
Compression & Huffman Codes

Compression

Definition

Reduce size of data

 (number of bits needed to represent data)

Benefits

Reduce storage needed

Reduce transmission cost / latency / bandwidth

Sources of Compressibility

Redundancy

Recognize repeating patterns

Exploit using

Dictionary

Variable length encoding

Human perception

Less sensitive to some information

Can discard less important data

Types of Compression

Lossless

Preserves all information

Exploits redundancy in data

Applied to general data

Lossy

May lose some information

Exploits redundancy & human perception

Applied to audio, image, video

Effectiveness of Compression

Metrics

Bits per byte (8 bits)

2 bits / byte  ¼ original size

8 bits / byte  no compression

Percentage

75% compression  ¼ original size

Effectiveness of Compression

Depends on data

Random data  hard

Example: 1001110100  ?

Organized data  easy

Example: 1111111111  110

Corollary

No universally best compression algorithm

Effectiveness of Compression

Lossless Compression is not always possible

If compression is always possible (alternative view)

Compress file (reduce size by 1 bit)

Recompress output

Repeat (until we can store data with 0 bits)

Lossless Compression Techniques

LZW (Lempel-Ziv-Welch) compression

Build pattern dictionary

Replace patterns with index into dictionary

Run length encoding

Find & compress repetitive sequences

Huffman codes

Use variable length codes based on frequency

Huffman Code

Approach

Variable length encoding of symbols

Exploit statistical frequency of symbols

Efficient when symbol probabilities vary widely

Principle

Use fewer bits to represent frequent symbols

Use more bits to represent infrequent symbols

A A B A

A A A B

Huffman Code Example

Expected size

Original  1/82 + 1/42 + 1/22 + 1/82 = 2 bits / symbol

Huffman  1/83 + 1/42 + 1/21 + 1/83 = 1.75 bits / symbol

Symbol A B C D

Frequency 13% 25% 50% 12%

Original

Encoding

00 01 10 11

2 bits 2 bits 2 bits 2 bits

Huffman

Encoding

110 10 0 111

3 bits 2 bits 1 bit 3 bits

Huffman Code Data Structures

Binary (Huffman) tree

Represents Huffman code

Edge  code (0 or 1)

Leaf  symbol

Path to leaf  encoding

Example

A = “110”, B = “10”, C = “0”

Priority queue

To efficiently build binary tree 1

1 0

0

D

C

B

A

0 1

Huffman Code Algorithm Overview

Encoding

Calculate frequency of symbols in file

Create binary tree representing “best” encoding

Use binary tree to encode compressed file

For each symbol, output path from root to leaf

Size of encoding = length of path

Save binary tree

Huffman Code – Creating Tree

Algorithm

Place each symbol in leaf

Weight of leaf = symbol frequency

Select two trees L and R (initially leafs)

Such that L, R have lowest frequencies in tree

Create new (internal) node

Left child  L

Right child  R

New frequency  frequency(L) + frequency(R)

Repeat until all nodes merged into one tree

Huffman Tree Construction 1

3 5 8 2 7

A C E H I

Huffman Tree Construction 2

3 5 8 2 7

5

A C E H I

Huffman Tree Construction 3

3

5

8
2

7

5

10

A

C

E
H

I

Huffman Tree Construction 4

3

5

8
2

7

5

10

15

A

C

E
H

I

Huffman Tree Construction 5

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

E = 01

I = 00

C = 10

A = 111

H = 110

Huffman Coding Example

Huffman code

Input

ACE

Output

(111)(10)(01) = 1111001

E = 01

I = 00

C = 10

A = 111

H = 110

Huffman Code Algorithm Overview

Decoding

Read compressed file & binary tree

Use binary tree to decode file

Follow path from root to leaf

Huffman Decoding 1

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

Huffman Decoding 2

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

Huffman Decoding 3

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

A

Huffman Decoding 4

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

A

Huffman Decoding 5

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

AC

Huffman Decoding 6

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

AC

Huffman Decoding 7

3

5 8

2

7 5

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

1111001

ACE

Huffman Code Properties

Prefix code

No code is a prefix of another code

Example

Huffman(“I”)  00

Huffman(“X”)  001 // not legal prefix code

Can stop as soon as complete code found

No need for end-of-code marker

Nondeterministic

Multiple Huffman coding possible for same input

If more than two trees with same minimal weight

Huffman Code Properties

Greedy algorithm

Chooses best local solution at each step

Combines 2 trees with lowest frequency

Still yields overall best solution

Optimal prefix code

Based on statistical frequency

Better compression possible (depends on data)

Using other approaches (e.g., pattern dictionary)

