Hashing: Collision Resolution Schemes

Collision Resolution Techniques

Separate Chaining

Separate Chaining with String Keys

Separate Chaining versus Open-addressing

The class hierarchy of Hash Tables

Implementation of Separate Chaining

Introduction to Collision Resolution using Open Addressing

Linear Probing

Collision Resolution Techniques

e There are two broad ways of collision resolution:
1. Separate Chaining: An array of linked list implementation.
2. Open Addressing: Array-based implementation.

(1) Linear probing (linear search)

(11) Quadratic probing (nonlinear search)
(i11) Double hashing (uses two hash functions)

Separate Chaining

The hash table is implemented as an array of linked lists.

Inserting an item, r, that hashes at index i is simply insertion into the linked list at
position i.

Synonyms are chained in the same linked list.

(actual S » ks 'I'" 21 e e L /I

Separate Chaining (cont’d)

Retrieval of an item, r, with hash address, i, 1s simply retrieval from the linked list

at position i.

Deletion of an item, r, with hash address, i, 1s simply deleting r from the linked list

at position i.

Example: Load the keys 23,13, 21, 14, 7, 8, and 15 , in this order, in a hash table

of size 7 using separate chaining with the hash function: h(key) = key % 7
h(23)=23%7=2
h(13)=13%7=6
h(21)=21%7=0
h(14)=14% 7=0 collision
h(7)=7%7=0 collision
h(8)=8% 7=1
h(15)=15%7=1 collision ¢ [F—"L 2T M| 7T—* 7

' T I O B

Separate Chaining with String Keys

« Recall that search keys can be numbers, strings or some other object.
* A hash function for a string s = cOclc2...cn-1 can be defined as:
hash= (¢, + ¢, +¢c,+ ... T ¢,) % tableSize
this can be implemented as:

public static int hash(String key, int tableSize) {
int hashValue = 0;
for (int 1 = 0; i < key.length(), i++) {
hashValue += key.charAt(i) ;
}

return hashValue % tableSize;

}

* Example: The following class describes commodity items:

class CommodityItem ({
String name; // commodity name
int quantity; // commodity quantity needed
double price; // commodity price

Separate Chaining with String Keys (cont’d)

« Use the hash function hash to load the following commodity items into a

hash table of size 13 using separate chaining:

onion 1 10.0

tomato 1 8.50

cabbage 3 3.50

carrot 1 5.50

okra 1 6.50

mellon 2 10.0

potato 2 7.50

Banana 3 4.00

olive 2 15.0

salt 2 2.50

cucumber 3 4.50

mushroom 3 5.50

orange 2 3.00
* Solution:
character a [C E g h 1 '3 | tn 11 o p t 5 t u v
ASCTT 87| 98 | 9% | 101 103 104 105 107 108 | 109 110 | 111 112 114 | 115 116 | 117 118
code

hash(onion) = (111 + 110+ 105 + 111 +110) % 13 =547 % 13 =1
hash(salt) = (115+ 97+ 108 + 116) % 13 =436 % 13 =7

hash(orange) = (111 + 114 + 97 + 110 + 103 + 101)%13 = 636 %13 = 12

O o0 9 O D B~ LN

10
11
12

Separate Chaining with String Keys (cont’d)

——>| okra —>| potato
=T | onion —p| carrot
Item Qty Price h (key)
onion 1 10.0 1
tomato 1 8.50 10
> cabbage 3 3.50 4
Cabbage carrot 1 5.50 1
okra 1 6.50 0
mellon 2 10.0 10
» mushroom potato 2 7.50 0
Banana 3 4.0 11
—— olive 2 15.0 10
Salt salt 2 2.50 7
cucumber 3 4.50 9
mushroom 3 5.50 6
—t—p! cucumber orange 2 3.00 12
» tomato ——| mellon —| olive
= | banana
*| orange

Separate Chaining with String Keys (cont’d)

« Alternative hash functions for a string
Sl Y o S
exist, some are:
* hash= (c,+27 *c, +729 * ¢,) % tableSize
* hash =(c,+ ¢, * s.length()) % tableSize

s.length()—1

« hash= [Y 26%k+s.charAt(k)-"]%tableSize
k=0

Separate Chaining versus Open-addressing

Separate Chaining has several advantages over open addressing:

Collision resolution is stmple and efficient.

The hash table can hold more elements without the large
performance deterioration of open addressing (The load factor can
be 1 or greater)

The performance of chaining declines much more slowly than
open addressing.

Deletion 1s easy - no special flag values are necessary.
Table size need not be a prime number.
The keys of the objects to be hashed need not be unique.

Disadvantages of Separate Chaining:

It requires the implementation of a separate data structure for
chains, and code to manage it.

The main cost of chaining 1s the extra space required for the
linked lists.

For some languages, creating new nodes (for linked lists) is
expensive and slows down the system.

Implementing Hash Tables: The Hierarchy Tree

<Container> AbstractContainer

\

<Sea rchabIeContainer>

\

< HashTable > AbstractHashTable

ChainedHashTable

OpenScatterTable

Implementation of Separate Chaining

public class ChainedHashTable extends AbstractHashTable {
protected MyLinkedList [] array;
public ChainedHashTable (int size) ({
array = new MyLinkedList[size];
for(int j = 0; j < size; j++)
array[j] = new MyLinkedList(),
}
public void insert (Object key) {
array [h (key)] .append (key) ; count++;
}
public void withdraw (Object key) ({
array[h (key)] .extract (key) ; count--;
}
public Object find(Object key) {
int index = h(key)
MyLinkedList.Element e = array[index] .getHead()
while (e !'= null) {
if (key.equals (e.getData()) return e.getData() ;
e = e.getNext() ;
}

return null;

11

Introduction to Open Addressing

All items are stored in the hash table itself.

In addition to the cell data (if any), each cell keeps one of the three states: EMPTY,
OCCUPIED, DELETED.

While inserting, if a collision occurs, alternative cells are tried until an empty cell is found.

Deletion: (lazy deletion): When a key is deleted the slot is marked as DELETED rather than
EMPTY otherwise subsequent searches that hash at the deleted cell will fail.

Probe sequence: A probe sequence is the sequence of array indexes that is followed in
searching for an empty cell during an insertion, or in searching for a key during find or delete
operations.

The most common probe sequences are of the form:
h,(key) = [h(key) + c(i)] % n, fori=0,1,...,n-1.

where h 1s a hash function and n is the size of the hash table

The function c(i) is required to have the following two properties:
Property 1: ¢c(0)=0
Property 2: The set of values {c(0) % n, ¢(1) % n, ¢(2) %o n, ..., c(n-1) % n} must be a
perlrrlqtation of {0, 1, 2,. .., n — 1}, that is, it must contain every integer between 0 and n - 1
inclusive.

12

Introduction to Open Addressing (cont’d)

The function c(i) is used to resolve collisions.

To insert item r, we examine array location hy(r) = h(r). If there is a collision, array locations
h,(r), h,(r), ..., h,,(r) are examined until an empty slot is found.

Similarly, to find item r, we examine the same sequence of locations in the same order.

Note: For a given hash function h(key), the only difference in the open addressing collision
resolution techniques (linear probing, quadratic probing and double hashing) is in the
definition of the function c(i).

Common definitions of c(i) are:

Collision resolution technique c(i)
Linear probing i
Quadratic probing +j?2
Double hashing i*h,(key)

where h,(key) is another hash function. 13

Introduction to Open Addressing (cont'd)

 Advantages of Open addressing:

— All items are stored in the hash table itself. There 1s no need for
another data structure.

— Open addressing 1s more efficient storage-wise.

 Disadvantages of Open Addressing:
— The keys of the objects to be hashed must be distinct.
— Dependent on choosing a proper table size.

— Requires the use of a three-state (Occupied, Empty, or Deleted)
flag in each cell.

14

Open Addressing Facts

In general, primes give the best table sizes.

With any open addressing method of collision resolution,
as the table fills, there can be a severe degradation in the table performance.

Load factors between 0.6 and 0.7 are common.
Load factors > 0.7 are undesirable.
The search time depends only on the load factor, not on the table size.

We can use the desired load factor to determine appropriate table size:

number of items 1n table
desired load factor

table size = smallest prime >

15

Open Addressing: Linear Probing

c(i) 1s a linear function 1n i of the form ¢(i) = a*i.
Usually ¢(i) 1s chosen as:
c(1)=1 fori=0,1,...,tableSize — 1

The probe sequences are then given by:
h.(key) = [h(key) + i] % tableSize fori=0,1, ... , tableSize —1

For ¢(i) = a*i to satisfy Property 2, a and n must be relatively
prime.

16

