Compression & Huffman Codes

Compression

E Definition

E Reduce size of data
(number of bits needed to represent data)

I Benefits

B Reduce storage needed
E Reduce transmission cost / latency / bandwidth

Sources of Compressibility

¥ Redundancy

B Recognize repeating patterns
B Exploit using

m Dictionary

m Variable length encoding

¥ Human perception

E Less sensitive to some information
E Can discard less important data

Types of Compression

P Lossless

E Preserves all information
B Exploits redundancy in data
B Applied to general data

F Lossy

E May lose some information
E Exploits redundancy & human perception
B Applied to audio, image, video

Effectiveness of Compression

E Metrics
E Bits per byte (8 bits)
m 2 bits / byte = "4 original size
m 8 bits / byte = no compression

B Percentage
m 75% compression = , original size

Effectiveness of Compression

¥ Depends on data

P Random data = hard
m Example: 1001110100 = ?

E Organized data = easy
m Example: 1111111111 = 1x10

E Corollary

E No universally best compression algorithm

Effectiveness of Compression

F Lossless Compression is not always possible

E If compression is always possible (alternative view)
m Compress file (reduce size by 1 bit)

m Recompress output
m Repeat (until we can store data with 0 bits)

Lossless Compression Techniques

F Huffman codes
E Use variable length codes based on frequency

Huffman Code

F Approach

E Variable length encoding of symbols
E Exploit statistical frequency of symbols
B Efficient when symbol probabilities vary widely

E Principle

E Use fewer bits to represent frequent symbols
E Use more bits to represent infrequent symbols

Huffman Code Example

Symbol A B C D
Frequency | 13% | 25% | 50% | 12%
Original 00 01 10 11
Encoding | 2 pits | 2 bits | 2 bits | 2 bits
Huffman 110 10 0 111
Encoding | 3 pits | 2 bits | 1 bit | 3 bits

F Expected size

B Original = 1/8x2 + 1/4x2 + 1/2x2 + 1/8x2 = 2 bits / symbol
B Huffman = 1/8x3 + 1/4x2 + 1/2x1 + 1/8x3 = 1.75 bits / symbol

Huffman Code Data Structures

F Binary (Huffman) tree D A
E Represents Huffman code ‘
E Edge = code (0 or 1)
B Leaf = symbol 1\ o B
B Path to leaf = encoding ‘
E Example C
.A — “110”, B — “10!!, C — “O” 1 \‘f 0
E Priority queue

\ /o

B To efficiently build binary tree 1

Huffman Code Algorithm Overview

¥ Encoding

E Calculate frequency of symbols in file
E Create binary tree representing “best” encoding
E Use binary tree to encode compressed file
m For each symbol, output path from root to leaf
m Size of encoding = length of path

E Save binary tree

Huffman Code — Creating Tree

E Algorithm
E Place each symbol in leaf
m Weight of leaf = symbol frequency

E Select two trees L and R (initially leafs)
m Such that L, R have lowest frequencies in tree

E Create new (internal) node
mLeft child= L

m Right child = R
m New frequency = frequency(L) + frequency(R)
E Repeat until all nodes merged into one tree

Huffman Tree Construction 1

Huffman Tree Construction 2

A H

_/

Huffman Tree Construction 3

A E l
o0 O O
\ / C
o 0

_/

O

Huffman Tree Construction 4
A H E |
oo 090
o0 O
_/
O

Huffman Tree Construction 5

A H E = 01

e Q | = 00
1\ _/o cC = 10
Q GQ ﬂ A = 111
H = 110

0\ -}
X-§

Huffman Coding Example

F Huffman code

F Input
E ACE
E Output
® (111)(10)(01) = 1111001

I >O—m

01
00
10
111
110

Huffman Code Algorithm Overview

¥ Decoding

E Read compressed file & binary tree
E Use binary tree to decode file
m Follow path from root to leaf

Huffman Decoding 1

1111001

Huffman Decoding 2

1111001

Huffman Decoding 3

1111001

Huffman Decoding 4

1111001

Huffman Decoding 5

A H

1\ /o

o0
X-%

1111001

AC

Huffman Decoding 6

A H

1\ /o

L 4
X-%

1111001

AC

Huffman Decoding 7

A H

1\ /o

6.0
X-%

1111001

ACE

Huffman Code Properties

E Prefix code

E No code is a prefix of another code
E Example
m Huffman(“1”) = 00

m Huffman(“X”) = 001 // not legal prefix code
E Can stop as soon as complete code found
E No need for end-of-code marker
¥ Nondeterministic

E Multiple Huffman coding possible for same input
E If more than two trees with same minimal weight

Huffman Code Properties

E Greedy algorithm

E Chooses best local solution at each step
E Combines 2 trees with lowest frequency

k Still yields overall best solution

B Optimal prefix code
E Based on statistical frequency

F Better compression possible (depends on data)
E Using other approaches (e.g., pattern dictionary)

