
Digital Design and Binary Numbers 

 

 

UNIT-1 



 Digital Systems and Binary Numbers 

 Digital age and information age 

 Digital computers 

 General purposes 

 Many scientific, industrial and commercial applications 

 Digital systems 

 Telephone switching exchanges 

 Digital camera 

 Electronic calculators, PDA's 

 Digital TV 

 Discrete information-processing systems 

 Manipulate discrete elements of information 

 For example, {1, 2, 3, …} and {A, B, C, …}… 



Analog and Digital Signal 

 Analog system 

 The physical quantities or signals may vary continuously over a specified 

range. 

 Digital system 

 The physical quantities or signals can assume only discrete values. 

 Greater accuracy 
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t 

X(t) 

Analog signal Digital signal 



Binary Digital Signal 

 An information variable represented by physical quantity. 

 For digital systems, the variable takes on discrete values. 

 Two level, or binary values are the most prevalent values. 

 Binary values are represented abstractly by: 

 Digits 0 and 1 

 Words (symbols) False (F) and True (T) 

 Words (symbols) Low (L) and High (H)  

 And words On and Off 

 Binary values are represented by values                                                 

or ranges of values of physical quantities. 
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Decimal Number System 

 Base (also called radix) = 10  

 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } 

 Digit Position 

 Integer & fraction 

 Digit Weight 

 Weight = (Base) 
Position

 

 Magnitude 

 Sum of “Digit x Weight” 

 Formal Notation 

1 0 -1 2 -2 

5 1 2 7 4 

10 1 0.1 100 0.01 

500 10 2 0.7 0.04 

d2*B
2
+d1*B

1
+d0*B

0
+d-1*B

-1
+d-2*B

-2 

(512.74)10 



Octal Number System 

 Base = 8  

 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 } 

 Weights 

 Weight = (Base) 
Position

 

 Magnitude 

 Sum of “Digit x Weight” 

 Formal Notation 
1 0 -1 2 -2 

8 1 1/8 64 1/64 

5 1 2 7 4 

5 *8
2
+1 *8

1
+2 *8

0
+7 *8

-1
+4 *8

-

2 

          =(330.9375)10 

  (512.74)8 



Binary Number System 

 Base = 2  

 2 digits { 0, 1 }, called binary digits or “bits” 

 Weights 

 Weight = (Base) 
Position

 

 Magnitude 

 Sum of “Bit x Weight” 

 Formal Notation 

 Groups of bits       4 bits = Nibble 

                                    8 bits = Byte 

1 0 -1 2 -2 

2 1 1/2 4 1/4 

1 0 1 0 1 

1 *2
2
+0 *2

1
+1 *2

0
+0 *2

-1
+1 *2

-

2 

              =(5.25)10 

  (101.01)2 

1 0 1 1 

1 1 0 0 0 1 0 1 



Hexadecimal Number System 

 Base = 16  

 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F } 

 Weights 

 Weight = (Base) 
Position

 

 Magnitude 

 Sum of “Digit x Weight” 

 Formal Notation 
1 0 -1 2 -2 

16 1 1/16 256 1/256 

1 E 5 7 A 

1 *16
2
+14 *16

1
+5 *16

0
+7 *16

-1
+10 *16

-2 

               =(485.4765625)10 

(1E5.7A)16 



The Power of 2 

n  2n 

0 20=1 

1 21=2 

2 22=4 

3 23=8 

4 24=16 

5 25=32 

6 26=64 

7 27=128 

n  2n 

8 28=256 

9 29=512 

10 210=1024 

11 211=2048 

12 212=4096 

20 220=1M 

30 230=1G 

40 240=1T 

Mega 

Giga 

Tera 

Kilo 



Addition 

 Decimal Addition 

5 5 

5 5 + 

0 1 1 

= Ten ≥ Base 

 Subtract a Base 

1 1 Carry 



Binary Addition 

 Column Addition 

1 0 1 1 1 1 

1 1 1 1 0 + 

0 0 0 0 1 1 1 

≥ (2)10 

1 1 1 1 1 1 

= 61 
 

= 23 

= 84 



Binary Subtraction 

 Borrow a “Base” when needed 

0 0 1 1 1 0 

1 1 1 1 0 − 

0 1 0 1 1 1 0 

= (10)2 

2 

2 

2 2 

1 

0 0 0 

1 

= 77 
 

= 23 

= 54 



Binary Multiplication 

 Bit by bit 

0 1 1 1 1 

0 1 1 0 

0 0 0 0 0 

0 1 1 1 1 

0 1 1 1 1 

0 0 0 0 0 

0 1 1 0 1 1 1 0 

x 



Number Base Conversions 

Decimal 

(Base 10) 

Octal 

(Base 8) 

Binary 

(Base 2) 

Hexadecimal 

(Base 16) 

Evaluate 
Magnitude 

Evaluate 
Magnitude 

Evaluate 
Magnitude 



Decimal (Integer) to Binary Conversion 

 Divide the number by the ‘Base’ (=2) 

 Take the remainder (either 0 or 1) as a coefficient 

 Take the quotient and repeat the division 

Example: (13)10 

Quotient Remainder Coefficient 

Answer:      (13)10 = (a3 a2 a1 a0)2 = (1101)2 

MSB           LSBMSB           LSB  

13 / 2 =      6 1             a0 = 1 

 6 / 2 =      3 0             a1 = 0 

 3 / 2 =      1 1             a2 = 1 
 1 / 2 =      0 1             a3 = 1 



Decimal (Fraction) to Binary Conversion 

 Multiply the number by the ‘Base’ (=2) 

 Take the integer (either 0 or 1) as a coefficient 

 Take the resultant fraction and repeat the division 

Example: (0.625)10 

Integer Fraction Coefficient 

Answer:      (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2 

MSB           LSBMSB           LSB  

0.625 * 2 =    1    .    25 

0.25 * 2 =    0    .    5          a-2 = 0 

0.5 * 2 =    1    .    0          a-3 = 1 

a-1 = 1 



Decimal to Octal Conversion 

Example: (175)10 

Quotient Remainder Coefficient 

Answer:      (175)10 = (a2 a1 a0)8 = (257)8 

175 / 8 =      21 7             a0 = 7 

 21 / 8 =      2 5             a1 = 5 

 2 / 8 =      0 2             a2 = 2 

Example: (0.3125)10 

Integer Fraction Coefficient 

Answer:      (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8 

0.3125 * 8 =    2    .    5 

0.5 * 8 =    4    .    0          a-2 = 4 

a-1 = 2 



Binary − Octal Conversion 

 8 = 23 

 Each group of 3 bits represents an octal 

digit 

Octal Binary 

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

Example: 

(  1 0 1 1 0 . 0 1  )2 

(  2       6    .   2   )8 

Assume Zeros 

Works both ways (Binary to Octal & Octal to Binary) 



Binary − Hexadecimal Conversion 

 16 = 24 

 Each group of 4 bits represents a 

hexadecimal digit 

Hex Binary 
0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

A 1 0 1 0 

B 1 0 1 1 

C 1 1 0 0 

D 1 1 0 1 

E 1 1 1 0 

F 1 1 1 1 

Example: 

(  1 0 1 1 0 . 0 1  )2 

( 1      6      .   4   )16 

Assume Zeros 

Works both ways (Binary to Hex & Hex to Binary) 



Octal − Hexadecimal Conversion 

 Convert to Binary as an intermediate step 

Example: 

( 0 1 0 1 1 0 . 0 1 0 )2 

( 1       6     .    4   )16 

Assume Zeros 

Works both ways (Octal to Hex & Hex to Octal) 

(   2      6    .    2   )8 

Assume Zeros 



Decimal, Binary, Octal and Hexadecimal 

Decimal Binary Octal Hex 
00 0000 00 0 

01 0001 01 1 

02 0010 02 2 

03 0011 03 3 

04 0100 04 4 

05 0101 05 5 

06 0110 06 6 

07 0111 07 7 

08 1000 10 8 

09 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 



Complements 

 There are two types of complements for each base-r system: the radix complement and 

diminished radix complement.  

 Diminished Radix Complement - (r-1)’s Complement 

 Given a number N in base r having n digits, the (r–1)’s complement of N is 

defined as: 

   (rn –1) – N 

 Example for 6-digit decimal numbers: 

 9’s complement is (rn – 1)–N = (106–1)–N = 999999–N 

 9’s complement of 546700 is 999999–546700 = 453299 

 Example for 7-digit binary numbers: 

 1’s complement is (rn  – 1) – N = (27–1)–N = 1111111–N 

 1’s complement of 1011000 is 1111111–1011000 = 0100111 

 Observation: 

 Subtraction from (rn – 1) will never require a borrow 

 Diminished radix complement can be computed digit-by-digit 

 For binary: 1 – 0 = 1 and 1 – 1 = 0  

 



Complements 

 1’s Complement (Diminished Radix Complement) 

 All ‘0’s become ‘1’s 

 All ‘1’s become ‘0’s 

Example (10110000)2 

                  (01001111)2 

If you add a number and its 1’s complement … 

1 0 1 1 0 0 0 0 

+  0 1 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 



Complements 

 Radix Complement 

 

 

 

 

 Example: Base-10 

 

 
 

 Example: Base-2 

The r's complement of an n-digit number N in base r is defined as  

rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r  1) 's 

complement, we note that the r's complement is obtained by adding 1 

to the (r  1) 's complement, since rn – N = [(rn  1) – N] + 1. 

The 10's complement of 012398 is 987602 

The 10's complement of 246700 is 753300   

The 2's complement of 1101100 is 0010100  

The 2's complement of 0110111 is 1001001  



Complements 

 2’s Complement (Radix Complement) 

 Take 1’s complement then add 1 

 Toggle all bits to the left of the first ‘1’ from the right 

Example: 

Number: 

1’s Comp.: 

0 1 0 1 0 0 0 0 

1 0 1 1 0 0 0 0 

0 1 0 0 1 1 1 1 

+                        1 

OR 

1 0 1 1 0 0 0 0 

0 0 0 0 1 0 1 0 



Complements 

 Subtraction with Complements 

 The subtraction of two n-digit unsigned numbers M – N in base r can be 

done as follows: 

 



Complements 

 Example 1.5 

 Using 10's complement, subtract 72532 – 3250. 

 

 

 

 

 

 

 Example 1.6  

 Using 10's complement, subtract 3250 – 72532. 

 

 

 

 

There is no end carry.  

Therefore, the answer is – (10's complement of 30718) =  69282.  



Complements 

 Example 

 Given the two binary numbers X = 1010100 and Y = 1000011, perform the 

subtraction (a) X – Y ; and (b) Y  X, by using 2's complement.  

 

There is no end carry. 

Therefore, the answer is 

Y – X =  (2's complement 

of 1101111) =  0010001.  



Complements 

 Subtraction of unsigned numbers can also be done by means of the (r  1)'s 

complement. Remember that the (r  1) 's complement is one less then the r's 

complement. 

 Example 

 Repeat Example, but this time using 1's complement.  

 

 

 

There is no end carry, 

Therefore, the answer is Y – 

X =  (1's complement of 

1101110) =  0010001.  



 Signed Binary Numbers 

To represent negative integers, we need a notation for negative 

values. 

It is customary to represent the sign with a bit placed in the 

leftmost position of the number since binary digits. 

The convention is to make the sign bit 0 for positive and 1 for 

negative. 

Example: 

 

 

 

 
 

Table 1.3 lists all possible four-bit signed binary numbers in the 

three representations. 



Signed Binary Numbers 



Signed Binary Numbers 

 Arithmetic addition 

 The addition of two numbers in the signed-magnitude system follows the rules of 

ordinary arithmetic. If the signs are the same, we add the two magnitudes and 

give the sum the common sign. If the signs are different, we subtract the smaller 

magnitude from the larger and give the difference the sign if the larger magnitude.  

 The addition of two signed binary numbers with negative numbers represented in 

signed-2's-complement form is obtained from the addition of the two numbers, 

including their sign bits.  

 A carry out of the sign-bit position is discarded.  

 Example: 

 

 

 



Signed Binary Numbers 

 Arithmetic Subtraction 

 In 2’s-complement form: 

 

 

 

 

 

 

 Example: 

1. Take the 2’s complement of the subtrahend (including the sign bit) 

and add it to the minuend (including sign bit).  

2. A carry out of sign-bit position is discarded. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A B A B

A B A B

      

      

( 6)  ( 13) (11111010  11110011) 

(11111010 + 00001101) 

00000111 (+ 7) 



 Binary Codes 

 BCD Code 

 A number with k decimal digits will 

require 4k bits in BCD.  

 Decimal 396 is represented in BCD 

with 12bits as 0011 1001 0110, with 

each group of 4 bits representing one 

decimal digit. 

  A decimal number in BCD is the 

same as its equivalent binary number 

only when the number is between 0 

and 9.  

 The binary combinations 1010 

through 1111 are not used and have 

no meaning in BCD. 

 



Binary Code 

 Example: 

 Consider decimal 185 and its corresponding value in BCD and binary: 

 

 

 

  BCD addition  

 

 

 



Binary Code 

 Example: 

 Consider the addition of 184 + 576 = 760 in BCD: 

 

 

 

 

 

 

 

 Decimal Arithmetic: (+375) + (-240) = +135 

 

 
Hint 6: using 10’s of BCD 



Binary Codes 

 Other Decimal Codes  

 



Binary Codes 

 Gray Code 

 The advantage is that only bit in the 

code group changes in going from 

one number to the next. 

» Error detection. 

» Representation of analog data. 

» Low power design. 

 000 001 

010 

100 

110 111 

101 

011 

1-1 and onto!! 



Binary Codes 

 American Standard Code for Information Interchange (ASCII) Character Code  

 



Binary Codes 

 ASCII Character Code 



ASCII Character Codes 

 American Standard Code for Information Interchange (Refer to 

Table 1.7) 

 A popular code used to represent information sent as character-

based data. 

 It uses 7-bits to represent: 

 94 Graphic printing characters. 

 34 Non-printing characters. 

 Some non-printing characters are used for text format (e.g. BS = 

Backspace, CR = carriage return). 

 Other non-printing characters are used for record marking and 

flow control (e.g. STX and ETX start and end text areas). 



ASCII Properties 

 ASCII has some interesting properties: 

 Digits 0 to 9 span Hexadecimal values 3016 to 3916 

 Upper case A-Z span 4116 to 5A16 

 Lower case a-z span 6116 to 7A16 

» Lower to upper case translation (and vice versa) occurs by flipping bit 6. 

 



Binary Codes 

 Error-Detecting Code  

 To detect errors in data communication and processing, an eighth bit is 

sometimes added to the ASCII character to indicate its parity.  

 A parity bit is an extra bit included with a message to make the total 

number of 1's either even or odd. 

 Example: 

 Consider the following two characters and their even and odd parity:  

 

 



Binary Codes 

 Error-Detecting Code 

 Redundancy (e.g. extra information), in the form of extra bits, can be 

incorporated into binary code words to detect and correct errors.    

 A simple form of redundancy is parity, an extra bit appended onto the code 

word to make the number of 1’s odd or even. Parity can detect all single-

bit errors and some multiple-bit errors. 

 A code word has even parity if the number of 1’s in the code word is even. 

 A code word has odd parity if the number of 1’s in the code word is odd. 

 Example: 

 

 10001001 

10001001 

1 

0 (odd parity) Message B: 

Message A: (even parity) 



Floating-Point Representation 

 If we are clever programmers, we can perform 

floating-point calculations using any integer format. 

 This is called floating-point emulation, because 

floating point values aren’t stored as such; we just 

create programs that make it seem as if floating-

point values are being used. 

Most of today’s computers are equipped with 

specialized hardware that performs floating-point 

arithmetic with no special programming required. 

 Not embedded processors! 



 Floating-point numbers allow an arbitrary 

number of decimal places to the right of the 

decimal point. 

 For example:  0.5  0.25 = 0.125 

 They are often expressed in scientific notation.  

 For example:  

0.125 = 1.25  10-1 

5,000,000 = 5.0  106 

Floating-Point Representation 



 Computers use a form of scientific notation for 

floating-point representation  

 Numbers written in scientific notation have three 

components: 

Floating-Point Representation 



 Computer representation of a floating-point 

number consists of three fixed-size fields: 

 

 

 

 

 This is the standard arrangement of these fields. 

Note: Although “significand” and “mantissa” do not technically mean the same 

thing, many people use these terms interchangeably.  We use the term “significand” 

to refer to the fractional part of a floating point number. 

Floating-Point Representation 



 The one-bit sign field is the sign of the stored value. 

 The size of the exponent field determines the range 

of values that can be represented. 

 The size of the significand determines the precision 

of the representation. 

Floating-Point Representation 



We introduce a hypothetical “Simple Model” to 

explain the concepts 

 In this model: 

 A floating-point number is 14 bits in length 

 The exponent field is 5 bits 

 The significand field is 8 bits 

 

Floating-Point Representation 



 The significand is always preceded by an implied 

binary point. 

 Thus, the significand always contains a fractional 

binary value. 

 The exponent indicates the power of 2 by which the 

significand is multiplied. 

Floating-Point Representation 



 Example: 
 Express 3210 in the simplified 14-bit floating-point model. 

 We know that 32 is 25.  So in (binary) scientific 
notation 32 = 1.0 x 25 = 0.1 x 26.  

 In a moment, we’ll explain why we prefer the second notation 
versus the first. 

 Using this information, we put 110 (= 610) in the 
exponent field and 1 in the significand as shown. 

Floating-Point Representation 



 The illustrations shown at 

the right are all equivalent 

representations for 32 

using our simplified 

model. 

 Not only do these 

synonymous 

representations waste 

space, but they can also 

cause confusion. 

 

 Floating-Point Representation 



 Another problem with our system is that we have 

made no allowances for negative exponents.  We 

have no way to express 0.5 (=2 -1)!  (Notice that 

there is no sign in the exponent field.) 

    All of these problems can be fixed with no 

changes to our basic model. 

Floating-Point Representation 



 To resolve the problem of synonymous forms, 

we establish a rule that the first digit of the 

significand must be 1, with no ones to the left of 

the radix point.   

 This process, called normalization, results in a 

unique pattern for each floating-point number. 

 In our simple model, all significands must have the 

form 0.1xxxxxxxx 

 For example, 4.5 = 100.1 x 20 = 1.001 x 22 = 0.1001 x 

23.  The last expression is correctly normalized. 

 

 
    In our simple instructional model, we use no implied bits. 

Floating-Point Representation 



 To provide for negative exponents, we will use a 

biased exponent. 

 A bias is a number that is approximately midway 

in the range of values expressible by the 

exponent.  We subtract the bias from the value 

in the exponent to determine its true value. 

 In our case, we have a 5-bit exponent.  We will use 16 

for our bias.  This is called excess-16 representation. 

 In our model, exponent values less than 16 are 

negative, representing fractional numbers. 

Floating-Point Representation 



 Example: 

 Express 3210 in the revised 14-bit floating-point model. 

 We know that 32 = 1.0 x 25 = 0.1 x 26. 

 To use our excess 16 biased exponent, we add 16 to 

6, giving 2210 (=101102).  

 So we have: 

Example 1 



 Example: 
 Express 0.062510 in the revised 14-bit floating-point model. 

 We know that 0.0625 is 2-4.  So in (binary) scientific 

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3. 

 To use our excess 16 biased exponent, we add 16 to 

-3, giving 1310 (=011012).  

Example 2 



 Example: 
 Express -26.62510 in the revised 14-bit floating-point model. 

 We find 26.62510 = 11010.1012.  Normalizing, we 

have: 26.62510 = 0.11010101 x 2 5. 

 To use our excess 16 biased exponent, we add 16 to 

5, giving 2110 (=101012). We also need a 1 in the sign 

bit.  

Example 3 



 The IEEE has established a standard for 

floating-point numbers 

 The IEEE-754 single precision floating point 

standard uses an 8-bit exponent (with a bias of 

127) and a 23-bit significand. 

 The IEEE-754 double precision standard uses 

an 11-bit exponent (with a bias of 1023) and a 

52-bit significand. 

Floating-Point Standards  



 In both the IEEE single-precision and double-

precision floating-point standard, the significant has 

an implied 1 to the LEFT of the radix point. 

 The format for a significand using the IEEE format is: 1.xxx… 

 For example, 4.5 = .1001 x 23 in IEEE format is 4.5 = 1.001 x 22.  The 

1 is implied, which means is does not need to be listed in the 

significand (the significand would include only 001). 

Floating-Point Representation 



 Example: Express -3.75 as a floating point number 

using IEEE single precision. 

 First, let’s normalize according to IEEE rules: 

 3.75 = -11.112 = -1.111 x 21 

 The bias is 127, so we add 127 + 1 = 128 (this is our 

exponent) 

 The first 1 in the significand is implied, so we have: 

 

 

 

 Since we have an implied 1 in the significand, this equates 

to 

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75.  

(implied) 

Floating-Point Representation 



Linear Block Code 

 Hamming Code is a Linear Block Code. Linear Block Code 

means that the codeword is generated by multiplying the message 

vector with the generator matrix. 

 Minimum weight as large as possible. If minimum weight is 

2t+1, capable of detecting 2t error bits and correcting t error bits. 



Cyclic Codes 

 Hamming code is useful but there exist codes that offers same (if 

not larger) error control capabilities while can be implemented 

much simpler. 

 Cyclic code is a linear code that any cyclic shift of a codeword 

is still a codeword. 

 Makes encoding/decoding much simpler, no need of matrix 

multiplication. 



Cyclic code 

• Polynomial representation of cyclic codes.  

 C(x) = Cn-1x
n-1 + Cn-2x

n-2 + … + C1x
1 + C0x

0 ,  

  where, in this course, the coefficients belong to the 
binary field {0,1}. 

• That is, if the codeword is (1010011) (c6 first, c0 last), 
we write it as x6 + x4 +  x + 1.  

• Addition and subtraction of polynomials – Done by 
doing binary addition or subtraction on each bit 
individually, no carry and no borrow. 

• Division and multiplication of polynomials. Try divide 
x3 + x2 +  x + 1 by x + 1. 



Cyclic Code 

 A (n,k) cyclic code can be generated by a polynomial g(x) 
which has  
 degree n-k and  

 is a factor of xn - 1.  

 Call it the generator polynomial.  

 Given message bits, (mk-1…m1m0 ), the code is generated 
simply as: 

 

• In other words, C(x) can be considered as the 
product of m(x) and g(x).  



Example 

 A (7,4) cyclic code with g(x) = x3 + x + 1. 

 If m(x) = x3 + 1, C(x) = x6 + x4 +  x + 1. 



Error Detection with Cyclic Code 

 A (7,4) cyclic code with g(x) = x3 + x + 1. 

 If the received polynomial is x6 + x5 + x2 + 1, are there any 

errors?  Or, is this a code polynomial? 



Error Detection with Cyclic Code 

 A (7,4) cyclic code with g(x) = x3 + x + 1. 

 If the received polynomial is x6 + x5 + x2 + 1, are there any 

errors?  

 We divide x6 + x5 + x2 + 1 by x3 + x + 1, and the remainder is x3 

+ 1. The point is that the remainder is not 0. So it is not a code 

polynomial, so there are errors. 

 

 

 



Cyclic code used in IEEE 802 

 g(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + 

x4 + x2 + x + 1 

 all single and double bit errors  

 all errors with an odd number of bits  

 all burst errors of length 32 or less  

 



Division Circuit 

• You probably would ask that we can also detect errors with the 
Hamming code. However it needs matrix multiplication. The 
division can actually be done very efficiently, even with 
hardware.  

• Division of polynomials can be done efficiently by the division 
circuit. (just to know there exists such a thing, no need to 
understand it) 



Cyclic Code 

 One way of thinking it is to write it out as the generator matrix 

 • So, clearly, it is a linear code. Each row of the 
generator matrix is just a shifted version of the 
first row. Unlike Hamming Code.   

• Why is it a cyclic code?  



Example 

 The cyclic shift of C(x) = x6 + x4 +  x + 1 is C1(x) = x5 + x2 +  x 

+ 1. 

 It is still a code polynomial, because the code polynomial  is m(x) 

= x2 +1. 



Cyclic Code 

 Given a code polynomial 

• We have 

• Therefore, C1(x) is the cyclic shift of C(x) and  

• has a degree of no more than n-1 

• divides g(x) (why?) hence is a code 
polynomial. 



Cyclic Code 

 To generate a cyclic code is to find a polynomial that  

 has degree n-k  

 is a factor of xn -1. 



Generating Systematic Cyclic Code 

 A systematic code means that the first k bits are the data bits 

and the rest n-k bits are parity checking bits. 

 To generate it, we let   

    where 

• The claim is that C(x) must divide g(x) hence is 
a code polynomial.  

 33 mod 7 = 5. Hence 33-5=28 can be divided by 7.  



Example 

 A (7,4) cyclic code with g(x) = x3 + x + 1. 

 If m(x) = x3 + 1, the non-systematic code is C(x) = x6 + x4 +  x + 

1. 

 What is the systematic code? 



Binary Function Expression 

 So far have seen to possible ways 

 Binary equations 

 Truth tables 

 What other ways are there? 



Standard Forms 

 Facilitate simplification 

 Result in more desirable implementations 

 Standard Forms rely on two type of terms 

 Product Terms – Terms that are ANDed together 

» XYZ 

» (A+B)(C+D)(A+D) 

 Sum Terms – Terms that are ORed together 

» X+Y+Z 

» XYZ + VX  



Minterms 

 Boolean Functions can be defined by truth tables.  In a Boolean 

function, a product term in which all the variables appear is called 

a minterm of the function. 

 Minterms specify the function as an OR of the minterms (product 

terms). 

 



Minterm for 3 variables 

 Table 2-6 from text 



Minterms for n variable functions 

 For 2 variables have 4 minterms 

 X’Y’      X’Y       XY’     XY 

 For 3 variables have 8 minterms 

 X’Y’Z’   X’Y’Z   …     XYZ 

 In general, if a function has n variables there are 2n minterms 

 The subscript on the minterm is the decimal of the binary value 

represented 



Maxterms 

 A sum term that contains all the variables in complemented or 

un-complemented form is called a maxterm. 

 As before, if there a n variables then there are 2n maxterms. 



Maxterm table 

 The maxterms 



Specifying functions 

 Functions can be specified in minterm or maxterm notation 

 Minterm 

 F(X,Y,Z) =  ∑m(0,2,5,7) 

                 =  X’Y’Z’ + X’YZ’ + XY’Z + XYZ 

 And then you can work on simplifying this 

 Or could have also had 

 F(X,Y,Z) = m0 + m2 + m5 + m7     

 



More examples 

 From text 

 F(X,Y,Z)’ = ∑m(1,3,4,6) 

                  = (m1+m3+m4+m6) 

 Or  complementing both sides of the equation 

 F(X,Y,Z)  = (m1+m3+m4+m6)’ 

 By DeMorgan’s 

                  = m1’ · m3’ · m4’ · m6’ 

                  = M1 · M3 · M4 · M6  

 As mj’ = Mj    



And to continue 

 Then have: 

 F(X,Y,Z) = M1 · M3 · M4 · M6 

  =(X+Y+Z’)(X+Y’+Z’)(X’+Y+Z)(X’+Y’+Z) 

 Another expression form for the function as a product of 

maxterms 

 F(X,Y,Z) = ∏M (1,3,4,6) 



Another example 

Express the function F(A,B,C) = AB+A’C in 
minterm notation 

First expand to where each term has all three 
variables in it. 

AND term with 1 to expand.     For the 1st term 1= 
(C+C’) and for the 2nd the 1 is (B+B’) 

Now have 
 F(A,B,C)=AB(C+C’) + A’C(B+B’) 

 F(A,B,C)=ABC + ABC’ + A’BC + A’B’C 

                 = m7 + m6 + m3 + m1   

 

 

 



Summary of important properties 

 Most important properties of minterms: 

 There are 2n minterms for n Boolean variables.  These minterms can be 

generated from the binary numbers from 0 to 2n -1 

 Any Boolean function can be expressed as a logical sum of minterms. 

 The complement of a function contains those minterms not included in the 

original function. 

 A function that contains all 2n minterms is equal to a logical 1. 



Expansion of another function 

 Express E = Y’ + X’Z’ in minterm notation. 

   E = (X+X’)Y’ + X’Z’(Y+Y’) 

      = XY’(Z+Z’) + X’Y’(Z+Z’)+X’YZ’+X’Y’Z’ 

      = XY’Z+XY’Z’+X’Y’Z+X’Y’Z’+X’YZ’ 

       = m5 + m4 + m1 + m0 + m2    

       = m5 + m4 + m2 + m1 + m0  

 Text shows how to find the minterm expression using a truth 

table. 



Sum-of-Products 

Starting with the minterm specification of a function 
 F(X,Y,Z) = ∑m(2,3,4,7) 

                  = (m2+m3+m4+m7) 

                  = X’YZ’ + X’YZ + XY’Z’ + XYZ 

Each minterm represents a product term and then 
we sum them to generate the function. 

This form is called sum-of-products. 

Even when in minimal form it is still the sum-of-
products. 

 



Producing sum-of-products 

 Form other form of the function 

 F = AB + C(D + E) 

 Can distribute the C 

 F = AB + CD + CE  

 And now have the function in sum-of-products form. 

 The sum-of-products form is a 2 level implementation of the function in 

gates 


