
Memory and Garbage Collection

2

Memory attributes
• Memory to store data in programming languages has

several attributes:

– Persistence (or lifetime) – How long the memory

exists

– Allocation – When the memory is available for use

– Recovery – When the system recovers the memory

for reuse

• Most programming languages are concerned with some

subset of the following 4 memory classes:

– Fixed (or static) memory

– Automatic (or stack) memory

– Allocated (or heap) memory

– Persistent (or disk) memory

3

Memory classes

• Static memory – Usually a fixed address in

memory

– Persistence – Lifetime of execution of program

– Allocation – By compiler for entire execution

– Recovery – By system when program terminates

• Automatic memory – Usually on a stack

– Persistence – Lifetime of method using that data

– Allocation – When method is invoked

– Recovery – When method terminates

4

Memory classes
• Allocated memory – Usually memory on a heap

– Persistence – As long as memory is needed

– Allocation – Explicitly by programmer

– Recovery – Either by programmer or automatically (when

possible and depends upon language)

• Persistent memory – Usually the file system

– Persistence – Multiple execution of a program (e.g., files or

databases)

– Allocation – By program or user, often outside of program

execution

– Recovery – When data no longer needed

– This form of memory usually outside of programming

language course and part of database area (e.g., CMSC 424)

5

Memory Management in C

• Local variables live on the stack

– Allocated at function invocation time

– Deallocated when function returns

– Storage space reused after function returns

• Space on the heap allocated with malloc()

– Must be explicitly freed with free()

– This is called explicit or manual memory

management

• Deletions must be done by the programmer

6

Memory Management Mistakes

• May forget to free memory (memory leak)
{ int *x = (int *) malloc(sizeof(int)); }

• May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();

 free(x);

 x = 5; / oops! */

}

• May try to free something twice
{ int *x = ...malloc(); free(x); free(x); }

• This may corrupt the memory management data structures

– E.g., the memory allocator maintains a free list of space on

theheapthat’savailable

7

Ways to Avoid Mistakes

• Don’tallocatememoryontheheap
– Often impractical

– Leads to confusing code

• Never free memory
– OSwillreclaimprocess’smemoryanywayatexit

– Memory is cheap; who cares about a little leak?

– LISP model – System halts program and reclaims unused
memory when there is no more available

• Use a garbage collector
– E.g., conservative Boehm-Weiser collector for C

• allows you to allocate memory basically as you normally
would, without explicitly deallocating memory that is no
longer useful. The collector automatically recycles memory
when it determines that it can no longer be otherwise
accessed.

8

Memory Management in Ruby

• Local variables live on the stack

– Storage reclaimed when method returns

• Objects live on the heap

– Created with calls to Class.new

• Objects never explicitly freed

– Ruby uses automatic memory management

• Uses a garbage collector to reclaim

memory

9

Memory Management in OCaml

• Local variables live on the stack

• Tuples, closures, and constructed types live on

the heap

• Garbage collection reclaims memory

10

Memory Management in Java

• Local variables live on the stack

– Allocated at method invocation time

– Deallocated when method returns

• Other data lives on the heap

– Memory is allocated with new

– But never explicitly deallocated

• Java uses automatic memory management

11

Another Memory Problem: Fragmentation
 allocate(a);

 allocate(x);

 allocate(y);

 free(a);

 allocate(z);

 free(y);

 allocate(b);

 No contiguous space for b

12

Garbage collection goal
• Process to reclaim memory. (Also solve

Fragmentation problem.)

• Algorithm: You can do garbage collection and
memory compaction if you know where every
pointer is in a program. If you move the allocated
storage, simply change the pointer to it.

• This is true in LISP, OCaml, Java, Prolog

13

Garbage Collection (GC)

• At any point during execution, can divide the

objects in the heap into two classes:

– Live objects will be used later

– Dead objects will never be used again

• They are garbage

• Idea: Can reuse memory from dead objects

• Goals: Reduce memory leaks, and make

dangling pointers impossible

14

Many GC Techniques

• Inmostlanguageswecan’tknowforsurewhich

objects are really live or dead

– Undecidable, like solving the halting problem

• Thus we need to make an approximation

• Err on the conservative side:

– OKifwedecidesomethingislivewhenit’snot

– Butwe’dbetternotdeallocateanobjectthatwill

be used later on

15

Reachability
• An object is reachable if it can be accessed by

following pointers from live data

• Safe policy: delete unreachable objects

– An unreachable object can never be

accessed again by the program

• The object is definitely garbage

– A reachable object may be accessed in the

future

• The object could be garbage but will be

retained anyway

16

Roots

• At a given program point, we define liveness as

being data reachable from the root set:

– Global variables

– Local variables of all live method activations

(i.e., the stack)

• At the machine level, we also consider the

register set (usually stores local or global

variables)

• Next: techniques for pointer chasing and

garbage collection

17

Reference Counting (Smart Pointers)

• Old technique (1960)

• Each object has count of number of pointers to

it from other objects and from the stack

– When count reaches 0, object can be deallocated

• Counts tracked by either compiler or manually

• To find pointers, need to know layout of objects

– In particular, need to distinguish pointers from ints

• Method works mostly for reclaiming memory;

doesn’thandlefragmentationproblem

18

Reference Counting Example

stack
1

1

2

19

Reference Counting Example

stack
1

1

2

1

1

20

Reference Counting Example

stack
1

1

2

1

1

21

Reference Counting Example

stack
1

1

2

1

1

0

22

Reference Counting Example

stack
1 2

1

1

23

Reference Counting Example

stack
1 2

1

1 0

24

Reference Counting Example

stack

1

25

Tradeoffs

• Advantage: incremental technique

– Generally small, constant amount of work per memory write

– With more effort, can even bound running time

• Disadvantages:

– Cascading decrements can be expensive

– Also requires extra storage for reference counts

– Can’tcollectcycles,sincecountsnevergoto0

26

Mark and Sweep GC

• Idea: Only objects reachable from stack could

possibly be live

– Every so often, stop the world and do GC:

• Mark all objects on stack as live

• Until no more reachable objects,

– Mark object reachable from live object as live

• Deallocate any non-reachable objects

• This is a tracing garbage collector

• Does not handle fragmentation problem

27

Mark and Sweep Example

stack

28

Mark and Sweep Example

stack

29

Mark and Sweep Example

stack

30

Mark and Sweep Example

stack

31

Mark and Sweep Example

stack

32

Mark and Sweep Example

stack

33

Mark and Sweep Example

stack

34

Tradeoffs with Mark and Sweep

35

Tradeoffs with Mark and Sweep

• Pros:

– No problem with cycles

– Memory writes have no cost

• Cons:

– Fragmentation

• Available space broken up into many small pieces

– Thus many mark-and-sweep systems may also have a

compaction phase (like defragmenting your disk)

– Cost proportional to heap size

• Sweep phase needs to traverse whole heap – it touches

dead memory to put it back on to the free list

– Not appropriate for real-time applications

• Youwouldn’tlikeyourauto’sbrakingsystemtostopworkingfora

GC while you are trying to stop at a busy intersection

36

Stop and Copy GC

• Like mark and sweep, but only touches live

objects

– Divide heap into two equal parts (semispaces)

– Only one semispace active at a time

– At GC time, flip semispaces

• Trace the live data starting from the stack

• Copy live data into other semispace

• Declare everything in current semispace dead; switch to

other semispace

37

Stop and Copy Example

stack

38

Stop and Copy Example

stack

①

①

39

Stop and Copy Example

stack

①

①

②

②

40

Stop and Copy Example

stack

①

①

②

②

③

③

41

Stop and Copy Tradeoffs

42

Stop and Copy Tradeoffs

• Pros:

– Only touches live data

– No fragmentation; automatically compacts

• Will probably increase locality

• Cons:

– Requires twice the memory space

– Likemarkandsweep,needto“stopthe

world”

• Program must stop running to let garbage

collector move around data in the heap

43

The Generational Principle

Object lifetime increases

M
o
re

 o
b
je

ct
s

li
ve

“Young

objects

die quickly;

old objects

keep living”

44

Using The Generational Principle

• Some objects live longer

– For instance, there are typically some objects allocated at

initialization that live until the process exits.

• Some objects live shorter

– For instance, loop variables don't last long at all.

• Between these two extremes are objects that live for the

durationofsomeintermediatecomputation(the“lump”).

• Many applications have this general shape.

• Focus on the fact that a majority of objects "die young".

45

Generational Collection

• Long lived objects get copied over and over

– Idea: Have more than one semispace, divide

into generations

• Older generations collected less often

• Objects that survive many collections get

pushed into older generations

• Need to track pointers from old to young

generations to use as roots for young

generation collection

• GC in Java 2 is based on this idea

46

MoreIssuesinGC(cont’d)

• Stopping the world is a big problem

– Unpredictable performance

• Bad for real-time systems

– Need to stop all threads

• Without a much more sophisticated GC

• Attemptat“one-sizefitsall”solution

– Impossible to be optimal for all programs

– So correctness and safety come first

47

What Does GC Mean to You?

• Ideally, nothing!

– It should make your life easier

– Andshouldn’taffectperformancetoomuch

• If GC becomes a problem, hard to solve

– You can set parameters of the GC

– You can modify your program

• Butdon’toptimizetooearly!

48

Dealing with GC Problems

• Best idea: Measure where your problems are coming

from

• For Java VM, try running with

– -verbose:gc

– Prints out messages with statistics when a GC

occurs

49

Bad Ideas (Usually)

• Calling System.gc()

– This is probably a bad idea

– You have no idea what the GC will do

– And it will take a while

• Managing memory yourself

– Object pools, free lists, object recycling

– GC’shavebeenheavilytunedtobeefficient

