of a RK scheme (stability, accuracy order, convergence

order, etc.) are completely defined by the entries in A, b, and c

 Nomenclature: number of stages s is defined by the number of rows in A

Professor John Butcher,

New Zealand, awesome guy

Example:

Classical Fourth

Order RK Method

 The Butcher Tableau representation looks like this:

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/3 1/3 1/6

Choosing A, b, and c for an Explicit RK

 Purpose of this and next slide: point out how challenging it is to

generate a good RK method

 Recall that it boils down to choosing the coefficients in A, b, and c

 It has been proved that given a number of stages “s” that you accept to

have in an explicit RK method, a limit on the order of the method “p”

ensues:

s 1 2 3 4 5 6 7 8 9 10

p 1 2 3 4 4 5 6 6 7 7

 Example:

 *Necessary* conditions for an explicit method to have order 5

 Notation used: C=diag(c1,…,cs) and 1=(1,1,…,1)T

Choosing A, b, and c for RK

 The number of *necessary* and *sufficient* conditions to guarantee a

certain order for an RK method is as follows:

Order p 1 2 3 4 5 6 7 8 9 10

no. of conditions 1 2 4 8 17 37 85 200 486 1205

 Conclusion: Building a high-order RK is tricky…

Absolute Stability

Regions

 Plots report absolute stability regions

for explicit RK methods with s

stages and of order p=s, for

s=1,2,3,4

 Blue: s=1

 Red: s=2

 Green: s=3

 Cyan: s=4

 Methods are stable inside the curves

 Absolute stability region given by

Absolute Stability Regions [Cntd.]

 MATLAB script to generate the fourth order abs-stability region (cyan):

Exercise

 Generate the Convergence Plot of the fourth order RK

provided a couple of slides ago for the following IVP:

 Note that the exact solution of this IVP is:

RK Method, A Different Possibility to

Advance the Numerical Solution

 Recall that in stage “i” of the s stage approach, we generated a

value Yi . We call this approach “y-flavored”:

 First, for each of the s stages,

 Next, a combination of these stage values leads to the solution at tn:

 A different approach can be followed, this is “f-flavored”

 It approximates derivatives at each stage rather than values y

 See next slide…

RK Method, A Different Possibility to

Advance the Numerical Solution

 At each of the s stages of the RK method, you need to figure out Fi:

 Once the stage values are available, the solution is computed as

 Personally, I find the f-flavor better than the y-flavor implementation

RK Method, A Different Possibility to

Advance the Numerical Solution

 Exercise: show that the f-flavor is easily obtained from the y-flavor by

using an appropriate notation.

Exercises

 Note that Forward Euler, Backward Euler, and Trapezoidal Formula can

all be considered as belonging to the RK family

 Provide the Butcher Tableau representation for Forward Euler

 Provide the Butcher Tableau representation for Backward Euler

 Provide the Butcher Tableau representation for the Trapezoidal Formula

tspan = [0, 3000];

y0 = [2; 0];

Mu = 1000;

ode = @(t,y) vanderpoldemo(t,y,Mu);

[t,y] = ode15s(ode, tspan, y0);

plot(t,y(:,1))

title('van der Pol Equation, \mu = 1000')

axis([0 3000 -3 3])

xlabel('t')

ylabel('solution y')

Integration Error Control

 The problem: imagine a dynamic system that varies rapidly

every once in a while, but the remaining time is very tame

 Example: solution of the van der Pole IVP

 If you don’t adjust the integration step-size h you are forced to work

during the entire simulation with a very conservative value of h

 Basically, you have to work with that value of h that can negotiate the high

transients

 This would be for almost the entire simulation a waste of resources

 Basic Idea:

 When you have high transients, reduce h to make sure you are ok

 When the dynamics is tame, increase the value of h and sail quickly through these

intervals

 On what should you base the selection of the step size h?

 On the value of local error

 It would be good to be able to use the actual error, but that’s impossible to do

Integration Error Control

 In the end, we need a mechanism that tries to guarantee that the local

error at each time step stays below a user-prescribed threshold value

 Computing the threshold value

 Draws on two values specified by the user: absolute tolerance ATOL and

relative tolerance RTOL (think of these as allowances)

 If dealing with an m-dimensional problem, threshold value »i for component

“i” of solution y is computed as

Integration Error Control:

The Details

 The key observation: the entire error control effort concentrates on
keeping an *approximation* of the local error at tn smaller than »

 What’s left at this point is to somehow provide an approximation of the

local error l[i]n at time step tn

 To get l[i]n, you produce a *second* approximation of the solution at tn,

and you pretend that that second solution is the actual solution(kind of

funny). Then you can get an approximation of the local error:

Integration Error Control:

The Details

 Here we had:

 A measure of the acceptability “a” of the solution given the user

prescribed tolerance is obtained as

Integration Error Control:

The Details

 Note that any reading indicates an acceptable situation

 Otherwise, if , it’s an indication that the quality of the solution

does not meet the user prescribed tolerance

 If this is the case, the step size should be decrased, yn is rejected
and it’s to be computed again…

 Note that asymptotically, since the method we use is assumed to be

order p, we have for v that (K is an unknown constant):

 Summary of possible scenarios

 Step-size is too small, you are being way more accurate than the user needs

 Step-size is exactly where you want it to be, acceptability is on the margin

 Step-size is too large, you are to aggressive and this leads to local errors that

are exceeding the user specified tolerance

Integration Error Control:

The Details

 Finally, how do you choose the optimal step-size hopt?

 You want to be in the sweet spot, acceptability is 1.0

 The step-size is chosen to meet this requirement:

 Because there was some hand waving involved and these arguments are in

general true only asymptotically, one usually uses a safety factor s=0.9 to

play it conservatively. Then the new step size is chosen as

Integration Error Control:

The Details

Integration Error Control:

The “Embedded Method”

 How do you usually get the second approximate solution?

 The idea is to use the same stage values you produce to generate

the first solution

 In other words, use the same A and c, but change only b

 When using Butcher’s Tableau, this is captured by adding a new

row for the new values of :

Original Method:

Produces num solution

Embedded Method:

Produces second num solution

(used in local error control)
Typical notation used

for Butcher’s Tableau

Example 1:

RK Embedded Methods

 The Fehlberg 4(5) pair

 Empty cells have a zero in them

0

1/4 1/4

3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197

1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40

25/216 0 1408/2565 2197/4104 -1/5 0

16/135 0 6656/12825 28561/56430 -9/50 2/55

Example 2:

RK Embedded Methods

 The Dormand-Prince 4(5) pair

 Empty cells have a zero in them

 This is what’s used in MATLAB as the default for the ODE45 solver

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 -56/15 32/9

8/9 19372/6561 -25360/2187 64448/6561 -212/729

1 9017/3168 -355/33 46732/5247 49/176 -5103/18656

1 35/384 0 500/1113 125/192 -2187/6784 11/84

5179/57600 0 7571/16695 393/640 -92097/339200 187/2100 1/40

35/384 0 500/1113 125/192 -2187/6784 11/84 0

Explicit vs. Implicit RK

 One can immediately figure out whether a RK method is explicit or

implicit by simply inspecting Butcher’s Tableau

 If the A matrix has nonzero entries on the diagonal or in the upper

triangular side, the method is implicit

 Implicit RK methods belong to several subfamilies

 Gauss methods

 They are maximum order methods: for s stages, you get order 2s (as good as it gets)

 Radau methods

 Attain order 2s-1 for s stages

 Lobatto methods

 Attain order 2s-2 for stages

Examples, Implicit RK Methods

 Members of the Gauss subfamily

 Members of the Radau subfamily

 Members of the Lobatto subfamily

1/2 1/2

1

Implicit Midpoint

s=1, p=2

1/4

1/4

1/2 1/2

No name, s=2, p=4

1 1

1

Backward Euler

s=1, p=1

1/3 5/12 -1/12

1 3/4 1/4

3/4 1/4

No name, s=2, p=3

Trapezoidal Method

s=2, p=2

0 0 0 0

1/2 5/24 1/3 0

1 1/6 2/3 1/6

1/6 2/3 1/6

No name, s=3, p=4

0 0 0

1 1/2 1/2

1/2 1/2

Implicit RK Methods:

Implementation Issues

 Implicit RK methods are notoriously hard to implement

 Suppose you have an IVP where the dimension of the unknown

function is m:

 Then, the dimension of the nonlinear system that you have to solve

at each time step is of an s-stage implicit RK method is s*m

 This is a serious drawback

 A lot of research goes into parallelizing this process: rather than solving

one nonlinear system of dimension s*m, the idea is to solve s systems

of dimension m

 This is still not that impressive, to be compared to the effort in multistep

methods (to be covered shortly…)

Exercise

 Consider the van der Pol IVP, which is to be solved using the order 3 Radau

formula

 Write down the nonlinear system of equations that one has to solve when

advancing the simulation by one time step h
 Use the F-flavor representation of the RK method

Diagonal Implicit RK Methods

(DIRK Methods)

 One immediate way to decouple the large nonlinear system and have

s systems of dimension m is to use diagonal implicit RK methods

 Called DIRK methods

 If *all* the diagonal entries in the A matrix are the same, then the method is called

SDIRK (singly diagonal implicit RK) method

 Note that for SDIRK, each of the s decoupled nonlinear systems have the same

iteration matrix (Jacobian is the same)

 Example, SDIRK methods

 Backward Euler

 Also the following two look good…

0

1/2 1/2

0

s=2, p=3 s=2, p=2

RK and Stiff Decay

 Stiff Decay is also called in the literature L-stability

 There is a theorem that provides sufficient conditions for stiff decay

of a RK method

 Specifically, the following are sufficient conditions for stiff decay

 A matrix is nonsingular, and

 The last row of the A matrix is identical to bT

 Example, SDIRK with stiff decay:

0

s=2, p=2

RK Methods – Final Thoughts

 Explicit RK relatively straight forward to implement

 Implicit RK are challenging to implement due to the large nonlinear

system that ensues discretization

 This family of methods is well understood

 Reliable

 On the expensive side in terms of computational effort (for each time step, you

have to do multiple function evaluations)

 Things of interest that we didn’t cover

 Estimation of global error

 Stiffness detection

 Sensitivity to data perturbations (sensitivity analysis)

 Symplectic methods for Hamiltonian systems

Exercises

 Problem 4.8 – tricky at times

 Problem 4.12 – deals with step-size control for a sun-earth problem

 Example 4.6: use MATLAB to generate an approximate solution of

the IVP therein. The solution is y(t)=sin(t). If the approximate

MATLAB solution doesn’t look good, try to tinker with MATLAB or

implement your own numerical scheme to solve the problem

New Topic:

Linear Multistep Methods

Multistep vs. RK Methods

 Fewer function evaluations per time step

 Simpler, more streamlined method design

 Recall the table with number of conditions that the RK method coefficients had to

satisfy to be guaranteed a certain order for the RK method

 Error estimation and order control are much simpler

 In fact, order control (the ability to change the order of the method on the fly) is

something that is not typically done for RK

 Order control is very common for Multistep Methods

 On the negative side

 There is high overhead when changing the integration step-size

 Loses some of the flexibility of one RK methods (there you had many parameters

to adjust, not that much the case for Multistep methods)

 More simpleton in nature than their sophisticated RK cousins

Review of Framework

 Interested in finding a function y(t) over an interval [0,b]

 This m-dimensional function y(t) must satisfy the following IVP:

 We assume that f is bounded and smooth, so that y exists, is

unique, and smooth

 Given to you:

 The constants c and b

 The function f(t,y).

Multistep Methods - Nomenclature

 Notation used:

 yl represents an approximation at time tl of the actual solution y(tl)

 fl represents the value of the function f evaluated at tl and yl

 We work with *multistep* methods. We’ll use k to represent the

number of steps in a particular Multistep method

 The general form of a Multistep method (M-method) is as follows

 ®j and ¯j are coefficients specific to each M method

Examples - Multistep Methods

 General Form:

 BDF method

 Adams-Bashforth method

 Adams-Moulton method

M Methods: Further Remarks

 To eliminate arbitrary scaling, it is assumed that

 Note that if ¯j=0 the method is explicit. Otherwise, it is implicit

 To truly talk about a k-step method, it is also assumed that

 Finally, note that the step size over the last k integration step is

assumed constant

 This is going to give some headaches later on when you

actually want to change the step size on the fly to control error

Quick One Slide Review:

Local Truncation Error, Forward Euler

 Consider how the solution is obtained:

 By definition, the quantity above is called the truncation error and is

denoted by

 Note that in general, if you stick the actual solution in the equation

above it is not going to be satisfied:

 Note that this depends on the function (y), the point where you care

to evaluate the truncation error (tn), and the step size used (h)

The Local Truncation Error:

Multistep Methods

 Consider the linear operator (assume y is scalar function, for

simplicity of notation)

 Then it follows that

 Or, in other words, the local truncation error is

 Equivalently, since y is the exact solution of the IVP,

M Methods: Order Conditions

 Recall that by definition a method is accurate of order p if

 To assess the order of , carry out a Taylor expansion of

and

 This to be done for j=0,…,k, then collect terms to obtain the following

representation of the linear operator

 Then, we get the following

M Methods: Order Conditions

 From the Taylor series expansions, one can obtain in a straightforward

fashion that

 Nomenclature:

 When the order is p, then Cp+1 is called the error constant of the method

 Obviously, one would like a method that has Cp+1 as small as possible

Exercises

 Proof that the expression of Ci on the previous slide is correct

 Pose the Forward Euler method as a M method and verify its order

conditions (should be order 1)

 Pose the Backward Euler method as a M method and verify its order

conditions (should be order 1)

 Pose the Trapezoidal method as a M method and verify its order

conditions (should be order 2)

Quick Review:

Order “p” Convergence

 Theorem:

 Some more specifics:

 If the method is accurate of order p and 0-stable, then it is

convergent of order p:

M Methods:

Convergence Results

 We saw what it takes for a M method to have a certain accuracy order

 What’s left is to prove 0-stability

 The concept of characteristic polynomial comes in handy:

 Note that for the k stage M method, the characteristic polynomial only
depends on ®j

M Methods:

The Root Condition

 We provide without proof the following condition for a M-method to be

0-stable (the “root condition”)

 Let »i be the k roots of the characteristic polynomial. That is,

 Then, the M-method is 0-stable if and only if

M Methods:

Convergence Criterion

 An M-method is convergent to order p if the following conditions hold:

 The root condition holds

 The method is accurate to order p

 The initial values required by the k-step method are accurate to order p

 Exercise:

 Identify the convergence order of the Forward Euler, Backward Euler, and

Trapezoidal Methods

M Methods:

Exercise, Root Condition

 Consider the following M-method:

 What is the accuracy order of the method?

 Does the method satisfy the root condition?

 Use the M-method above to find the solution of the simple IVP

 For the M-method, take

The Root Condition:

Further Comments

 Exercise: Generate the convergence plot for Milne’s method…

 … in conjunction with the following IVP:

 Compute the starting points using the exact solution of the above IVP

Short Side Trip:

Difference Equations

 Difference equations, the framework

 Someone gives you k initial values x0,…,xk-1

 You find the next value xk by solving a “difference equation”:

0 1 1 0k n kn na x a x a x   

 It’s obvious that the value of xn is uniquely defined once you have

the first k values

 How can we compute this unique value xn yet not explicitly reference

the first k values?

 Trick used: assume the following expression for xn:

1

0 1Characteristic Equations: 0k k

kaa a    

n

nx 

 This choice of the expression of xn leads to the following equation
that must be satisfied by » (typically called Characteristic Equation)

Short Side Trip:

Difference Equations [Cntd.]

 Characteristic Equation (CE):
 Has degree k

 Has k roots (might be distinct or multiple roots amongst them): »1, »2,…,»k

 Exercise: show that the value of xn can be expressed as (assume no multiple roots)

1

1

21 2

n n n n

n

k

k ik i

i

x c c c c   


   

 Expression of xn gets slightly more complicated for multiple roots:

 Double root (say »1=»2):

 Triple root (say »1 =»2 =»3):

1 11 2

3

() n
k

i

i

n

n ix c c n c 


  

11 3 12

4

[(1)(2)] n

n

i

n

i

k

ix c c n c n n n c 


     

NOTE: This Difference Equations theory relevant when looking into absolute stability

Absolute Stability [quick review]

 The process used to find out the region of absolute stability

 We started with the test problem

 We required that for the test problem, the numerical approximation should

behave like the exact solution. That is, we required that

 Used the discretization scheme to express how yn is related to yn-1 and impose the

condition above

 This leads to a condition that the step size should satisfy in relation to the parameter ¸

 Example: for Forward Euler, we obtained that for absolute stability that

Region of Absolute Stability

 Apply the methodology on previous slide for the test problem when

used in conjunction with a multistep scheme

 This leads to

 Recall that we had the expression for xn Re

 For us to hope that yn! 0, we need |»i| · 1 for 8 i ¸ k

00

k

n j n j

j

k

j j

j

y h y   

 

 

1

1

21 2

n n n n

n

k

k ik i

i

y c c c c   


   

Region of Absolute Stability [Cntd.]

 Drop the subscript i for convenience. The conclusion is that any root
of the Characteristic Equation; i.e. any » that satisfies…

 … must also satisfy |»| · 1

 Note that if the above condition holds, then we will get to the desired

condition that yn is monotonically decreasing in absolute value:

00

k

j

k
n j n j

j j

j

h     

 

 

11

1

| || |
| 1 | | | |

| | | |
|

n

n
n nn

n

y
y y

y









    

Region of Absolute Stability [Cntd.]

 So in the end, it boils down to this simple sufficient condition: if h¸ is

such that the roots of the CE all have the norm less than or equal to
1, then h¸ belongs to the stability region

 Recall that the CE assumes the form

 How would you find the boundaries of the stability region?
 This is precisely that situation where |»|=1, or in other words, where »=eiµ

 So the boundary is given by those values of h¸ for which »=eiµ

 Yet note that from the CE, one has that for µ2[0,2¼),

00

k

j

k
n j n j

j j

j

h     

 

 

0

()

()

0 0

0

n j i n j

j j

k k
n j i n j

j

j

k

j

j

k

j

j

e

h

e





  



  

 

 



 



 



 



Exercise

 Plot the region of absolute stability for Milne’s method

Absolute Stability:

Closing Comments

 It is relatively straight forward to show that no explicit M method can

be A-stable

 Lindquist’s Barrier (1962, not simple to prove)

 You cannot construct an A-stable M method that has order higher than 2

 Note that there is no such barrier for RK methods

 The second order A-stable implicit M method with smallest error

constant (C3=1/12) is the trapezoidal integration method

 The problem with the trapezoidal formula is that it does not have stiff decay (it is

A-stable but not L-stable)

How Did People Get M-Methods?

 One early approach (about 1880): integrate the ordinary differential

equation, and approximate the function f using a polynomial

1

1() () (, ()(,))
n

n

t

n n

t

y t y t f t y t dty f t y



   

 Based on previous values f(tn-1,yn-1),…, f(tn-k,yn-k), one can fit a k-1

degree polynomial in the variable t to approximate the unknown function

f(t,y)

 Once the polynomial is available, simply plug it back in the integral

above and evaluate it to get yn (an approximation of y(tn))

 NOTE: this approach leads to a family of explicit integration formulas

called Adams-Bashforth Multistep methods (AB-M methods)

1

1

j

k

n n n j

j

y y f 



 

Exercise

 Derive the AB-M method for k=1, k=2, and k=3

 Plot the absolute stability region for the AB-M methods above

AB-M Method, Closing

 Table below provides convergence order p, the number of
steps k of the M method, the coefficients ¯n-j, and the value of

the leading coefficient of the error term Cp+1

 Example: based on the above table, the third order AB-M formula is

p k j! 1 2 3 4 5 6 Cp+1

1 1 ¯n-j 1 1/2

2 2 2¯n-j 3 -1 5/12

3 3 12¯n-j 23 -16 5 3/8

4 4 24¯n-j 55 -59 37 -9 251/720

5 5 720¯n-j 1901 -2774 2616 -1274 251 95/288

6 6 1440¯n-j 4277 -7923 9982 -7298 2877 -475 19087/60480

Starting a M Method

 Implementation question: How do you actually start a M method?

 In general, you need information for the first k steps to start a M method

 If you work with a scheme of order p, you don’t want to have in your first

k values y0, …, yk-1 error that is larger than O(hp)

 Most common approach is to use for the first k-1 steps a RK method of

order p.

 A second approach starts using a method of order 1 with smaller step,

than increases to order 2 when you have enough history, then increase

to order 3, etc.

 NOTE: for the previous exercise, you have the exact solution so you

can use it to generate the first k steps

Exercise

 Generate the Convergence Plot of the AB-M method for

k=3 and k=4 for the following IVP:

 Indicate whether your results come in line with the expected

convergence behavior

 Note that the exact solution of this IVP is:

Exercise

 Prove that the AB-M method with k=3 is convergent with order 3

Exercise

 Plot the absolute stability regions for the AB-M formulas up to order 6

 Comment on the size of the absolute convergence regions

The AM-M Method

 The AB-M method is known for small absolute stability methods

 Idea that partially addressed the issue:

 Rather than only using the previous values f(tn-1,yn-1),…, f(tn-k,yn-k), one should

include the extra point f(tn,yn) to fit a k degree polynomial in the variable t to

approximate the unknown function f(t,y)

 The side-effect of this approach:

 The resulting scheme is implicit: you use f(tn,yn) in the process of finding yn

 The resulting scheme will assume the following form:

 This family of formulas is called Adams-Moulton Multistep (AM-M)

methods

1

0

j

k

n n n j

j

y y f 



 

Exercise

 Derive the AM-M method for k=2 and then k=3

 Plot the absolute stability region for the AM-M methods above

AM-M Method, Closing

 Table below provides convergence order p, the number of
steps k of the M method, the coefficients ¯n-j, and the value of

the leading coefficient of the error term Cp+1

 Example: based on the above table, the third order AM-M formula (k=2) is

p k j! 0 1 2 3 4 5 Cp+1

1 1 ¯n-j 1 -1/2

2 1 2¯n-j 1 1 -1/12

3 2 12¯n-j 5 8 -1 -1/24

4 3 24¯n-j 9 19 -5 1 -19/720

5 4 720¯n-j 251 646 -264 106 -19 -3/160

6 5 1440¯n-j 475 1427 -798 482 -173 27 -863/60480

Exercise

 Prove that the AM-M method with k=3 is convergent with order 4

Exercise

 Generate the Convergence Plot of the AB-M method for

k=2 and k=3 for the following IVP:

 Indicate whether your results come in line with the expected

convergence behavior

 Note that the exact solution of this IVP is:

 NOTE: use the analytical solution to generate the first k

steps of the integration formula

Exercise

 Plot the absolute stability regions for the AM-M formulas up to order 6

 Comment on the size of the absolute convergence regions

Implicit AM-M:

Solving the Nonlinear System

 Since the AM-M method is implicit it will require at each time step

the solution of a system of equations

 If f is nonlinear in y this system of equations will be nonlinear

 This is almost always the case

 Approaches used to solve this nonlinear system:

 Functional iteration

 Predictor Corrector schemes

 Modified Newton iteration

 Focus on first two, defer discussion of last for a couple of slides

M Methods: Functional Iteration

 Idea similar to the one introduced for the RK method

 Iterative process carried out as follows:

 Notation: K represents a constant pre-computed based on past information

 It does not change during the iterative process

 As a starting point, for º=0, typically one takes this value to by yn-1

 This will be revisited shortly, when discussing predictor-corrector schemes

 Stopping criteria identical to and discussed in relation to modified Newton

iteration

M Methods: Functional Iteration

 This represents a fixed point iteration

 Fixed point iteration converges to the fixed point provided it is a

contraction, which is the case if the following condition holds

 NOTE: this condition basically limits the Functional Iteration

approach to nonstiff problems

M Methods:

The Predictor-Corrector Approach

 The predictor corrector formula is very similar to the Functional

Iteration approach

 There are two differences:

 The starting point is chosen in a more intelligent way

 The number of iterations is predefined

 This is unlike the Functional Iteration approach, where convergence is
monitored and it is not clear how many iterations º will be necessary for

convergence

The Predictor-Corrector Approach:

Choosing the Starting Point

 The key question is how should one choose

 An explicit method is used to this end

 This step is called prediction (“P”), and the explicit M method used

to obtain is called “predictor”

 Most of the time, the predictor is an AB-M method:

(0)

ny

(0)

ny

 The predicted value for y is immediately used to evaluate (“E”) the

value of the function f:

The Predictor-Corrector Approach:

Carrying out Corrections

 The second distinctive attribute of a Predictor-Corrector integration
formula is that a predefined number º of corrections of are carried out

 In other words, ºend is predetermined, and the final value for yn is

 The corrector (“C”) formula is usually chosen to be the AM-M method

 Starting with º=0, the correction step assumes then the expression

 Typically, the C step is followed by an E step to obtain a new

expression for f that goes hand in hand with the newly corrected; i.e.,

improved, value of y:

The Predictor-Corrector Approach:

Carrying out Corrections

 The predictor-corrector integration method process just described is

called PECE

 It predicts (P), evaluates (E), corrects (C), and finally evaluates again (E)

 Note that strictly speaking, the last (E) could be regarded as superfluous

since it’s not used for computation of yn anymore

 Last E is essential though since it’s used in the computation of yn+1 and it

improves the stability properties of the integration method

 Note that approach described (PECE), corresponds to choosing ºend=1

 For larger values of ºend the “EC” part in PECE is executed ºend times

 The nomenclature used for these methods is P(EC)º E

 Example: P(EC)3E refers to the following predictor-corrector integration

formula:

1 2 3st nd rd

EP C E C E C E      

Example: PECE Method

 The following example combines a two step AB-M method, with the

second-order one step AM-M method (the trapezoidal formula)

 Given yn-1, fn-1, fn-2:

(0)

1 1 2

(0) (0)

(0)

1 1

P: (3)
2

E: (,)

C: ()
2

E: (,)

n n n n

n n n

n n n n

n n n

h
y y f f

f f t y

h
y y f f

f f t y

  

 

  



  



 It can be shown that the local truncation error for this method is

2
3() ()

12
n n

h
d y t O h  

