The Map Method

- Simplification of Boolean Expression
 - Minimum # of terms, minimum # of literals
 - To reduce complexity of digital logic gates
 - The simplest expression is not unique
- Methods:
 - Algebraic minimization \Rightarrow lack of specific rules
 - Section 2.4
 - Karnaugh map or K-map
 - Combination of 2, 4, ... adjacent squares

Logic circuit \Leftrightarrow Boolean function \Leftrightarrow Truth table \Leftrightarrow K-map

 \Leftrightarrow Canonical form (sum of minterms, product of maxterms)

 \Leftrightarrow (Simplifier) standard form (sum of products, product of sums)

The Map Method

A Karnaugh map is a graphical tool for assisting in the general simplification procedure.

Two-Variable Maps

▶ 2 variables \rightarrow 4 minterms \rightarrow 4 squares.

Rules for K-Maps

- We can reduce functions by circling 1's in the Kmap
- Each circle represents minterm reduction
- Following circling, we can deduce minimized andor form.
- Rules to consider
- Every cell containing a 1 must be included at least once.
- The largest possible "power of 2 rectangle" must be enclosed.
- The 1's must be enclosed in the smallest possible number of rectangles.

Two-Variable Maps (Cont.)

Two variable maps:

$$f = a$$

F = AB' + A'B

Two-variable Map

Fig. 3-2 Representation of Functions in the Map

 $m_1 + m_2 + m_3 = x'y + xy' + xy = x + y$

2-Variable Map Simplification Example (1)

- Example: F(X,Y) = XY' + XY
- From the map, we see that F(X,Y) = X.

Note: There are implied 0s in other boxes.

This can be justified using algebraic manipulations: F(X,Y) = XY' + XY = X(Y' + Y)

$$= X(Y' + Y)$$

= X.1

= X

2-Variable Map Simplification Example(2)

• Example:

G(x,y) = m1 + m2 + m3

 $G(\mathbf{x},\mathbf{y}) = \mathbf{m}\mathbf{1} + \mathbf{m}\mathbf{2} + \mathbf{m}\mathbf{3}$ $= \mathbf{X'Y} + \mathbf{XY'} + \mathbf{XY}$

From the map, we can see that

$$\mathbf{G} = \mathbf{X} + \mathbf{Y}$$

2-Variable Map Simplification Example(3)

- Example:
 - $F = \Sigma(m0,m1)$

×	У	F
0	0	1
0	1	1
1	0	0
1	1	0

Three-Variable Maps

▶ 3 variables \rightarrow 8 minterms (m0 – m7).

How can we locate a minterm square on the map?

→ Use figure (a) OR → use column # and row # from figure (b) E.g. m_5 is in row 1 column 01 (5 $_{10} = 101_2$) Q. Show the area representing X'? Y'? Z'?

Three-Variable map

- 8 minterms for 3 binary variables
- Any two adjacent squares differ by only one variable

Fig. 3-3 Three-variable Map

Three-Variable Maps (Cont.)

- By combining squares <u>in powers of 2</u>, we reduce number of literals in a product term, reducing the literal cost, thereby reducing the other two cost criteria.
- On a 3-variable K-Map:
 - One square represents a minterm with three variables
 - Two adjacent squares represent a product term with two variables
 - Four "adjacent" terms represent a product term with one variables
 - Eight "adjacent" terms is the function of all ones (logic 1).

3-Variable Map Simplification Example (1)

- Adjacent Squares
 - m0+m2 = XYZ + XYZ = XZ(Y+Y) = XZ
 - m4+m6 = XYZ + XYZ = XZ(Y+Y) = ZX

Note that Z' wraps from left edge to right edge.

3-Variable Map Simplification Example (2)

- F = X'Y'Z' + X'YZ' + XY'Z' + XYZ'
 - $= \mathsf{Z'} (\mathsf{X'Y'} + \mathsf{X'Y} + \mathsf{XY'} + \mathsf{XY})$
 - = Z' (X' (Y'+Y) + X (Y'+Y))
 - = Z' (X'+ X)
 - = Z'

3-Variable Map Simplification Example(3)

F = AB'C' + AB'C + ABC + ABC' + A'B'C + A'BC'

F=A+B'C+BC'

3-Variable Map Simplification Example (4)

- Example:
 - $F(x, y, z) = \Sigma m(2, 3, 6, 7)$

- Applying the Minimization Theorem three times: $F(x, y, z) = \overline{x} y z + x y z + \overline{x} y \overline{z} + x y \overline{z}$ $= yz + y \overline{z}$ = y
- Thus the four terms that form a 2 × 2 square correspond to the term "y".

3-Variable Map Simplification Example(5)

Example: Simplify $F(x, y, z) = \Sigma m (2, 3, 4, 5)$ Y XZ 11 00 01 10 X'Y 0 1 1 **X** 1 1 1 Ζ XY'

 $\mathbf{F}(\mathbf{X},\mathbf{Y},\mathbf{Z}) = \mathbf{X'Y} + \mathbf{XY'}$

3-Variable Map Simplification Example(6)

Example: Simplify

G (a, b, c) = Σm (3, 4, 6, 7)

G(a,b,c) = bc + ac'

3-Variable Map Simplification Example(7)

Example: Simplify F(X, Y, Z) = X'Z + X'Y + XY'Z + YZ F(X, Y, Z) = Σm (1, 2, 3, 5, 7)

- In general, as more squares are combined, we obtain a product term with fewer literals.
- Overlap is allowed.

 $F(x, y, z) = z + \overline{x} y$

Examples 3-1 and 3-2

Fig. 3-4 Map for Example 3-1; $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Fig. 3-5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Examples 3-3 and 3-4

Fig. 3-6 Map for Example 3-3; $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

One square represents one minterm, giving a term of three literals

- Two adjacent squares represent a term of two literals
- Four adjacent squares represent a term of one literal

Fig. 3-7 Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B

Four-Variable Map

Fig. 3-8 Four-variable Map

- Two adjacent squares represent a term of three literals
- Four adjacent squares represent a term of two literals
- Eight adjacent squares represent a term of one literal The larger the number of squares combined, the smaller the number of literals in the term

Flat Map Vs Torus

Examples 3-5 and 3-6

Fig. 3-9 Map for Example 3-5; F(w, x, y, z)= Σ (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'

Fig.3-10 Map for Example 3-6; $A'B'C \not H B'CD' + A'BCD'$ AB'C' = B'D' + B'C' + A'CD'

4-Variable Map Simplification Example

► $F = \sum m(0,1,2,4,5,6,8,9,12,13,14)$

 $\mathbf{F} = \mathbf{Y'} + \mathbf{XZ'} + \mathbf{W'Z'}$

4-Variable Map Simplification Example

- $F = \sum m(0,2,4,5,6,7,10,13,15)$
- Do it and show it to me next time!