The Map Method

- Simplification of Boolean Expression
- Minimum \# of terms, minimum \# of literals
- To reduce complexity of digital logic gates
- The simplest expression is not unique
- Methods:
- Algebraic minimization \Rightarrow lack of specific rules
- Section 2.4
- Karnaugh map or K-map
- Combination of $2,4, \ldots$ adjacent squares
Logic circuit \Leftrightarrow Boolean function \Leftrightarrow Truth table \Leftrightarrow K-map
\Leftrightarrow Canonical form (sum of minterms, product of maxterms)
\Leftrightarrow (Simplifier) standard form (sum of products, product of sums)

The Map Method

A Karnaugh map is a graphical tool for assisting in the general simplification procedure.

Two-Variable Maps

, 2 variables $\rightarrow 4$ minterms $\rightarrow 4$ squares.

Fig. 2-8 Two-Variable Map

Rules for K-Maps

- We can reduce functions by circling l's in the Kmap
- Each circle represents minterm reduction
- Following circling, we can deduce minimized andor form.
- Rules to consider

気 Every cell containing a 1 must be included at least once.
\#The largest possible "power of 2 rectangle" must be enclosed.
*The l's must be enclosed in the smallest possible number of rectangles.

Two-Variable Maps (Cont.)

- Two variable maps:

$$
g=b^{\prime}
$$

Two-variable Map

m_{0}	m_{1}
m_{2}	m_{3}

(a)

(b)

Fig. 3-1 Two-variable Map

Fig. 3-2 Representation of Functions in the Map

$$
m_{1}+m_{2}+m_{3}=x^{\prime} y+x y^{\prime}+x y=x+y
$$

2-Variable Map Simplification Example

 (1)- Example: $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{XY}{ }^{\prime}+\mathrm{XY}$
- From the map, we see that $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{X}$. Note: There are implied Os in other boxes.

- This can be justified using algebraic manipulations:

$$
\begin{aligned}
F(X, Y) & =X Y^{\prime}+X Y \\
& =X\left(Y^{\prime}+Y\right) \\
& =X .1 \\
& =X
\end{aligned}
$$

2-Variable Map Simplification Example

 (2)- Example:

$$
\mathrm{G}(\mathrm{x}, \mathrm{y})=\mathrm{m} 1+\mathrm{m} 2+\mathrm{m} 3
$$

$$
\mathrm{G}(\mathrm{x}, \mathrm{y}) \quad=\mathrm{m} 1+\mathrm{m} 2+\mathrm{m} 3
$$

$$
=X^{\prime} Y+X Y^{\prime}+X Y
$$

From the map, we can see that

$$
G=X+Y
$$

2-Variable Map Simplification Example

 (3)- Example:

$$
\mathrm{F}=\Sigma(\mathrm{m} 0, \mathrm{ml})
$$

Using algebraic manipulations

x	y	F
0	0	1
0	1	1
1	0	0
1	1	0

$F=\Sigma(\mathrm{mO}, \mathrm{ml})$
$=x^{\prime} y+x^{\prime} y^{\prime}$
$=x^{\prime}\left(y+y^{\prime}\right)$

Three-Variable Maps

- 3 variables $\rightarrow 8$ minterms ($\mathrm{m} 0-\mathrm{m} 7$).

Fig. 2-10 Three-Variable Map
How can we locate a minterm square on the map?
\rightarrow Use figure (a) OR \rightarrow use column \# and row \# from figure (b)
E.g. $\quad m_{5}$ is in row 1 column $01\left(5_{10}=101_{2}\right)$
Q. Show the area representing X^{\prime} ? Y^{\prime} ? Z^{\prime} ?

Three-Variable map

- 8 minterms for 3 binary variables
- Any two adjacent squares differ by only one variable

$$
\begin{aligned}
& m_{4}+m_{6}=x y^{\prime} z^{\prime}+i^{\text {Pdfigrabber }} x z^{\prime}+\left(y^{\prime}+y\right)=x z^{\prime}
\end{aligned}
$$

(a)

(b)

Fig. 3-3 Three-variable Map

Three-Variable Maps (Cont.)

By combining squares in powers of 2, we reduce number of literals in a product term, reducing the literal cost, thereby reducing the other two cost criteria.

On a 3-variable K-Map:

- One square represents a minterm with three variables
- Two adjacent squares represent a product term with two variables
- Four "adjacent" terms represent a product term with one variables
- Eight "adjacent" terms is the function of all ones (logic 1).

3-Variable Map Simplification Example (1)

- Adjacent Squares
- $\mathrm{m} 0+\mathrm{m} 2=\mathrm{XYZ}+\mathrm{XYZ}=\mathrm{XZ}(\mathrm{Y}+\mathrm{Y})=\mathrm{XZ}$
- $\mathrm{m} 4+\mathrm{m} 6=\mathrm{XYZ}+\mathrm{XYZ}=\mathrm{XZ}(\mathrm{Y}+\mathrm{Y})=\mathrm{ZX}$

Note that Z' wraps from left edge to right edge.

3-Variable Map Simplification Example (2)

$$
\begin{aligned}
F & =X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z^{\prime}+X Y Z^{\prime} \\
& =Z^{\prime}\left(X^{\prime} Y^{\prime}+X^{\prime} Y+X Y^{\prime}+X Y\right) \\
& =Z^{\prime}\left(X^{\prime}\left(Y^{\prime}+Y\right)+X\left(Y^{\prime}+Y\right)\right) \\
& =Z^{\prime}\left(X^{\prime}+X\right) \\
& =Z^{\prime}
\end{aligned}
$$

3-Variable Map Simplification Example

 (3)- $F=A B^{\prime} \mathrm{C}^{\prime}+\mathrm{AB} B^{\prime} \mathrm{C}+A B C+\mathrm{ABC} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$

BC		
A 00011110		
0	0	0

$$
F=A+B^{\prime} C+B C^{\prime}
$$

3-Variable Map Simplification Example

 (4)- Example:

$$
F(x, y, z)=\Sigma m(2,3,6,7)
$$

- Applying the Minimization Theorem three times:

$$
\begin{aligned}
\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) & =\overline{\mathbf{x}} \mathbf{y} \mathbf{z}+\mathbf{x} \mathbf{y} \mathbf{z}+\overline{\mathbf{x}} \mathbf{y} \overline{\mathbf{z}}+\mathbf{x} \mathbf{y} \overline{\mathbf{z}} \\
& =\mathbf{y z}+\mathbf{y} \overline{\mathbf{z}} \\
& =\mathbf{y}
\end{aligned}
$$

- Thus the four terms that form a 2×2 square correspond to the term "y".

3-Variable Map Simplification Example

 (5)- Example: Simplify
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(2,3,4,5)$

$$
\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\mathbf{X}^{\prime} \mathbf{Y}+\mathbf{X Y}
$$

3-Variable Map Simplification Example

 (6)- Example: Simplify
$G(a, b, c)=\Sigma m(3,4,6,7)$

$$
\mathrm{G}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\mathrm{bc}+\mathrm{ac}
$$

3-Variable Map Simplification Example (7)

- Example: Simplify

$$
\begin{aligned}
& F(X, Y, Z)=X^{\prime} Z+X^{\prime} Y+X Y^{\prime} Z+Y Z \\
& F(X, Y, Z)=\Sigma m(1,2,3,5,7)
\end{aligned}
$$

- In general, as more squares are combined, we obtain a product term with fewer literals.
- Overlap is allowed.

$$
F(x, y, z)=z+\bar{x} y
$$

Examples 3-1 and 3-2

Fig. 3-4 Map for Example 3-1; $F(x, y, z)=\Sigma(2,3,4,5)=x^{\prime} y+x y^{\prime}$

Fig. 3-5 Map for Example 3-2; $F(x, y, z)=\Sigma(3,4,6,7)=y z+x z^{\prime}$

Examples 3-3 and 3-4

Fig. 3-6 Map for Example 3-3; $F(x, y, z)=\Sigma(0,2,4,5,6)=z^{\prime}+x y^{\prime}$

One square represents one minterm, giving a term of three literals

- Two adjacent squares represent a term of two literals
- Four adjacent squares represent a term of one literal

Fig. 3-7 Map for Example 3-4; $A^{\prime} C+A^{\prime} B+A B^{\prime} C+B C=C+A^{\prime} B$

Four-Variable Map

m_{0}	m_{1}	m_{3}	m_{2}
m_{4}	m_{5}	m_{7}	m_{6}
m_{12}	m_{13}	m_{15}	m_{14}
m_{8}	m_{9}	m_{11}	m_{10}

(a)

(b)

Fig. 3-8 Four-variable Map

- Two adjacent squares represent a term of three literals
- Four adjacent squares represent a term of two literals
- Eight adjacent squares represent a term of one literal The larger the number of squares combined, the smaller the number of literals in the term

Flat Map Vs Torus

Examples 3-5 and 3-6

Fig. 3-9 Map for Example 3-5; $F(w, x, y, z)$

Fig.3-10 Map for Example 3-6; $A^{\prime} B^{\prime} C^{\mathbf{X}}-B^{\prime} C D^{\prime}+A^{\prime} B C D^{\prime}$

$$
+A B^{\prime} C^{\prime}=B^{\prime} D^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C D^{\prime}
$$

4-Variable Map Simplification Example

- $F=\sum m(0,1,2,4,5,6,8,9,12,13,14)$

$$
F=Y^{\prime}+X Z^{\prime}+W^{\prime} \mathbf{Z}^{\prime}
$$

4-Variable Map Simplification Example

- $F=\Sigma m(0,2,4,5,6,7,10,13,15)$
- Do it and show it to me next time!

