Runge-Kutta Methods

Runge-Kutta Methods

- Consider the typical IVP that you want to solve:

$$
\left\{\begin{aligned}
\dot{\mathbf{y}} & =\mathbf{f}(t, \mathbf{y}) \\
\mathbf{y}(0) & =\mathbf{c}
\end{aligned} \quad t \in[0, b]\right.
$$

- The Runge-Kutta integration process is the sum of two tasks:
- Task 1: compute the s stage values (the time consuming part):

$$
\mathbf{Y}_{i}=\mathbf{y}_{n-1}+h \sum_{j=1}^{s} a_{i j} \mathbf{f}\left(t_{n-1}+c_{j} h, \mathbf{Y}_{j}\right), \quad 1 \leq i \leq s
$$

- Task 2: compute the solution at t_{n} (this is trivial...):

$$
\mathbf{y}_{n}=\mathbf{y}_{n-1}+h \sum_{i=1}^{s} b_{i} \mathbf{f}\left(t_{n-1}+c_{i} h, \mathbf{Y}_{i}\right)
$$

- Note that these two tasks are carried out at each integration time step $\mathrm{t}_{1}, \mathrm{t}_{2}$, etc.

Runge-Kutta (RK) Methods

- Three sets of parameters together define a RK method: $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$, and c_{i}.
- The coefficients defining a RK method are given to you and typically grouped together in what's called Butcher's Tableau

$$
\begin{aligned}
& \begin{array}{c|cccc}
c_{s} & a_{s 1} & a_{s 2} & \ldots & a_{s s} \\
\hline & b_{1} & b_{2} & \ldots & b_{s}
\end{array}
\end{aligned}
$$

Professor John Butcher,

- A, b, and \mathbf{c} are defined to represent the corresponding blocks of Butcher's Tableau (see above)
- All properties of a RK scheme (stability, accuracy order, convergence order, etc.) are completely defined by the entries in \mathbf{A}, \mathbf{b}, and \mathbf{c}
- Nomenclature: number of stages s is defined by the number of rows in \mathbf{A}

Example:

Classical Fourth Order RK Method

$$
\begin{aligned}
\mathbf{Y}_{i} & =\mathbf{y}_{n-1}+h \sum_{j=1}^{s} a_{i j} \mathbf{f}\left(t_{n-1}+c_{j} h, \mathbf{Y}_{j}\right), \quad 1 \leq i \leq s \\
\mathbf{y}_{n} & =\mathbf{y}_{n-1}+h \sum_{i=1}^{s} b_{i} \mathbf{f}\left(t_{n-1}+c_{i} h, \mathbf{Y}_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Y_{1}=y_{n-1} \\
& Y_{2}=y_{n-1}+\frac{h}{2} f\left(t_{n-1}, Y_{1}\right) \\
& Y_{3}=y_{n-1}+\frac{h}{2} f\left(t_{n-1}+\frac{h}{2}, Y_{2}\right) \\
& Y_{4}=y_{n-1}+h f\left(t_{n-1}+\frac{h}{2}, Y_{3}\right) \\
& y_{n}=y_{n-1}+\frac{h}{6}\left(f\left(t_{n-1}, Y_{1}\right)+2 f\left(t_{n-1}+\frac{h}{2}, Y_{2}\right)+2 f\left(t_{n-1}+\frac{h}{2}, Y_{3}\right)+f\left(t_{n}, Y_{4}\right)\right)
\end{aligned}
$$

- The Butcher Tableau representation looks like this:

0	0	0	0	0
$1 / 2$	$1 / 2$	0	0	0
$1 / 2$	0	$1 / 2$	0	0
1	0	0	1	0
	$1 / 6$	$1 / 3$	$1 / 3$	$1 / 6$

Choosing A, b, and c for an Explicit RK

- Purpose of this and next slide: point out how challenging it is to generate a good RK method
- Recall that it boils down to choosing the coefficients in \mathbf{A}, \mathbf{b}, and \mathbf{c}
- It has been proved that given a number of stages " s " that you accept to have in an explicit RK method, a limit on the order of the method " p " ensues:

s	1	2	3	4	5	6	7	8	9	10
p	1	2	3	4	4	5	6	6	7	7

Choosing A, b, and c for RK

- Example:
- *Necessary* conditions for an explicit method to have order 5
- Notation used: $\mathbf{C =}=\operatorname{diag}\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{s}}\right)$ and $\mathbf{1 = (1 , 1 , \ldots , 1) ^ { \top }}$
$\mathbf{b}^{T} \mathbf{C}^{4} \mathbf{1}=\frac{1}{5}$
$\mathbf{b}^{T} \mathbf{A C}^{\mathbf{3}} \mathbf{1}=\frac{1}{20}$
$\mathbf{b}^{T} \mathbf{A}^{4} \mathbf{1}=\frac{1}{120}$
$\mathbf{b}^{T} \mathbf{C}^{2} \mathbf{A C 1}=\frac{1}{10}$
$\mathbf{b}^{T} \mathbf{A}^{2} \mathbf{C}^{2} \mathbf{1}=\frac{1}{60}$
$\mathbf{b}^{T} \mathbf{C A C}^{\mathbf{2}} \mathbf{1}=\frac{1}{15}$
$\mathbf{b}^{T} \mathbf{C A}^{2} \mathbf{C} \mathbf{1}=\frac{1}{30}$
$\mathbf{b}^{T} \mathbf{A C A C 1}=\frac{1}{40}$

$$
\sum_{i, j, k} b_{i} a_{i j} c_{j} a_{i k} c_{k}=\frac{1}{20}
$$

- The number of *necessary* and *sufficient* conditions to guarantee a certain order for an RK method is as follows:

Order p	1	2	3	4	5	6	7	8	9	10
no. of conditions	1	2	4	8	17	37	85	200	486	1205

- Conclusion: Building a high-order RK is tricky...

Absolute Stability Regions

- Plots report absolute stability regions for explicit RK methods with s stages and of order $p=s$, for $s=1,2,3,4$
- Blue: $s=1$
- Red: $s=2$
- Green: s=3
- Cyan: s=4
- Methods are stable inside the curves
- Absolute stability region given by

$$
\begin{array}{r}
\left|1+h \lambda+\frac{(h \lambda)^{2}}{2!}+\cdots+\frac{(h \lambda)^{p}}{p!}\right| \leq 1 \\
p=1, \ldots, 4
\end{array}
$$

Absolute Stability Regions [Cntad]

- MATLAB script to generate the fourth order abs-stability region (cyan):

```
th=0:0.001:2*pi;
a=zeros(4,length(th));
for k=1:length(th)
    c=[1./24. 1./6. 0.5 1 1-exp(i*th(k))];
    a(:,k)=roots(c);
end
hold on
plot(a(1,:), 'co:')
plot(a(2,:), 'co:')
plot(a(3,:), 'co:')
plot(a(4,:), 'co:')
hold off
```


Exercise

- Generate the Convergence Plot of the fourth order RK provided a couple of slides ago for the following IVP:

$$
\text { IVP: }\left\{\begin{array}{c}
\dot{x}=x-y \\
\dot{y}=4 x-3 y \\
x(0)=y(0)=1
\end{array} \quad t \in[0,4]\right.
$$

- Note that the exact solution of this IVP is:

$$
\begin{gathered}
x(t)=(t+1) e^{-t} \\
y(t)=(2 t+1) e^{-t}
\end{gathered}
$$

RK Method, A Different Possibility to Advance the Numerical Solution

- Recall that in stage "i" of the s stage approach, we generated a value Y_{i}. We call this approach " y-flavored":
- First, for each of the s stages,

$$
\mathbf{Y}_{i}=\mathbf{y}_{n-1}+h \sum_{j=1}^{s} a_{i j} \mathbf{f}\left(t_{n-1}+c_{j} h, \mathbf{Y}_{j}\right), \quad 1 \leq i \leq s
$$

- Next, a combination of these stage values leads to the solution at t_{n} :

$$
\mathbf{y}_{n}=\mathbf{y}_{n-1}+h \sum_{i=1}^{s} b_{i} \mathbf{f}\left(t_{n-1}+c_{i} h, \mathbf{Y}_{i}\right)
$$

- A different approach can be followed, this is "f-flavored"
- It approximates derivatives at each stage rather than values y
- See next slide...

RK Method, A Different Possibility to Advance the Numerical Solution

- At each of the s stages of the RK method, you need to figure out F_{i} :

$$
\mathbf{F}_{i}=f\left(t_{n-1}+c_{i} h, \mathbf{y}_{n-1}+h \sum_{j=1}^{s} a_{i j} \mathbf{F}_{j}\right), \quad 1 \leq i \leq s
$$

- Once the stage values are available, the solution is computed as

$$
\mathbf{y}_{n}=\mathbf{y}_{n-1}+h \sum_{i=1}^{s} b_{i} \mathbf{F}_{i}
$$

- Personally, I find the f-flavor better than the y-flavor implementation

RK Method, A Different Possibility to Advance the Numerical Solution

- Exercise: show that the f-flavor is easily obtained from the y-flavor by using an appropriate notation.

Exercises

- Note that Forward Euler, Backward Euler, and Trapezoidal Formula can all be considered as belonging to the RK family
- Provide the Butcher Tableau representation for Forward Euler
- Provide the Butcher Tableau representation for Backward Euler
- Provide the Butcher Tableau representation for the Trapezoidal Formula

Integration Error Control

- The problem: imagine a dynamic system that varies rapidly every once in a while, but the remaining time is very tame
- Example: solution of the van der Pole IVP

$$
\text { IVP: }\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}+\mu\left(y^{2}-1\right) \frac{d y}{d t}+y=0 \\
y(0)=2 \quad \& \quad \dot{y}(0)=0
\end{array}\right.
$$


```
tspan = [0, 3000];
y0 = [2; 0];
Mu = 1000;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode15s(ode, tspan, y0);
plot(t,y(:,1))
title('van der Pol Equation, \mu = 1000')
axis([0 3000-3 3])
xlabel('t')
ylabel('solution y')
```


Integration Error Control

- If you don't adjust the integration step-size h you are forced to work during the entire simulation with a very conservative value of h
- Basically, you have to work with that value of h that can negotiate the high transients
- This would be for almost the entire simulation a waste of resources
- Basic Idea:
- When you have high transients, reduce h to make sure you are ok
- When the dynamics is tame, increase the value of h and sail quickly through these intervals
- On what should you base the selection of the step size h?
- On the value of local error
- It would be good to be able to use the actual error, but that's impossible to do

Integration Error Control: The Details

- In the end, we need a mechanism that tries to guarantee that the local error at each time step stays below a user-prescribed threshold value
- Computing the threshold value
- Draws on two values specified by the user: absolute tolerance ATOL and relative tolerance RTOL (think of these as allowances)
- If dealing with an m-dimensional problem, threshold value ξ_{i} for component " i " of solution y is computed as

$$
\xi_{i}=A T O L_{i}+\max \left(\mathbf{y}[i]_{n-1}, \mathbf{y}[i]_{n}\right) \cdot R T O L_{i}
$$

- The key observation: the entire error control effort concentrates on keeping an *approximation* of the local error at t_{n} smaller than ξ

$$
\left|\mathbf{l}[i]_{n}\right| \leq \xi_{i}
$$

Integration Error Control: The Details

- What's left at this point is to somehow provide an approximation of the local error $I[i]_{n}$ at time step t_{n}
- To get $I[i]_{n}$, you produce a *second* approximation of the solution at t_{n}, and you pretend that that second solution is the actual solution(kind of funny). Then you can get an approximation of the local error:

$$
\left|\mathbf{y}[i]_{n}-\hat{\mathbf{y}}[i]_{n}\right| \leq \xi_{i}
$$

- Here we had:
- $\mathbf{y}[i]_{n}$ - the $i^{t h}$ component of the solution approximation \mathbf{y}_{n} at t_{n}.
- $\hat{\mathbf{y}}[i]_{n}$ - the $i^{\text {th }}$ component of the solution approximation $\hat{\mathbf{y}}_{n}$ at t_{n}. This is the second approximation, of higher order, considered to be the 'reference' solution used in computing the local error.

Integration Error Control: The Details

- A measure of the acceptability "a" of the solution given the user prescribed tolerance is obtained as

$$
a=\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(\frac{\mathbf{y}[i]_{n}-\hat{\mathbf{y}}[i]_{n}}{\xi_{i}}\right)^{2}}
$$

- Note that asymptotically, since the method we use is assumed to be order p , we have for v that (K is an unknown constant):

$$
a \approx K \cdot h^{p+1}
$$

- Note that any reading $a \leq 1$ indicates an acceptable situation
- Otherwise, if $a>1$, it's an indication that the quality of the solution does not meet the user prescribed tolerance
- If this is the case, the step size should be decrased, y_{n} is rejected and it's to be computed again...

Integration Error Control: The Details

- Summary of possible scenarios
- Step-size is too small, you are being way more accurate than the user needs

$$
a \ll 1
$$

- Step-size is exactly where you want it to be, acceptability is on the margin

$$
a \approx 1 \quad \text { but } \quad a \leq 1
$$

- Step-size is too large, you are to aggressive and this leads to local errors that are exceeding the user specified tolerance

$$
a>1
$$

Integration Error Control: The Details

- Finally, how do you choose the optimal step-size $\mathrm{h}_{\text {opt }}$?
- You want to be in the sweet spot, acceptability is 1.0
- The step-size is chosen to meet this requirement:

$$
\left.\begin{array}{l}
a \approx K \cdot h^{p+1} \\
1 \approx K \cdot h_{o p t}^{p+1}
\end{array}\right\} \quad \Rightarrow h_{o p t}=h \cdot\left(\frac{1}{a}\right)^{\frac{1}{p+1}}
$$

- Because there was some hand waving involved and these arguments are in general true only asymptotically, one usually uses a safety factor $s=0.9$ to play it conservatively. Then the new step size is chosen as

$$
h_{o p t}=s \cdot h \cdot\left(\frac{1}{a}\right)^{\frac{1}{p+1}}
$$

Integration Error Control: The "Embedded Method"

- How do you usually get the second approximate solution?
- The idea is to use the same stage values you produce to generate the first solution
- In other words, use the same \mathbf{A} and \mathbf{c}, but change only \mathbf{b}
- When using Butcher's Tableau, this is captured by adding a new row for the new values of $\hat{\mathbf{b}}$:

Original Method:
Produces num solution

Embedded Method:
Produces second num solution (used in local error control)

Typical notation used for Butcher's Tableau

Example 1: RK Embedded Methods

- The Fehlberg 4(5) pair
- Empty cells have a zero in them

0						
$1 / 4$	$1 / 4$					
$3 / 8$	$3 / 32$	$9 / 32$				
$12 / 13$	$1932 / 2197$	$-7200 / 2197$	$7296 / 2197$			
1	$439 / 216$	-8	$3680 / 513$	$-845 / 4104$		
$1 / 2$	$-8 / 27$	2	$-3544 / 2565$	$1859 / 4104$	$-11 / 40$	
	$25 / 216$	0	$1408 / 2565$	$2197 / 4104$	$-1 / 5$	0
	$16 / 135$	0	$6656 / 12825$	$28561 / 56430$	$-9 / 50$	$2 / 55$

Example 2: RK Embedded Methods

- The Dormand-Prince 4(5) pair
- Empty cells have a zero in them
- This is what's used in MATLAB as the default for the ODE45 solver

0						
$1 / 5$	$1 / 5$					
$3 / 10$	$3 / 40$	$9 / 40$				
$4 / 5$	$44 / 45$	$-56 / 15$	$32 / 9$			
$8 / 9$	$19372 / 6561$	$-25360 / 2187$	$64448 / 6561$	$-212 / 729$		
1	$9017 / 3168$	$-355 / 33$	$46732 / 5247$	$49 / 176$	$-5103 / 18656$	
1	$35 / 384$	0	$500 / 1113$	$125 / 192$	$-2187 / 6784$	$11 / 84$
	$5179 / 57600$	0	$7571 / 16695$	$393 / 640$	$-92097 / 339200$	$187 / 2100$
	$35 / 384$	0	$500 / 1113$	$125 / 192$	$-2187 / 6784$	$1 / 40$

Explicit vs. Implicit RK

- One can immediately figure out whether a RK method is explicit or implicit by simply inspecting Butcher's Tableau
- If the A matrix has nonzero entries on the diagonal or in the upper triangular side, the method is implicit
- Implicit RK methods belong to several subfamilies
- Gauss methods
- They are maximum order methods: for s stages, you get order 2s (as good as it gets)
- Radau methods
- Attain order 2s-1 for s stages
- Lobatto methods
- Attain order 2 s -2 for stages

Examples, Implicit RK Methods

- Members of the Gauss subfamily

$1 / 2$	$1 / 2$
	1

Implicit Midpoint $\mathrm{s}=1, \mathrm{p}=2$

No name, $s=2, p=4$

- Members of the Radau subfamily

1	1
	1

Backward Euler $\mathrm{s}=1, \mathrm{p}=1$

$1 / 3$	$5 / 12$	$-1 / 12$
1	$3 / 4$	$1 / 4$
	$3 / 4$	$1 / 4$

No name, $s=2, p=3$

- Members of the Lobatto subfamily

0	0	0
1	$1 / 2$	$1 / 2$
	$1 / 2$	$1 / 2$

Trapezoidal Method $s=2, p=2$

0	0	0	0
$1 / 2$	$5 / 24$	$1 / 3$	0
1	$1 / 6$	$2 / 3$	$1 / 6$
	$1 / 6$	$2 / 3$	$1 / 6$
No name, $s=3, \mathrm{p}=4$			

Implicit RK Methods: Implementation Issues

- Implicit RK methods are notoriously hard to implement
- Suppose you have an IVP where the dimension of the unknown function is m :

$$
\mathbf{y}(t) \in \mathbb{R}^{m}
$$

- Then, the dimension of the nonlinear system that you have to solve at each time step is of an s-stage implicit RK method is $\mathrm{s}^{*} \mathrm{~m}$
- This is a serious drawback
- A lot of research goes into parallelizing this process: rather than solving one nonlinear system of dimension $\mathrm{s}^{*} \mathrm{~m}$, the idea is to solve s systems of dimension m
- This is still not that impressive, to be compared to the effort in multistep methods (to be covered shortly...)

Exercise

- Consider the van der Pol IVP, which is to be solved using the order 3 Radau formula
- Write down the nonlinear system of equations that one has to solve when advancing the simulation by one time step h
- Use the F-flavor representation of the RK method

Diagonal Implicit RK Methods (DIRK Methods)

- One immediate way to decouple the large nonlinear system and have s systems of dimension m is to use diagonal implicit RK methods
- Called DIRK methods
- If *all* the diagonal entries in the A matrix are the same, then the method is called SDIRK (singly diagonal implicit RK) method
- Note that for SDIRK, each of the s decoupled nonlinear systems have the same iteration matrix (Jacobian is the same)
- Example, SDIRK methods
- Backward Euler
- Also the following two look good...

RK and Stiff Decay

- Stiff Decay is also called in the literature L-stability
- There is a theorem that provides sufficient conditions for stiff decay of a RK method
- Specifically, the following are sufficient conditions for stiff decay
- A matrix is nonsingular, and
- The last row of the \mathbf{A} matrix is identical to \mathbf{b}^{\top}
- Example, SDIRK with stiff decay:

RK Methods - Final Thoughts

- Explicit RK relatively straight forward to implement
- Implicit RK are challenging to implement due to the large nonlinear system that ensues discretization
- This family of methods is well understood
- Reliable
- On the expensive side in terms of computational effort (for each time step, you have to do multiple function evaluations)
- Things of interest that we didn't cover
- Estimation of global error
- Stiffness detection
- Sensitivity to data perturbations (sensitivity analysis)
- Symplectic methods for Hamiltonian systems

Exercises

- Problem 4.8 - tricky at times
- Problem 4.12 - deals with step-size control for a sun-earth problem
- Example 4.6: use MATLAB to generate an approximate solution of the IVP therein. The solution is $y(t)=\sin (t)$. If the approximate MATLAB solution doesn't look good, try to tinker with MATLAB or implement your own numerical scheme to solve the problem

New Topic: Linear Multistep Methods

Multistep vs. RK Methods

- Fewer function evaluations per time step
- Simpler, more streamlined method design
- Recall the table with number of conditions that the RK method coefficients had to satisfy to be guaranteed a certain order for the RK method
- Error estimation and order control are much simpler
- In fact, order control (the ability to change the order of the method on the fly) is something that is not typically done for RK
- Order control is very common for Multistep Methods
- On the negative side
- There is high overhead when changing the integration step-size
- Loses some of the flexibility of one RK methods (there you had many parameters to adjust, not that much the case for Multistep methods)
- More simpleton in nature than their sophisticated RK cousins

Review of Framework

- Interested in finding a function $\mathbf{y}(\mathrm{t})$ over an interval $[0, \mathrm{~b}]$
- This m-dimensional function $\mathrm{y}(\mathrm{t})$ must satisfy the following IVP:

$$
\left\{\begin{aligned}
\dot{\mathbf{y}} & =\mathbf{f}(t, \mathbf{y}) \\
\mathbf{y}(0) & =\mathbf{c}
\end{aligned} \quad t \in[0, b]\right.
$$

- We assume that \mathbf{f} is bounded and smooth, so that \mathbf{y} exists, is unique, and smooth
- Given to you:
- The constants \mathbf{c} and \mathbf{b}
- The function $\mathbf{f}(\mathrm{t}, \mathrm{y})$.

Multistep Methods - Nomenclature

- Notation used:
- \mathbf{y}_{1} represents an approximation at time t_{1} of the actual solution $\mathbf{y}\left(\mathrm{t}_{1}\right)$
- f_{1} represents the value of the function f evaluated at t_{1} and y_{l}
- We work with *multistep* methods. We'll use k to represent the number of steps in a particular Multistep method
- The general form of a Multistep method (M-method) is as follows

$$
\sum_{j=0}^{k} \alpha_{j} \mathbf{y}_{n-j}=h \sum_{j=0}^{k} \beta_{j} \mathbf{f}_{n-j}
$$

- α_{j} and β_{j} are coefficients specific to each M method

Examples - Multistep Methods

- General Form:

$$
\sum_{j=0}^{k} \alpha_{j} \mathbf{y}_{n-j}=h \sum_{j=0}^{k} \beta_{j} \mathbf{f}_{n-j}
$$

- BDF method

$$
y_{n}-\frac{4}{3} y_{n-1}+\frac{1}{3} y_{n-2}=\frac{2}{3} h f\left(t_{n}, y_{n}\right)
$$

- Adams-Bashforth method

$$
y_{n}-y_{n-1}=\frac{h}{12}\left(23 f_{n-1}-16 f_{n-2}+5 f_{n-3}\right)
$$

- Adams-Moulton method

$$
y_{n}-y_{n-1}=\frac{h}{12}\left(5 f_{n}+8 f_{n-1}-f_{n-2}\right)
$$

M Methods: Further Remarks

- To eliminate arbitrary scaling, it is assumed that

$$
\alpha_{0}=1
$$

- To truly talk about a k-step method, it is also assumed that

$$
\left|\alpha_{k}\right|+\left|\beta_{k}\right| \neq 0
$$

- Note that if $\beta_{j}=0$ the method is explicit. Otherwise, it is implicit
- Finally, note that the step size over the last k integration step is assumed constant
- This is going to give some headaches later on when you actually want to change the step size on the fly to control error

Quick One Slide Review: Local Truncation Error, Forward Euler

- Consider how the solution is obtained:

$$
\frac{y_{n}-y_{n-1}}{h}-f\left(t_{n-1}, y_{n-1}\right)=0
$$

- Note that in general, if you stick the actual solution in the equation above it is not going to be satisfied:

$$
\frac{y\left(t_{n}\right)-y\left(t_{n-1}\right)}{h}-f\left(t_{n-1}, y\left(t_{n-1}\right)\right) \neq 0
$$

- By definition, the quantity above is called the truncation error and is denoted by

$$
\mathcal{N}(y, t, h)=\frac{y\left(t_{n}\right)-y(t-h)}{h}-f(t-h, y(t-h))
$$

- Note that this depends on the function (y), the point where you care to evaluate the truncation error $\left(\mathrm{t}_{\mathrm{n}}\right)$, and the step size used (h)

The Local Truncation Error: Multistep Methods

- Consider the linear operator (assume y is scalar function, for simplicity of notation)

$$
\mathcal{L}(y, t, h)=\sum_{j=0}^{k}\left[\alpha_{j} y(t-j h)-\beta_{j} \dot{y}(t-j h)\right]
$$

- Equivalently, since y is the exact solution of the IVP,
\square
- Then it follows that

$$
\mathcal{N}(\mathbf{y}, t, h)=\frac{\mathcal{L}(\mathbf{y}, t, h)}{h}
$$

- Or, in other words, the local truncation error is

$$
d_{n}=h^{-1} \mathcal{L}\left(y, t_{n}, h\right)
$$

M Methods: Order Conditions

- Recall that by definition a method is accurate of order p if

$$
d_{n}=\mathcal{O}\left(h^{p}\right)
$$

- To assess the order of d_{n}, carry out a Taylor expansion of $y(t-j h)$ and $\dot{y}(t-j h)$
- This to be done for $\mathrm{j}=0, \ldots, \mathrm{k}$, then collect terms to obtain the following representation of the linear operator

$$
\mathcal{L}(y, t, h)=C_{0} y(t)+C_{1} h \dot{y}(t)+\ldots+C_{q} h^{q} y^{(q)}(t)+\ldots
$$

- Then, we get the following
- The M method is accurate of order p if and only if

$$
C_{0}=C_{1} \ldots=C_{p}=0, \quad C_{p+1} \neq 0
$$

- The local truncation error d_{n} is expressed as

$$
d_{n}=C_{p+1} h^{p} y^{(p+1)}\left(t_{n}\right)+\mathcal{O}\left(h^{p+1}\right)
$$

M Methods: Order Conditions

- From the Taylor series expansions, one can obtain in a straightforward fashion that

$$
\begin{aligned}
C_{0} & =\sum_{j=0}^{k} \alpha_{j} \\
C_{i} & =(-1)^{j}\left[\frac{1}{i!} \sum_{j=1}^{k} j^{i} \alpha_{j}+\frac{1}{(i-1)!} \sum_{j=0}^{k} j^{i-1} \beta_{j}\right], \quad i=1,2, \ldots
\end{aligned}
$$

- Nomenclature:
- When the order is p, then C_{p+1} is called the error constant of the method
- Obviously, one would like a method that has C_{p+1} as small as possible

Exercises

- Proof that the expression of C_{i} on the previous slide is correct
- Pose the Forward Euler method as a M method and verify its order conditions (should be order 1)
- Pose the Backward Euler method as a M method and verify its order conditions (should be order 1)
- Pose the Trapezoidal method as a M method and verify its order conditions (should be order 2)

Quick Review:
 Order "p" Convergence

- Theorem:

Consistency +0 -stability \Rightarrow Convergence

- Some more specifics:
- If the method is accurate of order p and 0 -stable, then it is convergent of order p :

$$
e_{n}=\mathcal{O}\left(h^{p}\right), \quad n=1,2, \ldots, N
$$

M Methods: Convergence Results

- We saw what it takes for a M method to have a certain accuracy order
- What's left is to prove 0-stability
- The concept of characteristic polynomial comes in handy:

$$
\rho(\xi)=\sum_{j=0}^{k} \alpha_{j} \xi^{k-j}
$$

- Note that for the k stage M method, the characteristic polynomial only depends on α_{j}

M Methods: The Root Condition

- We provide without proof the following condition for a M-method to be 0 -stable (the "root condition")
- Let ξ_{i} be the k roots of the characteristic polynomial. That is,

$$
\rho\left(\xi_{i}\right)=\sum_{j=0}^{k} \alpha_{j} \xi_{i}^{k-j}=0
$$

- Then, the M-method is 0 -stable if and only if
- $\left|\xi_{i}\right| \leq 1$, for $i=1, \ldots, k$
- In case $\left|\xi_{i}\right|=1$, then ξ_{i} is a simple root (has multiplicity one)

M Methods:
 Convergence Criterion

- An M-method is convergent to order p if the following conditions hold:
- The root condition holds
- The method is accurate to order p
- The initial values required by the k-step method are accurate to order p
- Exercise:
- Identify the convergence order of the Forward Euler, Backward Euler, and Trapezoidal Methods

M Methods:
 Exercise, Root Condition

- Consider the following M-method:

$$
y_{n}=-4 y_{n-1}+5 y_{n-2}+h\left(4 f_{n-1}+2 f_{n-2}\right)
$$

- What is the accuracy order of the method?
- Does the method satisfy the root condition?
- Use the M-method above to find the solution of the simple IVP

$$
\text { IVP: }\left\{\begin{array}{c}
\dot{y}=0 \\
y(0)=0
\end{array} \quad t \in[0,10]\right.
$$

[^0]
The Root Condition: Further Comments

- Exercise: Generate the convergence plot for Milne's method...

$$
y_{n}=y_{n-2}+\frac{1}{3} h\left(f_{n}+4 f_{n-1}+f_{n-2}\right)
$$

- ... in conjunction with the following IVP:

$$
\text { IVP: }\left\{\begin{array}{c}
\dot{y}=-10 y \\
y(0)=1
\end{array} \quad t \in[0,10]\right.
$$

- Compute the starting points using the exact solution of the above IVP

Short Side Trip: Difference Equations

- Difference equations, the framework
- Someone gives you k initial values x_{0}, \ldots, x_{k-1}
- You find the next value x_{k} by solving a "difference equation":

$$
a_{0} x_{n}+a_{1} x_{n-1}+\ldots+a_{k} x_{n-k}=0
$$

- It's obvious that the value of x_{n} is uniquely defined once you have the first k values
- How can we compute this unique value x_{n} yet not explicitly reference the first k values?
- Trick used: assume the following expression for $\mathrm{x}_{\mathrm{n}}: x_{n}=\xi^{n}$
- This choice of the expression of x_{n} leads to the following equation that must be satisfied by ξ (typically called Characteristic Equation)

Characteristic Equations:

$$
a_{0} \xi^{k}+a_{1} \xi^{k-1}+\ldots+a_{k}=0
$$

Short Side Trip: Difference Equations
 [Cntd.]

- Characteristic Equation (CE):
- Has degree k
- Has k roots (might be distinct or multiple roots amongst them): $\xi_{1}, \xi_{2}, \ldots, \xi_{k}$
- Exercise: show that the value of x_{n} can be expressed as (assume no multiple roots)

$$
x_{n}=c_{1} \xi_{1}^{n}+c_{2} \xi_{2}^{n}+\ldots+c_{k} \xi_{k}^{n}=\sum_{i=1}^{k} c_{i} \xi_{i}^{n}
$$

- Expression of x_{n} gets slightly more complicated for multiple roots:
- Double root (say $\xi_{1}=\xi_{2}$):

$$
x_{n}=\left(c_{11}+c_{2} n\right) \xi_{1}^{n}+\sum_{i=3}^{k} c_{i} \xi_{i}^{n}
$$

- Triple root (say $\xi_{1}=\xi_{2}=\xi_{3}$):

$$
x_{n}=\left[c_{11}+c_{2} n+c_{3} n(n-1)(n-2)\right] \xi_{1}^{n}+\sum_{i=4}^{k} c_{i} \xi_{i}^{n}
$$

NOTE: This Difference Equations theory relevant when looking into absolute stability

Absolute Stability ${ }_{[\text {quick reviem }]}$

- The process used to find out the region of absolute stability
- We started with the test problem

$$
\left\{\begin{aligned}
\dot{y} & =\lambda y \\
y(0) & =1
\end{aligned}\right.
$$

- We required that for the test problem, the numerical approximation should behave like the exact solution. That is, we required that

$$
\left|y_{n}\right| \leq\left|y_{n-1}\right|
$$

- Used the discretization scheme to express how y_{n} is related to y_{n-1} and impose the condition above
- This leads to a condition that the step size should satisfy in relation to the parameter λ
- Example: for Forward Euler, we obtained that for absolute stability that

$$
|1+h \lambda|<1
$$

Region of Absolute Stability

- Apply the methodology on previous slide for the test problem when used in conjunction with a multistep scheme

$$
\sum_{j=0}^{k} \alpha_{j} \mathbf{y}_{n-j}=h \sum_{j=0}^{k} \beta_{j} \mathbf{f}_{n-j}
$$

- This leads to

$$
\sum_{j=0}^{k} \alpha_{j} y_{n-j}=h \lambda \sum_{j=0}^{k} \beta_{j} y_{n-j}
$$

- Recall that we had the expression for $x_{n} \operatorname{Re}$

$$
y_{n}=c_{1} \xi_{1}^{n}+c_{2} \xi_{2}^{n}+\ldots+c_{k} \xi_{k}^{n}=\sum_{i=1}^{k} c_{i} \xi_{i}^{n}
$$

- For us to hope that $\mathrm{y}_{\mathrm{n}} \rightarrow 0$, we need $\left|\xi_{i}\right| \leq 1$ for $\forall \mathrm{i} \geq \mathrm{k}$

Region of Absolute Stability [Cntd.]

- Drop the subscript i for convenience. The conclusion is that any root of the Characteristic Equation; i.e. any ξ that satisfies...

$$
\sum_{j=0}^{k} \alpha_{j} \xi^{n-j}=h \lambda \sum_{j=0}^{k} \beta_{j} \xi^{n-j}
$$

- ... must also satisfy $|\xi| \leq 1$
- Note that if the above condition holds, then we will get to the desired condition that y_{n} is monotonically decreasing in absolute value:

$$
|\xi|=\frac{\left|\xi^{n}\right|}{\left|\xi^{n-1}\right|}=\frac{\left|y_{n}\right|}{\left|y_{n-1}\right|} \leq 1 \quad \Rightarrow \quad\left|y_{n}\right| \leq\left|y_{n-1}\right|
$$

Region of Absolute Stability [Cntd.]

- So in the end, it boils down to this simple sufficient condition: if $h \lambda$ is such that the roots of the CE all have the norm less than or equal to 1 , then $\mathrm{h} \lambda$ belongs to the stability region
- Recall that the CE assumes the form

$$
\sum_{j=0}^{k} \alpha_{j} \xi^{n-j}=h \lambda \sum_{j=0}^{k} \beta_{j} \xi^{n-j}
$$

- How would you find the boundaries of the stability region?
- This is precisely that situation where $|\xi|=1$, or in other words, where $\xi=\mathrm{e}^{i \theta}$
- So the boundary is given by those values of $h \lambda$ for which $\xi=e^{i \theta}$
- Yet note that from the CE, one has that for $\theta \in[0,2 \pi)$,

$$
h \lambda=\frac{\sum_{j=0}^{k} \alpha_{j} \xi^{n-j}}{\sum_{j=0}^{k} \beta_{j} \xi^{n-j}}=\frac{\sum_{j=0}^{k} \alpha_{j} e^{i \theta(n-j)}}{\sum_{j=0}^{k} \beta_{j} e^{i \theta(n-j)}}
$$

Exercise

- Plot the region of absolute stability for Milne's method

Absolute Stability: Closing Comments

- It is relatively straight forward to show that no explicit M method can be A-stable
- Lindquist's Barrier (1962, not simple to prove)
- You cannot construct an A-stable M method that has order higher than 2
- Note that there is no such barrier for RK methods
- The second order A-stable implicit M method with smallest error constant ($C_{3}=1 / 12$) is the trapezoidal integration method
- The problem with the trapezoidal formula is that it does not have stiff decay (it is A-stable but not L-stable)

How Did People Get M-Methods?

- One early approach (about 1880): integrate the ordinary differential equation, and approximate the function f using a polynomial

$$
\Rightarrow \quad y\left(t_{n}\right)=y\left(t_{n-1}\right)+\int_{t_{n-1}}^{t_{n}} f(t, y(t)) d t
$$

- Based on previous values $f\left(\mathrm{t}_{n-1}, \mathrm{y}_{n-1}\right), \ldots, f\left(\mathrm{t}_{n-k}, \mathrm{y}_{n-k}\right)$, one can fit a $\mathrm{k}-1$ degree polynomial in the variable t to approximate the unknown function $\mathrm{f}(\mathrm{t}, \mathrm{y})$
- Once the polynomial is available, simply plug it back in the integral above and evaluate it to get y_{n} (an approximation of $y\left(t_{n}\right)$)
- NOTE: this approach leads to a family of explicit integration formulas called Adams-Bashforth Multistep methods (AB-M methods)

$$
y_{n}=y_{n-1}+\sum_{j=1}^{k} \beta_{j} f_{n-j}
$$

Exercise

- Derive the $\mathrm{AB}-\mathrm{M}$ method for $\mathrm{k}=1, \mathrm{k}=2$, and $\mathrm{k}=3$
- Plot the absolute stability region for the $\mathrm{AB}-\mathrm{M}$ methods above

AB-M Method, Closing

- Table below provides convergence order p, the number of steps k of the M method, the coefficients β_{n-j}, and the value of the leading coefficient of the error term $\mathrm{C}_{\mathrm{p}+1}$

p	k	$j \rightarrow$	1	2	3	4	5	6	C_{p+1}
1	1	β_{n-j}	1						$1 / 2$
2	2	$2 \beta_{n-j}$	3	-1					$5 / 12$
3	3	$12 \beta_{n-j}$	23	-16	5				$3 / 8$
4	4	$24 \beta_{n-j}$	55	-59	37	-9			$251 / 720$
5	5	$720 \beta_{n-j}$	1901	-2774	2616	-1274	251		$95 / 288$
6	6	$1440 \beta_{n-j}$	4277	-7923	9982	-7298	2877	-475	$19087 / 60480$

- Example: based on the above table, the third order $A B-M$ formula is

$$
y_{n}=y_{n-1}+\frac{h}{12}\left(23 f_{n-1}-16 f_{n-2}+5 f_{n-3}\right)
$$

Starting a M Method

- Implementation question: How do you actually start a M method?
- In general, you need information for the first k steps to start a M method
- If you work with a scheme of order p, you don't want to have in your first k values $\mathrm{y}_{0}, \ldots, \mathrm{y}_{\mathrm{k}-1}$ error that is larger than $\mathrm{O}\left(\mathrm{h}^{\mathrm{p}}\right)$
- Most common approach is to use for the first k-1 steps a RK method of order p .
- A second approach starts using a method of order 1 with smaller step, than increases to order 2 when you have enough history, then increase to order 3, etc.
- NOTE: for the previous exercise, you have the exact solution so you can use it to generate the first k steps

Exercise

- Generate the Convergence Plot of the AB-M method for $\mathrm{k}=3$ and $\mathrm{k}=4$ for the following IVP:

$$
\text { IVP: }\left\{\begin{array}{c}
\dot{x}=x-y \\
\dot{y}=4 x-3 y \\
x(0)=y(0)=1
\end{array} \quad t \in[0,4]\right.
$$

- Indicate whether your results come in line with the expected convergence behavior
- Note that the exact solution of this IVP is:

$$
\begin{gathered}
x(t)=(t+1) e^{-t} \\
y(t)=(2 t+1) e^{-t}
\end{gathered}
$$

Exercise

- Prove that the $A B-M$ method with $\mathrm{k}=3$ is convergent with order 3

Exercise

- Plot the absolute stability regions for the $\mathrm{AB}-\mathrm{M}$ formulas up to order 6
- Comment on the size of the absolute convergence regions

The AM-M Method

- The AB-M method is known for small absolute stability methods
- Idea that partially addressed the issue:
- Rather than only using the previous values $f\left(t_{n-1}, y_{n-1}\right), \ldots, f\left(t_{n-k}, y_{n-k}\right)$, one should include the extra point $f\left(t_{n}, y_{n}\right)$ to fit a k degree polynomial in the variable t to approximate the unknown function $f(t, y)$
- The side-effect of this approach:
- The resulting scheme is implicit: you use $f\left(\mathrm{t}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ in the process of finding y_{n}
- The resulting scheme will assume the following form:

$$
y_{n}=y_{n-1}+\sum_{j=0}^{k} \beta_{j} f_{n-j}
$$

- This family of formulas is called Adams-Moulton Multistep (AM-M) methods

Exercise

- Derive the AM-M method for $\mathrm{k}=2$ and then $\mathrm{k}=3$
- Plot the absolute stability region for the AM-M methods above

AM-M Method, Closing

- Table below provides convergence order p, the number of steps k of the M method, the coefficients β_{n-j}, and the value of the leading coefficient of the error term $\mathrm{C}_{\mathrm{p}+1}$

p	k	$j \rightarrow$	0	1	2	3	4	5	C_{p+1}
1	1	β_{n-j}	1						$-1 / 2$
2	1	$2 \beta_{n-j}$	1	1					$-1 / 12$
3	2	$12 \beta_{n-j}$	5	8	-1				$-1 / 24$
4	3	$24 \beta_{n-j}$	9	19	-5	1			$-19 / 720$
5	4	$720 \beta_{n-j}$	251	646	-264	106	-19		$-3 / 160$
6	5	$1440 \beta_{n-j}$	475	1427	-798	482	-173	27	$-863 / 60480$

- Example: based on the above table, the third order AM-M formula ($\mathrm{k}=2$) is

$$
y_{n}=y_{n-1}+\frac{h}{12}\left(5 f_{n}+8 f_{n-1}-f_{n-2}\right)
$$

Exercise

- Prove that the AM-M method with $\mathrm{k}=3$ is convergent with order 4

Exercise

- Generate the Convergence Plot of the AB-M method for $\mathrm{k}=2$ and $\mathrm{k}=3$ for the following IVP:

$$
\text { IVP: }\left\{\begin{array}{c}
\dot{x}=x-y \\
\dot{y}=4 x-3 y \\
x(0)=y(0)=1
\end{array} \quad t \in[0,4]\right.
$$

- Indicate whether your results come in line with the expected convergence behavior
- Note that the exact solution of this IVP is:

$$
\begin{gathered}
x(t)=(t+1) e^{-t} \\
y(t)=(2 t+1) e^{-t}
\end{gathered}
$$

- NOTE: use the analytical solution to generate the first k steps of the integration formula

Exercise

- Plot the absolute stability regions for the AM-M formulas up to order 6
- Comment on the size of the absolute convergence regions

Implicit AM-M: Solving the Nonlinear System

- Since the AM-M method is implicit it will require at each time step the solution of a system of equations
- If f is nonlinear in y this system of equations will be nonlinear
- This is almost always the case
- Approaches used to solve this nonlinear system:
- Functional iteration
- Predictor Corrector schemes
- Modified Newton iteration
- Focus on first two, defer discussion of last for a couple of slides

M Methods: Functional Iteration

- Idea similar to the one introduced for the RK method
- Iterative process carried out as follows:

$$
y_{n}^{(\nu+1)}=h \beta_{0} f\left(t_{n}, y_{n}^{(\nu)}\right)+K, \quad \nu=0,1, \ldots
$$

- Notation: K represents a constant pre-computed based on past information
- It does not change during the iterative process

$$
K=-\sum_{j=1}^{k} \alpha_{j} y_{n-j}+h \sum_{j=1}^{k} \beta_{j} f_{n-j}
$$

- As a starting point, for $\nu=0$, typically one takes this value to by $\mathrm{y}_{\mathrm{n}-1}$
- This will be revisited shortly, when discussing predictor-corrector schemes
- Stopping criteria identical to and discussed in relation to modified Newton iteration

M Methods: Functional Iteration

- This represents a fixed point iteration
- Fixed point iteration converges to the fixed point provided it is a contraction, which is the case if the following condition holds

$$
\left\|h \beta_{0} \frac{\partial f}{\partial y}\right\| \leq r<1
$$

- NOTE: this condition basically limits the Functional Iteration approach to nonstiff problems

M Methods:
 The Predictor-Corrector Approach

- The predictor corrector formula is very similar to the Functional Iteration approach
- There are two differences:
- The starting point is chosen in a more intelligent way
- The number of iterations is predefined
- This is unlike the Functional Iteration approach, where convergence is monitored and it is not clear how many iterations ν will be necessary for convergence

The Predictor-Corrector Approach: Choosing the Starting Point

- The key question is how should one choose $y_{n}^{(0)}$
- An explicit method is used to this end
- This step is called prediction ("P"), and the explicit M method used to obtain $y_{n}^{(0)}$ is called "predictor"
- Most of the time, the predictor is an AB-M method:

$$
\mathrm{P}: \quad y_{n}^{(0)}+\hat{\alpha}_{1} y_{n-1}+\ldots+\hat{\alpha}_{k} y_{n-k}=h\left(\hat{\beta}_{1} f_{n-1}+\ldots+\hat{\beta}_{k} f_{n-k}\right)
$$

- The predicted value for y is immediately used to evaluate (" E ") the value of the function f :

$$
\mathrm{E}: \quad f_{n}^{0}=f\left(t_{n} y_{n}^{(0)}\right)
$$

The Predictor-Corrector Approach: Carrying out Corrections

- The second distinctive attribute of a Predictor-Corrector integration formula is that a predefined number ν of corrections of are carried out
- In other words, $\nu_{\text {end }}$ is predetermined, and the final value for y_{n} is

$$
y_{n}=y_{n}^{\left(\nu_{\text {end }}\right)}
$$

- The corrector ("C") formula is usually chosen to be the AM-M method
- Starting with $\nu=0$, the correction step assumes then the expression

C :

$$
y_{n}^{(\nu+1)}+\alpha_{1} y_{n-1}+\ldots+\alpha_{k} y_{n-k}=h\left(\beta_{0} f_{n}^{(\nu)}+\beta_{1} f_{n-1}+\ldots+\beta_{k} f_{n-k}\right)
$$

- Typically, the C step is followed by an E step to obtain a new expression for f that goes hand in hand with the newly corrected; i.e., improved, value of y :

$$
\mathrm{E}: \quad f_{n}^{(\nu+1)}=f\left(t_{n} y_{n}^{(\nu)}\right)
$$

The Predictor-Corrector Approach: Carrying out Corrections

- The predictor-corrector integration method process just described is called PECE
- It predicts (P), evaluates (E), corrects (C), and finally evaluates again (E)
- Note that strictly speaking, the last (E) could be regarded as superfluous since it's not used for computation of y_{n} anymore
- Last E is essential though since it's used in the computation of y_{n+1} and it improves the stability properties of the integration method
- Note that approach described (PECE), corresponds to choosing $\nu_{\text {end }}=1$
- For larger values of $\nu_{\text {end }}$ the "EC" part in PECE is executed $\nu_{\text {end }}$ times
- The nomenclature used for these methods is $\mathrm{P}(\mathrm{EC})^{\nu} \mathrm{E}$
- Example: $\mathrm{P}(\mathrm{EC})^{3} \mathrm{E}$ refers to the following predictor-corrector integration formula:

Example: PECE Method

- The following example combines a two step AB-M method, with the second-order one step AM-M method (the trapezoidal formula)
- Given $\mathrm{y}_{\mathrm{n}-1}, \mathrm{f}_{\mathrm{n}-1}, \mathrm{f}_{\mathrm{n}-2}$:

$$
\begin{array}{cc}
\mathrm{P}: \quad y_{n}^{(0)}=y_{n-1}+\frac{h}{2}\left(3 f_{n-1}-f_{n-2}\right) \\
& \mathrm{E}: \quad f_{n}^{(0)}=f\left(t_{n}, y_{n}^{(0)}\right) \\
\mathrm{C}: \quad y_{n}=y_{n-1}+\frac{h}{2}\left(f_{n}^{(0)}+f_{n-1}\right) \\
& \mathrm{E}: \quad f_{n}=f\left(t_{n}, y_{n}\right)
\end{array}
$$

- It can be shown that the local truncation error for this method is

$$
d_{n}=-\frac{h^{2}}{12} \cdots \quad \nearrow \quad\left(h^{3}\right)
$$

[^0]: - For the M-method, take

 $$
 y_{0}=0 \quad \& \quad y_{1}=\epsilon
 $$

