
Binary Tree Traversal Methods

• In a traversal of a binary tree, each element of

the binary tree is visited exactly once.

• During the visit of an element, all action (make

a clone, display, evaluate the operator, etc.)

with respect to this element is taken.

Binary Tree Traversal Methods

• Preorder

• Inorder

• Postorder

• Level order

Preorder Traversal

void preOrder(treePointer ptr)

{

 if (ptr != NULL)

 {

 visit(t);

 preOrder(ptr->leftChild);

 preOrder(ptr->rightChild);

 }

}

Preorder Example (Visit = print)

a

b c

a b c

Preorder Example (Visit = print)

a

b c

d e
f

g h i j

a b d g h e i c f j

Preorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives prefix form of expression!

/ * + a b - c d + e f

Inorder Traversal

void inOrder(treePointer ptr)

{

 if (ptr != NULL)

 {

 inOrder(ptr->leftChild);

 visit(ptr);

 inOrder(ptr->rightChild);

 }

}

Inorder Example (Visit = print)

a

b c

b a c

Inorder Example (Visit = print)

a

b c

d e
f

g h i j

g d h b e i a f j c

Inorder By Projection (Squishing)

a

b c

d e
f

g h i j

g d h b e i a f j c

Inorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives infix form of expression (sans parentheses)!

e a + b * c d / + f -

Postorder Traversal

void postOrder(treePointer ptr)

{

 if (ptr != NULL)

 {

 postOrder(ptr->leftChild);

 postOrder(ptr->rightChild);

 visit(t);

 }

}

Postorder Example (Visit = print)

a

b c

b c a

Postorder Example (Visit = print)

a

b c

d e
f

g h i j

g h d i e b j f c a

Postorder Of Expression Tree

+

a b

-

c d

+

e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /

Traversal Applications

a

b c

d e
f

g h i j

• Make a clone.

• Determine height.

•Determine number of nodes.

Level Order

Let ptr be a pointer to the tree root.

while (ptr != NULL)

{

 visit node pointed at by ptr and put its children on
a FIFO queue;

 if FIFO queue is empty, set ptr = NULL;

 otherwise, delete a node from the FIFO queue and
call it ptr;

}

Level-Order Example (Visit = print)

a

b c

d e
f

g h i j

a b c d e f g h i j

Binary Tree Construction

• Suppose that the elements in a binary tree
are distinct.

• Can you construct the binary tree from
which a given traversal sequence came?

• When a traversal sequence has more than
one element, the binary tree is not uniquely
defined.

• Therefore, the tree from which the sequence
was obtained cannot be reconstructed
uniquely.

Some Examples

preorder

= ab

a

b

a

b

inorder

= ab

b

a

a

b

postorder

= ab

b

a

b

a

level order

= ab

a

b

a

b

Binary Tree Construction

• Can you construct the binary tree,

given two traversal sequences?

• Depends on which two sequences are

given.

Preorder And Postorder

preorder = ab a

b

a

b postorder = ba

• Preorder and postorder do not uniquely define a

binary tree.

• Nor do preorder and level order (same example).

• Nor do postorder and level order (same example).

Inorder And Preorder

• inorder = g d h b e i a f j c

• preorder = a b d g h e i c f j

• Scan the preorder left to right using the
inorder to separate left and right subtrees.

• a is the root of the tree; gdhbei are in the left
subtree; fjc are in the right subtree.

a

gdhbei fjc

Inorder And Preorder

• preorder = a b d g h e i c f j

• b is the next root; gdh are in the left
subtree; ei are in the right subtree.

a

gdhbei fjc

a

gdh

fjc b

ei

Inorder And Preorder

• preorder = a b d g h e i c f j

• d is the next root; g is in the left
subtree; h is in the right subtree.

a

gdh

fjc b

ei

a

g

fjc b

ei d

h

Inorder And Postorder

• Scan postorder from right to left using

inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c

• postorder = g h d i e b j f c a

• Tree root is a; gdhbei are in left subtree; fjc

are in right subtree.

Inorder And Level Order

• Scan level order from left to right using

inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c

• level order = a b c d e f g h i j

• Tree root is a; gdhbei are in left subtree; fjc

are in right subtree.

