The Map Method

» Simplification of Boolean Expression
— Minimum # of terms, minimum # of literals
— To reduce complexity of digital logic gates
— The simplest expression is not unique

 Methods:

— Algebraic minimization = lack of specific rules
* Section 2.4

— Karnaugh map or K-map
« Combination of 2, 4, ... adjacent squares

Logic circuit << Boolean function < Truth table < K-map

< Canonical form (sum of minterms, product of maxterms)
< (Simplifier) standard form (sum of products, product of sums)




The Map Method

A Karnaugh map is a graphical tool for assisting in
the general simplification procedure.



Two-Variable Maps

» 2 variables 2 4 minterms 2> 4 squares.
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Fig. 2-8 Two-Variable Map




Rules for K-Maps

» We can reduce functions by circling 1’s in the K-
map

» Each circle represents minterm reduction

» Following circling, we can deduce minimized and-
or form.

» Rules to consider

D Every cell containing a 1 must be included at
least once.

3 The largest possible “power of 2 rectangle” must
be enclosed.

pdThe 1’s must be enclosed in the smallest possible
number of rectangles.



Two-Variable Maps (Cont.)

» Two variable maps:
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Two-variable Map
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Fig. 3-2 Representation of Functions in the Map

m,+m,+m;=Xy+Xxy +xy=x+y



2-Variable Map Simplification Example

(1)

» Example: F(X,Y) = XY’ + XY
» From the map, we see that

F(X,Y) = X. 0
Note: There are implied Os in other boxes.

» This can be justified using algebraic manipulations:
FOX,Y) = XY’ + XY

= X(Y’ +Y)
= X.1
= X



2-Variable Map Simplification Example
(2)

» Example:
GO,y =ml + m2 + m3

G(x,y) =ml + m2 + m3
=XY+ XY’ + XY

From the map, we can see that

G=X+Y




2-Variable Map Simplification Example
(3)

» Example:
F=2(mMO,mT1)
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Using algebraic manipulations
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Three-Variable Maps

» 3 variables=> 8 minterms (m0O - m7).
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Fig. 2-10 Three-Variable Map

How can we locate a minterm square on the map?

- Use figure (a) OR -2 use column # and row # from figure (b)
E.g. ms 1sinrow | column 01 (5 ,,=101,)

Q. Show the area representing X’? Y’? 77



Three-Variable map

* 8 minterms for 3 binary variables
* Any two adjacent squares differ by only
one variable
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Fig. 3-3 Three-variable Map



Three-Variable Maps (Cont.)

» By combining squares jin powers of 2, we reduce
number of literals in a product term, reducing the

literal cost, thereby reducing the other two cost
criteria.

» On a 3-variable K-Map:

- One square represents a minterm with three variables

- Two adjacent squares represent a product term with two
variables

- Four “adjacent” terms represent a product term with one
variables

- Eight “adjacent” terms is the function of all ones (logic 1).




3-Variable Map Simplification Example (1)

» Adjacent Squares
- mO0+m2 = XYZ + XYZ = XZ(Y+Y) = XZ
* m4+mb6 = XYZ + XYZ = XZ(Y+Y) = ZX

Note that 2’ wraps from left edge to right edge.



3-Variable Map Simplification Example (2)
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3-Variable Map Simplification Example
(3)
» F=AB’C’ +AB'C +ABC +ABC' + A’B'C + A’BC’
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3-Variable Map Simplification Example

(4)
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» Example: ?k

F(x,y, 2)=3m (2,3, 6, 7) 0 1] 1
Y
X[1 1 1

» Applying the Minimization Theorem three times: _
F(x,y,z)=xyztxyzt+txyz+txyz

=yz tyZ
-y

» Thus the four terms that form a 2 x 2 square correspond to the term

Y.




3-Variable Map Simplification Example
(5)

» Example: Simplify
F(x,y,z)=2m (2, 3, 4, 5)
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F(X,Y,Z) = XY + XY’



3-Variable Map Simplification Example
(6)

» Example: Simplify
G(a, b,d=2m (3, 4, 6, 7)
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G (a,b,c) =bc + ac’



3-Variable Map Simplification Example
(7)
» Example: Simplify
FX,Y,Z) =XZ+ XY+ XYZ+YZ
FX,Y,Z)=3m(1,2,3,5,7)

< v /XY
* In general, as more squares X 00 119
are combined, we obtain a 0 1 1
product term with fewer X1 1 |1
literals.

 Overlap 1s allowed.



Examples 3-1 and 3-2
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Fig. 3-4 Map for Example 3-1; F(x, y, z) = 2(2.3,4,5) =x"y + xy’
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Fig. 3-5 Map for Example 3-2; F(x, y, z) = 2(3,4,6,7) = yz + xZ'



Examples 3-3 and 3-4
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Fig. 3-6 Map for Example 3-3; F(x, y, z) = 2(0,2,4,5,6) = 7’ + xy’ |Itel’a|S
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Fig. 3-7 Map for Example 3-4; A'C+ A'B+ AB'C + BC=C+ A'B



Four-Variable Map
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Fig. 3-8 Four-variable Map

« Two adjacent squares represent a term of three literals

* Four adjacent squares represent a term of two literals

 Eight adjacent squares represent a term of one literal

The larger the number of squares combined, the smaller the
number of literals in the term



Flat Map Vs Torus
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Examples 3-5 and 3-6
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Fig. 3-9 Map for Example 3-5; F(w, x, v, z)

=2(0,1,2,4,5,6,8,9,12,13,14) =y + w'z" + xz’
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Fig.3-10 Map for Example 3-6; A’B'C% B'CD’ + A'BCD’
+ AB'C'=B'D"+ B'C' + A'CD’



4-Variable Map Simplification Example

» F=2>2m(0,1,2,4,5,6,8,9,12,13,14)

F=Y’+XZ +WZ’



4-Variable Map Simplification Example

» F =2Xm(0,2,4,5,6,7,10,13,15)

» Do it and show it to me next time!



