Runge-Kutta Methods

Runge-Kutta Methods

e Consider the typical IVP that you want to solve:

{y(ojg Y e

e The Runge-Kutta integration process is the sum of two tasks:
Task 1: compute the s stage values (the time consuming part):

Yi=yn1+hY aif(ta1+ch,Y;), 1<i<s
j=1

Task 2: compute the solution at t, (this is trivial...):

Yo =¥n-1t hz bif(tn—1 + cih, Y;)
i—1

Note that these two tasks are carried out at each integration time step t,, t,, etc.

Runge-Kutta (RK) Methods

e Three sets of parameters together define a RK method: a;, b;, and c..

e The coefficients defining a RK method are given to you and typically
grouped together in what's called Butcher's Tableau

€y |11 @12 ... (g

Cy | @21 Qg ... Cdgg N
c| A
= oT
e la a a Professor John Butcher,
i s1 52 --- i New Zealand, awesome guy
by by ... b

e A, b, and c are defined to represent the corresponding blocks of
Butcher's Tableau (see above)

e All properties of a RK scheme (stability, accuracy order, convergence
order, etc.) are completely defined by the entries in A, b, and ¢

e Nomenclature: number of stages s is defined by the number of rows in A

Example: eoo
Classical Fourth YZ-:yn_ﬁh;aijm_l+cjh,yj>, <<
Order RK Method yn=yn_1+h;bif<tn_l+cm,yi>

Y1 =yn—1

Yo =yn—1 + %f(tn—layl)
YS = Yn—1 T %f(tn—l + %7}/2)
Yi=yn—1+hf(tn-1 + 2,Y3)

Yn = Yn-1+ 2 (f(tn=1,Y1) + 2f (tn1 + 2, Y2) + 2f (b1 + 2, Y3) + f(tn, Y2))

e The Butcher Tableau representation looks like this:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Choosing A, b, and c for an Explicit RK

e Purpose of this and next slide: point out how challenging it is to
generate a good RK method

e Recall that it boils down to choosing the coefficients in A, b, and ¢

e It has been proved that given a number of stages “s” that you accept to
have in an explicit RK method, a limit on the order of the method “p”

ensues.

(Y X
oo00
" o0
Choosing A, b, and c for RK o
e Example:
e *Necessary* conditions for an explicit method to have order 5
e Notation used: C=diag(c,,...,c;) and 1=(1,1,...,1)7
b'Cci1=1 b"AC?1 = L b’ CA2C1 = &
bYA= bTC?AC1 = 15 bT"ACAC1 = 4
bTA2C21 = % bTCA021 = %5 Z b% ;5 Cj Qi) Cpp = %
i.j.k

e The number of *necessary* and *sufficient* conditions to guarantee a
certain order for an RK method is as follows:

no. of conditions 1 2 4 8 17 37 8 200 486 1205

e Conclusion: Building a high-order RK is tricky...

Absolute Stability
Regions

e Plots report absolute stability regions
for explicit RK methods with s
stages and of order p=s, for
s=1,2,3,4

e Blue: s=1

e Red:s=2

e Green:s=3
e Cyan:s=4

e Methods are stable inside the curves

e Absolute stability region given by

hA)? hA)P

(2!> o pl>

p=1,...,4

114+ AN+ | <1

Absolute Stability Regions (cntd]

e MATLAB script to generate the fourth order abs-stability region (cyan):

th=0:0.001:2*pi;

a=zeros(4,length(th));

for k=1:length(th)
c=[1./24. 1./6. 0.5 1 1-exp(i*th(k))];
a(:,k)=roots(c);

end

hold on
plot(a(l,:), ’co:’)
plot(a(2,:), ’co:’)
plot(a(3,:), ’co:?)
plot(a(4,:), ’co:’)

hold off

Exercise

e Generate the Convergence Plot of the fourth order RK
provided a couple of slides ago for the following IVP:

4 .
T=T—Y

vp: { y=4zx—3y t € 0,4]

e Note that the exact solution of this IVP is:

r(t) = (t+1)e !
y(t) = (2t + 1)e™!

RK Method, A Different Possibility to
Advance the Numerical Solution

(134

e Recall that in stage “I” of the s stage approach, we generated a
value Y; . We call this approach “y-flavored”:
e First, for each of the s stages,

S
Y; = Yn—1-T h Z az'jf(tn—l + th,Yj), 1 <1 <s
g=1
e Next, a combination of these stage values leads to the solution at t,:

Yn =¥n-1TF hz bif(th—1 +cih,Y;)
i=1

e A different approach can be followed, this is “f-flavored”
e |t approximates derivatives at each stage rather than values y
e See nextslide...

RK Method, A Different Possibility to eseo
Advance the Numerical Solution §:‘

e At each of the s stages of the RK method, you need to figure out F;:

F,=Ff (tnl +cih, Yn—1 + hzaz‘ng) : 1<i<s

j=1
e Once the stage values are available, the solution is computed as

Yo =Yn-1+h) bF;
=1

e Personally, | find the f-flavor better than the y-flavor implementation

RK Method, A Different Possibility to coss
Advance the Numerical Solution §.

e Exercise: show that the f-flavor is easily obtained from the y-flavor by
using an appropriate notation.

Exercises

e Note that Forward Euler, Backward Euler, and Trapezoidal Formula can
all be considered as belonging to the RK family

Provide the Butcher Tableau representation for Forward Euler
Provide the Butcher Tableau representation for Backward Euler

Provide the Butcher Tableau representation for the Trapezoidal Formula

Integration Error Control

e The problem: imagine a dynamic system that varies rapidly
every once in a while, but the remaining time is very tame
Example: solution of the van der Pole IVP

d*y 2 dy _
az T y" =1 +y=0
IVP: 4= ()

y(0)=2 & 3(0)=0

van der Pol Equation, = 1000
T

tspan = [0, 3000];

? i y0 =[2; 0];

\ \ Mu = 1000;
s 1 ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode15s(ode, tspan, y0);

solution y
o
I

plot(t,y(:,1))
. title('van der Pol Equation, \mu = 1000")

M axis([0 3000 -3 3])
ol /] xlabel('t')

ylabel('solution y')

1 | |
0 400 1000 1500 2000 2500 3000

Integration Error Control

e If you don’t adjust the integration step-size h you are forced to work
during the entire simulation with a very conservative value of h

Basically, you have to work with that value of h that can negotiate the high
transients

This would be for almost the entire simulation a waste of resources

e Basic ldea:
When you have high transients, reduce h to make sure you are ok

When the dynamics is tame, increase the value of h and sail quickly through these
intervals

e On what should you base the selection of the step size h?

On the value of local error
It would be good to be able to use the actual error, but that's impossible to do

Integration Error Control:
The Details

e |nthe end, we need a mechanism that tries to guarantee that the local
error at each time step stays below a user-prescribed threshold value

e Computing the threshold value

Draws on two values specified by the user: absolute tolerance ATOL and
relative tolerance RTOL (think of these as allowances)

If dealing with an m-dimensional problem, threshold value &, for component
“I” of solution y is computed as

e The key observation: the entire error control effort concentrates on
keeping an *approximation™ of the local error at t, smaller than ¢

Integration Error Control:
The Details

e What's left at this point is to somehow provide an approximation of the
local error I[i], at time step t,

e To getl[i],, you produce a *second* approximation of the solution at t,,
and you pretend that that second solution is the actual solution(kind of
funny). Then you can get an approximation of the local error:

|yl = ¥lin | <&

e Here we had:

e yli], — the i*" component of the solution approximation y,, at t,.

e y[i], — the it" component of the solution approximation y,, at t,,. This is
the second approximation, of higher order, considered to be the ‘reference’
solution used in computing the local error.

Integration Error Control:
The Details

e A measure of the acceptability “a” of the solution given the user
prescribed tolerance is obtained as

1=1

e Note that asymptotically, since the method we use is assumed to be
order p, we have for v that (K is an unknown constant):

agK,thrl

e Note that any reading a < 1 indicates an acceptable situation

e Otherwise, if a > 1 | it's an indication that the quality of the solution
does not meet the user prescribed tolerance

e If this is the case, the step size should be decrased, y,, is rejected
and it's to be computed again...

Integration Error Control:
The Details

e Summary of possible scenarios

o Step-size is too small, you are being way more accurate than the user needs
a<<1

o Step-size is exactly where you want it to be, acceptability is on the margin

a~1 but a<1

o Step-size is too large, you are to aggressive and this leads to local errors that
are exceeding the user specified tolerance

a>1

Integration Error Control:
The Details

e Finally, how do you choose the optimal step-size h,?

You want to be in the sweet spot, acceptability is 1.0

The step-size is chosen to meet this requirement:

a~ K -hptl 1\ 7T
:>hopt:h'<—)

~ p+1
1 ~ K * hOpt

Because there was some hand waving involved and these arguments are in
general true only asymptotically, one usually uses a safety factor s=0.9 to
play it conservatively. Then the new step size is chosen as

1
1\ r+1
hoptzs'h' (a)

Integration Error Control:
The “Embedded Method”

e How do you usually get the second approximate solution?

e The idea is to use the same stage values you produce to generate
the first solution

e |n other words, use the same A and ¢, but change only b

e When using Butcher’s Tableau, this is captured by adding a new
row for the new values of b:

C | A s C | A = C A
| b b b
Embedded Method: f)

Original Method: Produces second num solution Typical notation used
Produces num solution (used in local error control) for Butcher’s Tableau

Example 1:

RK Embedded Methods

e The Fehlberg 4(5) pair

Empty cells have a zero in them

1/4

3/8

12/13

1/2

1/4

3/32

1932/2197

439/216

-8/27

25/216

16/135

9/32

-7200/2197

-8

2

7296/2197
3680/513
-3544/2565
1408/2565

6656/12825

-845/4104
1859/4104
2197/4104

28561/56430

-11/40

-1/5

-9/50

2/55

Example 2:
RK Embedded Methods

The Dormand-Prince 4(5) pair

1/5

3/10

4/5

8/9

1/5

3/40

4445

19372/6561

9017/3168

35/384

5179/57600

35/384

Empty cells have a zero in them
This is what's used in MATLAB as the default for the ODE45 solver

9/40

-56/15

-25360/2187

-355/33

0

0

0

32/9

64448/6561

46732/5247

500/1113

7571/16695

500/1113

-212/729

49/176

125/192

393/640

125/192

-5103/18656

-2187/6784 11/84
-92097/339200 187/2100

-2187/6784 11/84

1/40

Explicit vs. Implicit RK

e One can immediately figure out whether a RK method is explicit or
implicit by simply inspecting Butcher's Tableau

e If the A matrix has nonzero entries on the diagonal or in the upper
triangular side, the method is implicit

e Implicit RK methods belong to several subfamilies

Gauss methods

They are maximum order methods: for s stages, you get order 2s (as good as it gets)
Radau methods

Attain order 2s-1 for s stages

Lobatto methods
Attain order 2s-2 for stages

Examples, Implicit RK Methods

e Members of the Gauss subfamily

—/3 —2v/3
12 112 =E M =58
1 3+6\/§ 3+122\/§ L5
T . 1/2 1/2
Implicit Midpoint /
s=1, p=2 No name, s=2, p=4

e Members of the Radau subfamily
13 512 -1/12

1 3/4 1/4

1 1
1

3/4 1/4
Backward Euler
s=1, p=1 No name, s=2, p=3
e Members of the Lobatto subfamily

0 0 0 0 0 0 0
1 1/2 1/2 1/2 5/24 1/3 0
1/2 1/2 1 1/6 2/3 1/6
Trapezoidal Method 1/6 2/3 1/6

$=2, p=2 No name, s=3, p=4

Implicit RK Methods:
Implementation Issues

Implicit RK methods are notoriously hard to implement

Suppose you have an IVP where the dimension of the unknown

function is m:
y(t) € R™

Then, the dimension of the nonlinear system that you have to solve
at each time step is of an s-stage implicit RK method is s*m

This is a serious drawback

e A lot of research goes into parallelizing this process: rather than solving
one nonlinear system of dimension s*m, the idea is to solve s systems
of dimension m

e This is still not that impressive, to be compared to the effort in multistep
methods (to be covered shortly...)

Exercise

e Consider the van der Pol IVP, which is to be solved using the order 3 Radau
formula

e \Write down the nonlinear system of equations that one has to solve when
advancing the simulation by one time step h
Use the F-flavor representation of the RK method

Diagonal Implicit RK Methods

(DIRK Methods)

e One immediate way to decouple the large nonlinear system and have
s systems of dimension m is to use diagonal implicit RK methods

Called DIRK methods

If *all* the diagonal entries in the A matrix are the same, then the method is called
SDIRK (singly diagonal implicit RK) method
Note that for SDIRK, each of the s decoupled nonlinear systems have the same

iteration matrix (Jacobian is the same)

e Example, SDIRK methods

Backward Euler
Also the following two look good...

Y Y 0

6 1—v 1—2y 2

1/2 1/2

s=2, p=3

v 0

11— Y
11—~ g
s=2, p=2

RK and Stiff Decay

e Stiff Decay is also called in the literature L-stability

e There is a theorem that provides sufficient conditions for stiff decay
of a RK method

e Specifically, the following are sufficient conditions for stiff decay
A matrix is nonsingular, and
The last row of the A matrix is identical to bT

e Example, SDIRK with stiff decay:

Y g
2- V2 ° Last row of A: [1—7v 7]
2 1 1—~ v = L-stability
Vector bT: [1 -~ 4]
Il = &

RK Methods — Final Thoughts

e Explicit RK relatively straight forward to implement

e Implicit RK are challenging to implement due to the large nonlinear
system that ensues discretization

e This family of methods is well understood

Reliable
On the expensive side in terms of computational effort (for each time step, you
have to do multiple function evaluations)

e Things of interest that we didn’t cover
Estimation of global error
Stiffness detection
Sensitivity to data perturbations (sensitivity analysis)
Symplectic methods for Hamiltonian systems

Exercises

e Problem 4.8 — tricky at times

e Problem 4.12 — deals with step-size control for a sun-earth problem

e Example 4.6: use MATLAB to generate an approximate solution of
the IVP therein. The solution is y(t)=sin(t). If the approximate

MATLAB solution doesn’t look good, try to tinker with MATLAB or
implement your own numerical scheme to solve the problem

Multistep vs. RK Methods

e Fewer function evaluations per time step

e Simpler, more streamlined method design

Recall the table with number of conditions that the RK method coefficients had to
satisfy to be guaranteed a certain order for the RK method

e Error estimation and order control are much simpler

In fact, order control (the ability to change the order of the method on the fly) is
something that is not typically done for RK

Order control is very common for Multistep Methods

e On the negative side
There is high overhead when changing the integration step-size

Loses some of the flexibility of one RK methods (there you had many parameters
to adjust, not that much the case for Multistep methods)

More simpleton in nature than their sophisticated RK cousins

Review of Framework

e Interested in finding a function y(t) over an interval [0,b]
e This m-dimensional function y(t) must satisfy the following IVP:

{ Y(O')

e We assume that f is bounded and smooth, so that y exists, is
unique, and smooth

<
|

i(t’ y) t €10,

e Given to you:
e [Theconstantscandb
e The function f(t,y).

Multistep Methods - Nomenclature

e Notation used:
y, represents an approximation at time t, of the actual solution y(t,)
f, represents the value of the function f evaluated at t, and vy,

e We work with *multistep* methods. We'll use k to represent the
number of steps in a particular Multistep method

e The general form of a Multistep method (M-method) is as follows

e «;and 3; are coefficients specific to each M method

Examples - Multistep Methods

e General Form:

k k
7=0 7=0

e BDF method

4 1

2
n — SYn— - Yn— = —h tnan
Y 3y 1+3y 2= 3 f(tnsyn)

e Adams-Bashforth method

h
Yn — Yn—1 = E(ngn—l — 16fn—2 + 5fn—3)

e Adams-Moulton method

h
Yn — Yn—1 — E(an + 8fn—1 — fn—Q)

M Methods: Further Remarks

e To eliminate arbitrary scaling, it is assumed that

(1021

e To truly talk about a k-step method, it is also assumed that
ak| + |Bk| # 0

e Note that if 3,=0 the method is explicit. Otherwise, it is implicit

e Finally, note that the step size over the last k integration step is
assumed constant

e This is going to give some headaches later on when you
actually want to change the step size on the fly to control error

Quick One Slide Review:
Local Truncation Error, Forward Euler

e Consider how the solution is obtained:

Un _hyn—l . f(tn—l,yn—l) _ 0
e Note that in general, if you stick the actual solution in the equation
above it is not going to be satisfied:

Y(tn) — y(tn-1)

A — f(tn—1,y(tn—1)) #0

e By definition, the quantity above is called the truncation error and is
denoted by

y(tn) —y(t —h)
h

e Note that this depends on the function (y), the point where you care
to evaluate the truncation error (t,), and the step size used (h)

N(y,t, h) = — f(t = h,y(t —h))

The Local Truncation Error:
Multistep Methods

e Consider the linear operator (assume y is scalar function, for
simplicity of notation)

k
L(y,t.h) = [ay(t — jh) — B;y(t — jh)]
7=0

e Equivalently, since y is the exact solution of the VP,

e Then it follows that
L(y,t, h)

N(y,t,h) = -

e Or, in other words, the local truncation error is

dp = " L(y, tn,)

M Methods: Order Conditions

e Recall that by definition a method is accurate of order p if
d, = O(h?)
e To assess the order of d,,, carry out a Taylor expansion of y(t — jh)
and y(t — jh)

e This to be done for j=0,...,k, then collect terms to obtain the following
representation of the linear operator

L(y,t,h) = Coy(t) + C1hy(t) + ...+ C,hiy D (t) + ...

e Then, we get the following

e The M method is accurate of order p if and only if

Co=Cy...=Cp=0, Cpys#0

e The local truncation error d,, is expressed as

d, = C’pﬂh'py("’“)(tn) + O(th)

M Methods: Order Conditions

e From the Taylor series expansions, one can obtain in a straightforward

fashion that

k
Co=). o
j=0
| @ & 1
Ci=(-1) |3 2 j'a;+ (i—1)! > J 7B, i1=12,

e Nomenclature:

e When the order is p, then C,, is called the error constant of the method
e Obviously, one would like a method that has C,., as small as possible

Exercises

e Proof that the expression of C, on the previous slide is correct

e Pose the Forward Euler method as a M method and verify its order
conditions (should be order 1)

e Pose the Backward Euler method as a M method and verify its order
conditions (should be order 1)

e Pose the Trapezoidal method as a M method and verify its order
conditions (should be order 2)

Quick Review: HE
Order “p” Convergence

e [heorem:

Consistency + 0O-stability = Convergence

e Some more specifics:

e |f the method is accurate of order p and O-stable, then it is
convergent of order p:

e, = O(hP), n=12..,N

M Methods:
Convergence Results

e We saw what it takes for a M method to have a certain accuracy order
e What's left is to prove 0-stability

e The concept of characteristic polynomial comes in handy:

k
p(&) =) a;e"
=0

e Note that for the k stage M method, the characteristic polynomial only
depends on «;

M Methods:
The Root Condition

e We provide without proof the following condition for a M-method to be
0-stable (the “root condition”)

o Let¢, be the k roots of the characteristic polynomial. That is,

k
pl&) =) ;&7 =0
j=0

e Then, the M-method is 0-stable if and only if
e & <1, fori=1,...k

e In case |§;| = 1, then &; is a simple root (has multiplicity one)

M Methods:
Convergence Criterion

e An M-method is convergent to order p if the following conditions hold:

e The root condition holds
e The method is accurate to order p

e The initial values required by the k-step method are accurate to order p

e EXxercise:

o Identify the convergence order of the Forward Euler, Backward Euler, and
Trapezoidal Methods

M Methods:
Exercise, Root Condition

Consider the following M-method:

Yn = _4yn—1 + 5yn—2 + h(4fn—1 + 2fn—2)

What is the accuracy order of the method?
Does the method satisfy the root condition?

Use the M-method above to find the solution of the simple IVP

IVP: t € [0,10]
y(0) =0

o Forthe M-method,take Yo =0 & 1y =e.

The Root Condition:
Further Comments

e Exercise: Generate the convergence plot for Milne’s method...

1
Yn = Yn—2 + gh(fn + 4fn—1 + fn—2)

e ... in conjunction with the following IVP:
)= —10
IVP: { Y Y t € [0, 10]
y(0) =1

e Compute the starting points using the exact solution of the above IVP

Short Side Trip:
Difference Equations

e Difference equations, the framework
Someone gives you K initial values xg,...,X, 1
You find the next value x, by solving a “difference equation”:

ax,+ax, +...+tax _, =0

e It's obvious that the value of x,, is uniquely defined once you have
the first k values

e How can we compute this unique value x, yet not explicitly reference
the first k values?
e Trick used: assume the following expression for x,: X, = E”

e This choice of the expression of x, leads to the following equation
that must be satisfied by ¢ (typically called Characteristic Equation)

Characteristic Equations: a,&* +a,&' +...+a, =0

Short Side Trip:
Difference Equations (cnta,

e Characteristic Equation (CE):

Has degree k
Has k roots (might be distinct or multiple roots amongst them): £, £,,...,&,

Exercise: show that the value of x, can be expressed as (assume no multiple roots)
— n n n __ n
X, =06 +C6, +...+ 05, = Zcié:i
i=1

e Expression of x,, gets slightly more complicated for multiple roots:
e Double root (say &,=¢,):

x, =(c, +c,n)é +Zc§

e Triple root (say &, =¢, =¢,):
x, =[c, +c,n+cn(n—1)(n—-2)1&" +ZC§

NOTE: This Difference Equations theory relevant when looking into absolute stability

Absolute Stability jquick review;

e The process used to find out the region of absolute stability
We started with the test problem

y = Ay
y(0) = 1
We required that for the test problem, the numerical approximation should
behave like the exact solution. That is, we required that

|yn| § |yn—1|

Used the discretization scheme to express how vy, is related to y,_, and impose the
condition above

This leads to a condition that the step size should satisfy in relation to the parameter A

Example: for Forward Euler, we obtained that for absolute stability that

1+ hA <1

Region of Absolute Stability

e Apply the methodology on previous slide for the test problem when
used in conjunction with a multistep scheme

k k
Z y,—; =h Z)@jfn—j
j=0 j=0

e Thisleads to k A
Zajyn—j = Mzﬂjyn—j
Jj=0 J=0

e Recall that we had the expression for x,, Re

k
VY = Clgln +C2982n +"'+Ck§l? = chén
i1

e Forusto hope thaty,— 0, we need || < 1forVi>K

Region of Absolute Stability [cntd]

e Drop the subscript i for convenience. The conclusion is that any root
of the Characteristic Equation; i.e. any ¢ that satisfies...

Zaﬁ”‘f = MZﬂjé”‘f
e ... must also satisfy [¢] < 1

e Note that if the above condition holds, then we will get to the desired
condition that y, is monotonically decreasing in absolute value:

— < = |y, Syl
1€ |y 1

Region of Absolute Stability [cntd.]

e Soin the end, it boils down to this simple sufficient condition: if h\ is

such that the roots of the CE all have the norm less than or equal to
1, then h) belongs to the stability region

Recall that the CE assumes the form
2 a8 =hay B
j=0 j=0

e How would you find the boundaries of the stability region?
This is precisely that situation where |£|=1, or in other words, where £=e?
So the boundary is given by those values of h\ for which é=e
Yet note that from the CE, one has that for 6<[0,2x7),

k k
n-j i6(n-)
E a6 E ae
_ J=9

TR
S S e
j=0 j=0

Exercise

e Plot the region of absolute stability for Milne’s method

Absolute Stability:
Closing Comments

e ltis relatively straight forward to show that no explicit M method can
be A-stable

e Lindquist’s Barrier (1962, not simple to prove)
You cannot construct an A-stable M method that has order higher than 2
Note that there is no such barrier for RK methods

e The second order A-stable implicit M method with smallest error
constant (C;=1/12) is the trapezoidal integration method

The problem with the trapezoidal formula is that it does not have stiff decay (it is
A-stable but not L-stable)

How Did People Get M-Methods?

e One early approach (about 1880): integrate the ordinary differential
equation, and approximate the function f using a polynomial

=)=y | Sy

e Based on previous values f(t,_1,Yn.1),---, f(t . Yhk), ONE can fit a k-1
degree polynomial in the variable t to approximate the unknown function

f(t.y)

e Once the polynomial is available, simply plug it back in the integral
above and evaluate it to get y,, (an approximation of y(t,))

e NOTE: this approach leads to a family of explicit integration formulas
called Adams-Bashforth Multistep methods (AB-M methods)

k
yn :yn—l +Zlgjf;1—j
Jj=1

Exercise

e Derive the AB-M method for k=1, k=2, and k=3

e Plot the absolute stability region for the AB-M methods above

3
AB-M Method, Closing 113
o
e Table below provides convergence order p, the number of
steps k of the M method, the coefficients 3, , and the value of
the leading coefficient of the error term C .,
1 1 1 1/2
2 2 3 -1 5/12
3 3 23 -16 5 3/8
4 4 95 -59 37 -9 251/720
5 95 1901 -2774 2616 -1274 251 95/288
6 6 4277 -7923 9982 -7298 2877 -475 19087/60480

e Example: based on the above table, the third order AB-M formula is

h
Yn = Yn—1 + 5(23%—1 —16f—2 + 5fn—3)

Starting a M Method

Implementation question: How do you actually start a M method?
In general, you need information for the first k steps to start a M method

If you work with a scheme of order p, you don’t want to have in your first
k values y,, ..., .4 error that is larger than O(hP)

Most common approach is to use for the first k-1 steps a RK method of
order p.

A second approach starts using a method of order 1 with smaller step,
than increases to order 2 when you have enough history, then increase
to order 3, etc.

NOTE: for the previous exercise, you have the exact solution so you
can use it to generate the first k steps

Exercise

e Generate the Convergence Plot of the AB-M method for
k=3 and k=4 for the following IVP:

4 .
T=T—Y

vp: { y=4zx—3y t € 0,4]

e Indicate whether your results come in line with the expected
convergence behavior

e Note that the exact solution of this IVP is:
z(t) = (t+1)e?
y(t) = (2t +1)e™ "

Exercise

e Prove that the AB-M method with k=3 is convergent with order 3

Exercise

e Plot the absolute stability regions for the AB-M formulas up to order 6
e Comment on the size of the absolute convergence regions

The AM-M Method

e The AB-M method is known for small absolute stability methods

e |dea that partially addressed the issue:

Rather than only using the previous values f(t, 4,¥,.1)---, f(t,.«.¥Ynk),» ON€ should
include the extra point f(t,,y,,) to fit a k degree polynomial in the variable t to
approximate the unknown function f(t,y)

e The side-effect of this approach:
The resulting scheme is implicit: you use f(t,,y,,) in the process of finding y,

The resulting scheme will assume the following form:
k
yn :yn—l +Zlgjf;1—j
j=0

e This family of formulas is called Adams-Moulton Multistep (AM-M)
methods

Exercise

e Derive the AM-M method for k=2 and then k=3

e Plot the absolute stability region for the AM-M methods above

_ 8
AM-M Method, Closing 113
o
e Table below provides convergence order p, the number of
steps k of the M method, the coefficients 3, , and the value of
the leading coefficient of the error term C .,
1 1 1 -1/2
2 1 1 1 -1/12
3 2 5 8 -1 -1/24
4 3 9 19 -5 1 -19/720
5 4 251 646 -264 106 -19 -3/160
6 5 475 1427 -798 482 -173 27 -863/60480

e Example: based on the above table, the third order AM-M formula (k=2) is

h
Yn = Yn—1 + E(an + an—l — fn—2)

Exercise

e Prove that the AM-M method with k=3 is convergent with order 4

Exercise

e Generate the Convergence Plot of the AB-M method for
k=2 and k=3 for the following IVP:

4

T=T—Y

vp: { y=4zx—3y t € 0,4]

e Indicate whether your results come in line with the expected
convergence behavior

e Note that the exact solution of this IVP is:
r(t) = (t+1)e !
y(t) = (2t + 1)e™!

e NOTE: use the analytical solution to generate the first k
steps of the integration formula

Exercise

e Plot the absolute stability regions for the AM-M formulas up to order 6
e Comment on the size of the absolute convergence regions

Implicit AM-M:
Solving the Nonlinear System

e Since the AM-M method is implicit it will require at each time step
the solution of a system of equations

If f is nonlinear in y this system of equations will be nonlinear
This is almost always the case

e Approaches used to solve this nonlinear system:

Functional iteration
Predictor Corrector schemes

Modified Newton iteration

e Focus on first two, defer discussion of last for a couple of slides

M Methods: Functional Iteration

e |dea similar to the one introduced for the RK method

e |terative process carried out as follows:
gt = By f(tn, y") + K, v=0,1,...

Notation: K represents a constant pre-computed based on past information
It does not change during the iterative process

k k
K== ajynyj+hd Bifuy
j=1

j=1
As a starting point, for v=0, typically one takes this value to by y,, ,
This will be revisited shortly, when discussing predictor-corrector schemes

Stopping criteria identical to and discussed in relation to modified Newton
iteration

M Methods: Functional Iteration

e This represents a fixed point iteration

e Fixed point iteration converges to the fixed point provided it is a
contraction, which is the case if the following condition holds

Ji
hBo—=—|| < 1
Iho Gl <7 <

e NOTE: this condition basically limits the Functional Iteration
approach to nonstiff problems

M Methods:
The Predictor-Corrector Approach

e The predictor corrector formula is very similar to the Functional
lteration approach

e There are two differences:

e The starting point is chosen in a more intelligent way

e The number of iterations is predefined

This is unlike the Functional Iteration approach, where convergence is
monitored and it is not clear how many iterations v will be necessary for

convergence

The Predictor-Corrector Approach:
Choosing the Starting Point

e The key question is how should one choose y'”

n

e An explicit method is used to this end

e This step is called prediction (“P”), and the explicit M method used

to obtain ».” is called “predictor”

e Most of the time, the predictor is an AB-M method:

P y(gO) + OAdlyn—l + ...+ OAdkyn—k: — h(Blfn—l + ...+ /ékfn—k)

e The predicted value for y is immediately used to evaluate (“E”) the
value of the function f:

E: fao=f(tayy)

The Predictor-Corrector Approach:
Carrying out Corrections

The second distinctive attribute of a Predictor-Corrector integration
formula is that a predefined number v of corrections of are carried out

In other words, v,,4 is predetermined, and the final value for y,, is

(Vend)

Yn = Yp

The corrector (“C”) formula is usually chosen to be the AM-M method
Starting with v=0, the correction step assumes then the expression

y':(zy—'_l) + X1Yn—1 + ...+ XpYn—k — h(/Bqur(zy) + /61fn—1 + ...+ /kan—k)

Typically, the C step is followed by an E step to obtain a new
expression for f that goes hand in hand with the newly corrected; i.e.,
improved, value of y:

E: Y = ft.yl))

The Predictor-Corrector Approach:
Carrying out Corrections

e The predictor-corrector integration method process just described is
called PECE

It predicts (P), evaluates (E), corrects (C), and finally evaluates again (E)

Note that strictly speaking, the last (E) could be regarded as superfluous
since it's not used for computation of y, anymore

Last E is essential though since it's used in the computation of y, ., and it
improves the stability properties of the integration method

e Note that approach described (PECE), corresponds to choosing =1

end”

e Forlarger values of v 4 the “EC” part in PECE is executed v, 4 times

The nomenclature used for these methods is P(EC)"E

Example: P(EC)3E refers to the following predictor-corrector integration
formula:

Example: PECE Method

e The following example combines a two step AB-M method, with the
second-order one step AM-M method (the trapezoidal formula)

[) leen yn_1, fn_1, fn_z:

h

P: y,g()) = Vua +5(3-fn—1 — fu2)
E: V=1, ")
h
C: yn :yn—1+5(fn(0)+ n—l)

E: f,=1C.»)

e It can be shown that the local truncation error for this method is

d,=——=" _)

