
1

Hashing: Collision Resolution Schemes

• Collision Resolution Techniques

• Separate Chaining

• Separate Chaining with String Keys

• Separate Chaining versus Open-addressing

• The class hierarchy of Hash Tables

• Implementation of Separate Chaining

• Introduction to Collision Resolution using Open Addressing

• Linear Probing

2

Collision Resolution Techniques

• There are two broad ways of collision resolution:

1. Separate Chaining:: An array of linked list implementation.

2. Open Addressing: Array-based implementation.

 (i) Linear probing (linear search)

 (ii) Quadratic probing (nonlinear search)

 (iii) Double hashing (uses two hash functions)

3

Separate Chaining

• The hash table is implemented as an array of linked lists.

• Inserting an item, r, that hashes at index i is simply insertion into the linked list at

position i.

• Synonyms are chained in the same linked list.

4

Separate Chaining (cont’d)
• Retrieval of an item, r, with hash address, i, is simply retrieval from the linked list

at position i.

• Deletion of an item, r, with hash address, i, is simply deleting r from the linked list
at position i.

• Example: Load the keys 23, 13, 21, 14, 7, 8, and 15 , in this order, in a hash table
of size 7 using separate chaining with the hash function: h(key) = key % 7

 h(23) = 23 % 7 = 2

 h(13) = 13 % 7 = 6

 h(21) = 21 % 7 = 0

 h(14) = 14 % 7 = 0 collision

 h(7) = 7 % 7 = 0 collision

 h(8) = 8 % 7 = 1

 h(15) = 15 % 7 = 1 collision

5

Separate Chaining with String Keys

• Recall that search keys can be numbers, strings or some other object.

• A hash function for a string s = c0c1c2…cn-1 can be defined as:

 hash = (c0 + c1 + c2 + … + cn-1) % tableSize

 this can be implemented as:

• Example: The following class describes commodity items:

public static int hash(String key, int tableSize){

 int hashValue = 0;

 for (int i = 0; i < key.length(); i++){

hashValue += key.charAt(i);

 }

 return hashValue % tableSize;

}

class CommodityItem {

 String name; // commodity name

 int quantity; // commodity quantity needed

 double price; // commodity price

}

6

Separate Chaining with String Keys (cont’d)

• Use the hash function hash to load the following commodity items into a
hash table of size 13 using separate chaining:

onion 1 10.0

tomato 1 8.50

cabbage 3 3.50

carrot 1 5.50

okra 1 6.50

mellon 2 10.0

potato 2 7.50

Banana 3 4.00

olive 2 15.0

salt 2 2.50

cucumber 3 4.50

mushroom 3 5.50

orange 2 3.00

• Solution:

hash(onion) = (111 + 110 + 105 + 111 + 110) % 13 = 547 % 13 = 1

hash(salt) = (115 + 97 + 108 + 116) % 13 = 436 % 13 = 7

hash(orange) = (111 + 114 + 97 + 110 + 103 + 101)%13 = 636 %13 = 12

7

Separate Chaining with String Keys (cont’d)

0

1

2

3

4

5

6

7

8

9

10

11

12

onion

okra

mellon

banana

tomato olive

cucumber

mushroom

salt

cabbage

carrot

potato

orange

Item Qty Price h(key)

onion 1 10.0 1

tomato 1 8.50 10

cabbage 3 3.50 4

carrot 1 5.50 1

okra 1 6.50 0

mellon 2 10.0 10

potato 2 7.50 0

Banana 3 4.0 11

olive 2 15.0 10

salt 2 2.50 7

cucumber 3 4.50 9

mushroom 3 5.50 6

orange 2 3.00 12

8

Separate Chaining with String Keys (cont’d)

• Alternative hash functions for a string

 s = c0c1c2…cn-1

exist, some are:

• hash = (c0 + 27 * c1 + 729 * c2) % tableSize

• hash = (c0 + cn-1 + s.length()) % tableSize

• hash = %tableSize]'')s.charAt(kk*26[
1().

0







lengths

k

9

Separate Chaining versus Open-addressing

Separate Chaining has several advantages over open addressing:

• Collision resolution is simple and efficient.

• The hash table can hold more elements without the large
performance deterioration of open addressing (The load factor can
be 1 or greater)

• The performance of chaining declines much more slowly than
open addressing.

• Deletion is easy - no special flag values are necessary.

• Table size need not be a prime number.

• The keys of the objects to be hashed need not be unique.

Disadvantages of Separate Chaining:

• It requires the implementation of a separate data structure for
chains, and code to manage it.

• The main cost of chaining is the extra space required for the
linked lists.

• For some languages, creating new nodes (for linked lists) is
expensive and slows down the system.

10

Implementing Hash Tables: The Hierarchy Tree

Container

SearchableContainer

HashTable

AbstractContainer

AbstractHashTable

ChainedHashTable

OpenScatterTable

11

Implementation of Separate Chaining

public class ChainedHashTable extends AbstractHashTable {

 protected MyLinkedList [] array;

 public ChainedHashTable(int size) {

 array = new MyLinkedList[size];

 for(int j = 0; j < size; j++)

 array[j] = new MyLinkedList();

 }

 public void insert(Object key) {

 array[h(key)].append(key); count++;

 }

 public void withdraw(Object key) {

 array[h(key)].extract(key); count--;

 }

 public Object find(Object key){

 int index = h(key);

 MyLinkedList.Element e = array[index].getHead();

 while(e != null){

 if(key.equals(e.getData()) return e.getData();

 e = e.getNext();

 }

 return null;

 }

}

12

Introduction to Open Addressing
• All items are stored in the hash table itself.

• In addition to the cell data (if any), each cell keeps one of the three states: EMPTY,
OCCUPIED, DELETED.

• While inserting, if a collision occurs, alternative cells are tried until an empty cell is found.

• Deletion: (lazy deletion): When a key is deleted the slot is marked as DELETED rather than
EMPTY otherwise subsequent searches that hash at the deleted cell will fail.

• Probe sequence: A probe sequence is the sequence of array indexes that is followed in
searching for an empty cell during an insertion, or in searching for a key during find or delete
operations.

• The most common probe sequences are of the form:

 hi(key) = [h(key) + c(i)] % n, for i = 0, 1, …, n-1.

 where h is a hash function and n is the size of the hash table

• The function c(i) is required to have the following two properties:

 Property 1: c(0) = 0

 Property 2: The set of values {c(0) % n, c(1) % n, c(2) % n, . . . , c(n-1) % n} must be a
permutation of {0, 1, 2,. . ., n – 1}, that is, it must contain every integer between 0 and n - 1
inclusive.

13

Introduction to Open Addressing (cont’d)

• The function c(i) is used to resolve collisions.

• To insert item r, we examine array location h0(r) = h(r). If there is a collision, array locations

h1(r), h2(r), ..., hn-1(r) are examined until an empty slot is found.

• Similarly, to find item r, we examine the same sequence of locations in the same order.

• Note: For a given hash function h(key), the only difference in the open addressing collision

resolution techniques (linear probing, quadratic probing and double hashing) is in the

definition of the function c(i).

• Common definitions of c(i) are:

Collision resolution technique

c(i)

Linear probing i

Quadratic probing ±i2

Double hashing i*hp(key)

where hp(key) is another hash function.

14

Introduction to Open Addressing (cont'd)

• Advantages of Open addressing:

– All items are stored in the hash table itself. There is no need for

another data structure.

– Open addressing is more efficient storage-wise.

• Disadvantages of Open Addressing:

– The keys of the objects to be hashed must be distinct.

– Dependent on choosing a proper table size.

– Requires the use of a three-state (Occupied, Empty, or Deleted)

flag in each cell.

15

Open Addressing Facts

• In general, primes give the best table sizes.

• With any open addressing method of collision resolution,

 as the table fills, there can be a severe degradation in the table performance.

• Load factors between 0.6 and 0.7 are common.

• Load factors > 0.7 are undesirable.

• The search time depends only on the load factor, not on the table size.

• We can use the desired load factor to determine appropriate table size:

16

Open Addressing: Linear Probing

• c(i) is a linear function in i of the form c(i) = a*i.

• Usually c(i) is chosen as:

 c(i) = i for i = 0, 1, . . . , tableSize – 1

• The probe sequences are then given by:

 hi(key) = [h(key) + i] % tableSize for i = 0, 1, . . . , tableSize – 1

• For c(i) = a*i to satisfy Property 2, a and n must be relatively

prime.

