Digital Design and Binary Numbers

■ UNIT-1

Digital Systems and Binary Numbers

\square Digital age and information age
\square Digital computers

- General purposes
- Many scientific, industrial and commercial applications
\square Digital systems
- Telephone switching exchanges
- Digital camera
- Electronic calculators, PDA's
- Digital TV
\square Discrete information-processing systems
- Manipulate discrete elements of information
- For example, $\{1,2,3, \ldots\}$ and $\{A, B, C, \ldots\} \ldots$

Analog and Digital Signal

\square Analog system

- The physical quantities or signals may vary continuously over a specified range.
\square Digital system
- The physical quantities or signals can assume only discrete values.
- Greater accuracy

Analog signal

Digital signal

Binary Digital Signal

\square An information variable represented by physical quantity.
\square For digital systems, the variable takes on discrete values.

- Two level, or binary values are the most prevalent values.
\square Binary values are represented abstractly by:
- Digits 0 and 1
- Words (symbols) False (F) and True (T)
- Words (symbols) Low (L) and High (H)
- And words On and Off
- Binary values are represented by values or ranges of values of physical quantities.

Binary digital signal

Decimal Number System

\square Base (also called radix) $=10$

- 10 digits $\{0,1,2,3,4,5,6,7,8,9\}$

回 Digit Position

- Integer \& fraction
\square Digit Weight
- Weight $=(\text { Base })^{\text {Position }}$
\square Magnitude
- Sum of "Digit x Weight"
\square Formal Notation

$$
\begin{array}{ccccc}
500 & 10 & 2 & 0.7 & 0.04 \\
d_{2}^{*} B^{2}+d_{1}{ }^{*} B^{1}+d_{0}^{*} B^{0}+d_{-1}{ }^{*} B^{-1}+d_{-2}^{*} B^{-2}
\end{array}
$$

$(512.74)_{10}$

Octal Number System

回 Base $=8$

- 8 digits $\{0,1,2,3,4,5,6,7\}$
\square Weights
- Weight $=(\text { Base })^{\text {Position }}$
\square Magnitude
- Sum of "Digit x Weight"
\square Formal Notation

Binary Number System

\square Base $=2$

- 2 digits $\{0,1\}$, called binary digits or "bits"
\square Weights
- Weight $=(\text { Base })^{\text {Position }}$

■ Magnitude

- Sum of "Bit x Weight"
\square Formal Notation

\square Groups of bits 4 bits $=$ Nibble

$$
8 \text { bits }=\text { Byte }
$$

$=(5.25)_{10}$
(101.01) ${ }_{2}$

1011

11000101

Hexadecimal Number System

回 Base $=16$

- 16 digits $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
\square Weights
- Weight $=(\text { Base })^{\text {Position }}$
\square Magnitude
- Sum of "Digit x Weight"
(Formal Notation

$$
\begin{aligned}
\begin{array}{ccccc}
256 & 16 & 1 & 1 / 16 & 1 / 256 \\
1 & E & E & 5 & \boxed{7} \\
2 & 1 & 0 & A & -1 \\
\hline
\end{array} \\
\begin{array}{rl}
1 * 16^{2}+14 & * 16^{1}+5 * 16^{0}+7 * 16^{-1}+10 * 16^{-2} \\
& =(485.4765625)_{10}
\end{array}
\end{aligned}
$$

$(1 E 5.7 A)_{16}$

The Power of 2

n	2^{n}			
0	$2^{0}=1$			
1	$2^{1}=2$			
2	$2^{2}=4$			
3	$2^{3}=8$			
4	$2^{4}=16$			
5	$2^{5}=32$			
6	$2^{6}=64$			
7	$2^{7}=128$			
1		\quad	n	2^{n}
:---:	:---:			
8	$2^{8}=256$			
9	$2^{9}=512$			
10	$2^{10}=1024$			
11	$2^{11}=2048$			
12	$2^{12}=4096$			
20	$2^{20}=1 \mathrm{M}$			
30	$2^{30}=1 \mathrm{G}$			
40	$2^{40}=1 \mathrm{~T}$	\quad Kilo Mega		

Addition

\square Decimal Addition

Binary Addition

- Column Addition

1	1	1	1	1	1		$=\mathbf{6 1}$
	1	1	1	1	0	1	$=\mathbf{1} 3$
+		1	0	1	1	1	$=84$
1	0	1	0	1	0	0	$\geq(2)_{10}$

Binary Subtraction

\square Borrow a "Base" when needed

Binary Multiplication

\square Bit by bit

Number Base Conversions

Decimal (Integer) to Binary Conversion

回 Divide the number by the 'Base' (=2)
\square Take the remainder (either 0 or 1) as a coefficient
\square Take the quotient and repeat the division

Example: (13) ${ }_{10}$
Quotient Remainder Coefficient

Decimal (Fraction) to Binary Conversion

\square Multiply the number by the 'Base' (=2)
\square Take the integer (either 0 or 1) as a coefficient
回 Take the resultant fraction and repeat the division

Example: (0.625) ${ }_{10}$

	Integer	Fraction	Coefficient
0.625 *	* $2=1$	25	$a_{-1}=1$
0.25 *	* $2=0$		$\mathrm{a}_{-2}=0$
0.5 *	* $2=1$		$\mathrm{a}_{-3}=1$
Answer:	$(0.625)_{10}=\left(0 . a_{-1} \mathrm{a}_{-2} \mathrm{a}_{-3}\right)_{2}=(0.101)_{2}$		
		$\begin{array}{r} \uparrow \\ \text { MSB } \end{array}$	LSB

Decimal to Octal Conversion

Example: (175) ${ }_{10}$
Quotient Remainder Coefficient

$$
\begin{array}{rlrl}
175 / 8 & = & 21 & 7 \\
21 / 8 & = & 2 & 5 \\
2 & a_{0}=7 \\
2 & = & 2 & a_{1}=5 \\
& \text { Answer: } & (175)_{10}=\left(a_{2} a_{1} a_{0}\right)_{8}=(257)_{8}
\end{array}
$$

Example: (0.3125) ${ }_{10}$

$$
\begin{array}{lccc}
& \text { Integer } & \text { Fraction } & \text { Coefficient } \\
0.3125 * 8=2 & 5 & a_{-1}=2 \\
0.5 & * & 4 & 0
\end{array}
$$

Answer: $\quad(0.3125)_{10}=\left(0 . a_{-1} a_{-2} a_{-3}\right)_{8}=(0.24)_{8}$

Binary - Octal Conversion

回 $8=2^{3}$
\square Each group of 3 bits represents an octal digit

Example:

Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	11

Works both ways (Binary to Octal \& Octal to Binary)

Binary - Hexadecimal Conversion

回 $16=2^{4}$
\square Each group of 4 bits represents a hexadecimal digit

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	01100
5	01101
6	01110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

Works both ways (Binary to Hex \& Hex to Binary)

Octal - Hexadecimal Conversion

\square Convert to Binary as an intermediate step
Example:

Works both ways (Octal to Hex \& Hex to Octal)

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Complements

\square There are two types of complements for each base- r system: the radix complement and diminished radix complement.
\square Diminished Radix Complement - (r-1)'s Complement
\bullet Given a number N in base r having n digits, the $(r-1)$'s complement of N is defined as:

$$
\left(r^{n}-1\right)-N
$$

\square Example for 6-digit decimal numbers:
-9's complement is $\left(r^{n}-1\right)-N=\left(10^{6}-1\right)-N=999999-N$

- 9's complement of 546700 is $999999-546700=453299$

■ Example for 7-digit binary numbers:

- 1's complement is $\left(r^{n}-1\right)-N=\left(2^{7}-1\right)-N=1111111-N$
- 1 's complement of 1011000 is $1111111-1011000=0100111$
\square Observation:
- Subtraction from ($r^{n}-1$) will never require a borrow
- Diminished radix complement can be computed digit-by-digit
- For binary: $1-0=1$ and $1-1=0$

Complements

- 1's Complement (Diminished Radix Complement)
- All '0's become ' 1 's
- All ' 1 's become ' 0 's

Example (10110000) ${ }_{2}$

$$
\Rightarrow(01001111)_{2}
$$

If you add a number and its 1 's complement ...

$$
\begin{array}{r}
10110000 \\
+01001111 \\
\hline 11111111
\end{array}
$$

Complements

\square Radix Complement
The r 's complement of an n-digit number N in base r is defined as $r^{n}-N$ for $N \neq 0$ and as 0 for $N=0$. Comparing with the $(r-1)$'s complement, we note that the r 's complement is obtained by adding 1 to the $(r-1)$'s complement, since $r^{n}-N=\left[\left(r^{n}-1\right)-N\right]+1$.

- Example: Base-10

The 10's complement of 012398 is 987602
The 10's complement of 246700 is 753300
\square Example: Base-2
The 2 's complement of 1101100 is 0010100 The 2's complement of 0110111 is 1001001

Complements

\square 2's Complement (Radix Complement)

- Take 1's complement then add 1

OR *Toggle all bits to the left of the first ' 1 ' from the right Example:
Number:
1's Comp.:

10110000
01001111

01010000

10110000

01010000

Complements

\square Subtraction with Complements

- The subtraction of two n-digit unsigned numbers $M-N$ in base r can be done as follows:

1. Add the minuend M to the r 's complement of the subtrahend N. Mathematically, M $+\left(r^{n}-N\right)=M-N+r^{n}$.
2. If $M \geqq N$, the sum will produce and end carry r^{n}, which can be discarded; what is left is the result $M-N$.
3. If $M<N$, the sum does not produce an end carry and is equal to $r^{n}-(N-M)$, which is the r 's complement of $(N-M)$. To obtain the answer in a familiar form, take the r 's complement of the sum and place a negative sign in front.

Complements

- Example 1.5
- Using 10's complement, subtract 72532-3250.

M	$=72532$	
10 's complement of \quad	$=\frac{+96750}{}$	
Sum	$=169282$	
Discard end carry 10^{5}	$=$	$\frac{-100000}{69282}$
Answer	$=$	692

■ Example 1.6

- Using 10's complement, subtract 3250 - 72532 .

	$\mathrm{M}=$	03250	
10's complement of	$\mathrm{N}=$	+27468	
	Sum	$=r$	30718

There is no end carry.

Therefore, the answer is $-(10$'s complement of 30718$)=-69282$.

Complements

\square Example

- Given the two binary numbers $X=1010100$ and $Y=1000011$, perform the subtraction (a) $X-Y$; and (b) $Y-X$, by using 2's complement.

(a)	$\mathrm{X}=$	1010100
	2's complement of $\mathrm{Y}=$	+0111101
	Sum $=$	10010001
	Discard end carry $2^{7}=$	-10000000
	Answer. $\mathrm{X}-\mathrm{Y}=$	0010001
(b)	$\mathrm{Y}=$	100001
	2's complement of $\mathrm{X}=$	$+\underline{0101100}$
	Sum $=$	1101111

There is no end carry.
Therefore, the answer is
$\mathrm{Y}-\mathrm{X}=-(2$'s complement of 1101111$)=-0010001$.

Complements

\square Subtraction of unsigned numbers can also be done by means of the $(r-1)$'s complement. Remember that the $(r-1)$'s complement is one less then the r 's complement.
\square Example

- Repeat Example, but this time using 1's complement.

| (a) $\quad X-Y=1010100-1000011$ | |
| ---: | ---: | ---: |
| X | $=1010100$ |
| | 1's complement of $Y= \pm 0111100$ |
| Sum | $=10010000$ |
| | $\quad 1$ |
| End-around carry | $=\quad+\quad 1$ |
| Answer. $X-Y$ | $=0010001$ |

(b) $Y-X=1000011-1010100$		
Y	$=1000011$	
1's complement of X	$=+0101011$	
Sum	$=r$	1101110

There is no end carry, Therefore, the answer is Y -$\mathrm{X}=-$ (1's complement of $1101110)=-0010001$.

Signed Binary Numbers

\square To represent negative integers, we need a notation for negative values.
\square It is customary to represent the sign with a bit placed in the leftmost position of the number since binary digits.
\square The convention is to make the sign bit 0 for positive and 1 for negative.
\square Example:

Signed-magnitude representation:
Signed-1's-complement representation:
Signed-2's-complement representation:

10001001
11110110
11110111
\square Table 1.3 lists all possible four-bit signed binary numbers in the three representations.

Signed Binary Numbers

Table 1.3
Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-8	1001	1000	1111

Signed Binary Numbers

■ Arithmetic addition

- The addition of two numbers in the signed-magnitude system follows the rules of ordinary arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common sign. If the signs are different, we subtract the smaller magnitude from the larger and give the difference the sign if the larger magnitude.
- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits.
- A carry out of the sign-bit position is discarded.
- Example:

+6	00000110		-6
+13	$\underline{00001101}$		+1111010
+19	00010011		$\underline{00001101}$
+6	00000110		00000111
$\frac{-6}{-7}$	$\underline{11110011}$		11111010
-7	11111001		-19

Signed Binary Numbers

\square Arithmetic Subtraction

- In 2's-complement form:

1. Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including sign bit).
2. A carry out of sign-bit position is discarded.

$$
\begin{aligned}
& (\pm A)-(+B)=(\pm A)+(-B) \\
& (\pm A)-(-B)=(\pm A)+(+B)
\end{aligned}
$$

回 Example:

$$
\begin{aligned}
(-6)-(-13) & \Longrightarrow(11111010-11110011) \\
& \Longrightarrow(11111010+00001101) \\
& \Longrightarrow 00000111(+7)
\end{aligned}
$$

Binary Codes

\square BCD Code

- A number with k decimal digits will require 4 k bits in BCD.
- Decimal 396 is represented in BCD with 12bits as 001110010110 , with each group of 4 bits representing one decimal digit.
- A decimal number in BCD is the same as its equivalent binary number only when the number is between 0 and 9 .
- The binary combinations 1010 through 1111 are not used and have no meaning in BCD.

Table 1.4
Binary-Coded Decimal (BCD)

Decimal	BCD
Symbol	Digit

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Binary Code

\square Example:

- Consider decimal 185 and its corresponding value in BCD and binary:

$$
(185)_{10}=(000110000101)_{\mathrm{BCD}}=(10111001)_{2}
$$

■ BCD addition

4	0100	4	0100	8	1000
+5	+0101	$\frac{+8}{12}$	$\frac{+1000}{1100}$	$\frac{+9}{17}$	$\frac{+1001}{10001}$
9	1001	12	1010		+0110
			+0110		
			10010		10111

Binary Code

回 Example:

- Consider the addition of $184+576=760$ in BCD:

BCD	1	1		
	0001	1000	0100	184
	$\underline{+0101}$	$\underline{0111}$	$\underline{0110}$	+576
Binary sum	0111	10000	1010	
Add 6	$\underline{0110}$	$\underline{0110}$	$\underline{ }$	
BCD sum	0111	0110	0000	760

\square Decimal Arithmetic: $(+375)+(-240)=+135$

0	375
+9	760
0	135

Hint 6: using 10's of BCD

Binary Codes

\square Other Decimal Codes
Table 1.5
Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD $\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	Excess-3	$\mathbf{8 , 4 ,} \mathbf{- 2 ,} \mathbf{- 1}$
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Binary Codes

\square Gray Code

- The advantage is that only bit in the code group changes in going from one number to the next.
» Error detection.
» Representation of analog data.
» Low power design.

1-1 and onto!!

Table 1.6
Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Binary Codes

\square American Standard Code for Information Interchange (ASCII) Character Code
Table 1.7
American Standard Code for Information Interchange (ASCII)

$b_{4} b_{3} b_{2} b_{1}$	$b_{7} \boldsymbol{b}_{6} \boldsymbol{b}_{5}$							
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	-	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	*	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	-	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	\{
1100	FF	FS	,	$<$	L	1	1	\|
1101	CR	GS	-	$=$	M]	m	\}
1110	SO	RS	.	>	N	\wedge	n	\sim
1111	SI	US	1	?	O	-	o	DEL

Binary Codes

\square ASCII Character Code
Control characters

NUL	Null	DLE	Data-link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

ASCII Character Codes

\square American Standard Code for Information Interchange (Refer to Table 1.7)
\square A popular code used to represent information sent as characterbased data.
■ It uses 7-bits to represent:

- 94 Graphic printing characters.
- 34 Non-printing characters.
\square Some non-printing characters are used for text format (e.g. $\mathrm{BS}=$ Backspace, $\mathrm{CR}=$ carriage return).
\square Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

ASCII Properties

\square ASCII has some interesting properties:

- Digits 0 to 9 span Hexadecimal values 30_{16} to 39_{16}
- Upper case A-Z span 41_{16} to $5 \mathrm{~A}_{16}$
- Lower case a-z span 61_{16} to $7 \mathrm{~A}_{16}$
» Lower to upper case translation (and vice versa) occurs by flipping bit 6.

Binary Codes

\square Error-Detecting Code

- To detect errors in data communication and processing, an eighth bit is sometimes added to the ASCII character to indicate its parity.
- A parity bit is an extra bit included with a message to make the total number of 1's either even or odd.
■ Example:
- Consider the following two characters and their even and odd parity:

	With even parity	With odd parity
ASCII $\mathrm{A}=1000001$	01000001	11000001
ASCII $\mathrm{T}=1010100$	11010100	01010100

Binary Codes

\square Error-Detecting Code

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is parity, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all singlebit errors and some multiple-bit errors.
- A code word has even parity if the number of 1's in the code word is even.
- A code word has odd parity if the number of 1's in the code word is odd.
- Example:

$$
\begin{array}{ll}
\text { Message A: } & 100010011
\end{array} \text { (even parity) }
$$

Floating-Point Representation

\square If we are clever programmers, we can perform floating-point calculations using any integer format.
\square This is called floating-point emulation, because floating point values aren't stored as such; we just create programs that make it seem as if floatingpoint values are being used.

■ Most of today's computers are equipped with specialized hardware that performs floating-point arithmetic with no special programming required.

- Not embedded processors!

Floating-Point Representation

\square Floating-point numbers allow an arbitrary number of decimal places to the right of the decimal point.

- For example: $0.5 \times 0.25=0.125$
\square They are often expressed in scientific notation.
- For example:

$$
\begin{aligned}
& 0.125=1.25 \times 10^{-1} \\
& 5,000,000=5.0 \times 10^{6}
\end{aligned}
$$

Floating-Point Representation

\square Computers use a form of scientific notation for floating-point representation
\square Numbers written in scientific notation have three components:

Floating-Point Representation

\square Computer representation of a floating-point number consists of three fixed-size fields:

\square This is the standard arrangement of these fields.

Note: Although "significand" and "mantissa" do not technically mean the same thing, many people use these terms interchangeably. We use the term "significand" to refer to the fractional part of a floating point number.

Floating-Point Representation

\square The one-bit sign field is the sign of the stored value.
\square The size of the exponent field determines the range of values that can be represented.
\square The size of the significand determines the precision of the representation.

Floating-Point Representation

\square We introduce a hypothetical "Simple Model" to explain the concepts
\square In this model:

- A floating-point number is 14 bits in length
- The exponent field is 5 bits
- The significand field is 8 bits

Floating-Point Representation

\square The significand is always preceded by an implied binary point.
\square Thus, the significand always contains a fractional binary value.
\square The exponent indicates the power of 2 by which the significand is multiplied.

Floating-Point Representation

\square Example:

- Express 32_{10} in the simplified 14-bit floating-point model.
\square We know that 32 is 2^{5}. So in (binary) scientific notation $32=1.0 \times 2^{5}=0.1 \times 2^{6}$.
- In a moment, we'll explain why we prefer the second notation versus the first.
\square Using this information, we put $110\left(=6_{10}\right)$ in the exponent field and 1 in the significand as shown.

Floating-Point Representation

\square The illustrations shown at the right are all equivalent representations for 32 using our simplified model.

■ Not only do these synonymous representations waste space, but they can also cause confusion.

Floating-Point Representation

```
Sign
```

```
Exponent Significand
```

\square Another problem with our system is that we have made no allowances for negative exponents. We have no way to express $0.5\left(=2^{-1}\right)$! (Notice that there is no sign in the exponent field.)

All of these problems can be fixed with no changes to our basic model.

Floating-Point Representation

\square To resolve the problem of synonymous forms, we establish a rule that the first digit of the significand must be 1 , with no ones to the left of the radix point.
\square This process, called normalization, results in a unique pattern for each floating-point number.

- In our simple model, all significands must have the form 0.1xxxxxxxx
- For example, $4.5=100.1 \times 2^{0}=1.001 \times 2^{2}=0.1001 \times$ 2^{3}. The last expression is correctly normalized.

In our simple instructional model, we use no implied bits.

Floating-Point Representation

\square To provide for negative exponents, we will use a biased exponent.
\square A bias is a number that is approximately midway in the range of values expressible by the exponent. We subtract the bias from the value in the exponent to determine its true value.

- In our case, we have a 5-bit exponent. We will use 16 for our bias. This is called excess-16 representation.
\square In our model, exponent values less than 16 are negative, representing fractional numbers.

Example 1

■ Example:

- Express 32_{10} in the revised 14-bit floating-point model.
\square We know that $32=1.0 \times 2^{5}=0.1 \times 2^{6}$.
\square To use our excess 16 biased exponent, we add 16 to 6 , giving $22_{10}\left(=10110_{2}\right)$.
\square So we have:

$$
\begin{array}{l|lllll|llllll}
\hline 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0
$$

Example 2

■ Example:

- Express 0.0625_{10} in the revised 14-bit floating-point model.
\square We know that 0.0625 is 2^{-4}. So in (binary) scientific notation $0.0625=1.0 \times 2^{-4}=0.1 \times 2^{-3}$.
\square To use our excess 16 biased exponent, we add 16 to -3 , giving $13_{10}\left(=01101_{2}\right)$.

Example 3

\square Example:

- Express -26.625_{10} in the revised 14-bit floating-point model.
\square We find $26.625_{10}=11010.101_{2}$. Normalizing, we have: $26.625_{10}=0.11010101 \times 2{ }^{5}$.
\square To use our excess 16 biased exponent, we add 16 to 5 , giving $21_{10}\left(=10101_{2}\right)$. We also need a 1 in the sign bit.

$$
\begin{array}{l|llll|lllllll}
1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1
\end{array}
$$

Floating-Point Standards

■ The IEEE has established a standard for floating-point numbers
■ The IEEE-754 single precision floating point standard uses an 8-bit exponent (with a bias of 127) and a 23-bit significand.
\square The IEEE-754 double precision standard uses an 11-bit exponent (with a bias of 1023) and a 52-bit significand.

Floating-Point Representation

- In both the IEEE single-precision and doubleprecision floating-point standard, the significant has an implied 1 to the LEFT of the radix point.
- The format for a significand using the IEEE format is: 1.xxx...
- For example, $4.5=.1001 \times 2^{3}$ in IEEE format is $4.5=1.001 \times 2^{2}$. The 1 is implied, which means is does not need to be listed in the significand (the significand would include only 001).

Floating-Point Representation

\square Example: Express -3.75 as a floating point number using IEEE single precision.
\square First, let's normalize according to IEEE rules:
$-3.75=-11.11_{2}=-1.111 \times 2^{1}$

- The bias is 127 , so we add $127+1=128$ (this is our exponent)
- The first 1 in the significand is implied, so we have:

| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- |

(implied)

- Since we have an implied 1 in the significand, this equates to

$$
-(1) \cdot 111_{2} \times 2^{(128-127)}=-1.111_{2} \times 2^{1}=-11.11_{2}=-3.75
$$

Linear Block Code

\square Hamming Code is a Linear Block Code. Linear Block Code means that the codeword is generated by multiplying the message vector with the generator matrix.

- Minimum weight as large as possible. If minimum weight is $2 t+1$, capable of detecting $2 t$ error bits and correcting t error bits.

Cyclic Codes

■ Hamming code is useful but there exist codes that offers same (if not larger) error control capabilities while can be implemented much simpler.
\square Cyclic code is a linear code that any cyclic shift of a codeword is still a codeword.
\square Makes encoding/decoding much simpler, no need of matrix multiplication.

Cyclic code

- Polynomial representation of cyclic codes.
$C(x)=C_{n-1} x^{n-1}+C_{n-2} x^{n-2}+\ldots+C_{1} x^{l}+C_{0} x^{0}$,
where, in this course, the coefficients belong to the binary field $\{0,1\}$.
- That is, if the codeword is (1010011) (c6 first, $c 0$ last), we write it as $x^{6}+x^{4}+x+1$.
- Addition and subtraction of polynomials - Done by doing binary addition or subtraction on each bit individually, no carry and no borrow.
- Division and multiplication of polynomials. Try divide $x^{3}+x^{2}+x+1$ by $x+1$.

Cyclic Code

- A (n, k) cyclic code can be generated by a polynomial $g(x)$ which has
- degree $n-k$ and
- is a factor of $x^{n}-1$.

Call it the generator polynomial.
\square Given message bits, $\left(m_{k-1} \ldots m_{1} m_{0}\right)$, the code is generated simply as:

$$
C(x)=\sum_{j=0}^{k-1} m_{j} x^{j} g(x),
$$

- In other words, $C(x)$ can be considered as the product of $m(x)$ and $g(x)$.

Example

- A $(7,4)$ cyclic code with $g(x)=x^{3}+x+1$.
\square If $m(x)=x^{3}+1, C(x)=x^{6}+x^{4}+x+1$.

Error Detection with Cyclic Code

回 $(7,4)$ cyclic code with $g(x)=x^{3}+x+1$.
\square If the received polynomial is $x^{6}+x^{5}+x^{2}+1$, are there any errors? Or, is this a code polynomial?

Error Detection with Cyclic Code

- A $(7,4)$ cyclic code with $g(x)=x^{3}+x+1$.
\square If the received polynomial is $x^{6}+x^{5}+x^{2}+1$, are there any errors?
\square We divide $x^{6}+x^{5}+x^{2}+1$ by $x^{3}+x+1$, and the remainder is x^{3} +1 . The point is that the remainder is not 0 . So it is not a code polynomial, so there are errors.

Cyclic code used in IEEE 802

回 $\mathbf{g}(\mathbf{x})=\mathrm{x}^{32}+\mathrm{x}^{26}+\mathrm{x}^{23}+\mathrm{x}^{22}+\mathrm{x}^{16}+\mathrm{x}^{12}+\mathrm{x}^{11}+\mathrm{x}^{10}+\mathrm{x}^{8}+\mathrm{x}^{7}+\mathrm{x}^{5}+$ $x^{4}+x^{2}+x+1$

- all single and double bit errors
- all errors with an odd number of bits
- all burst errors of length 32 or less

Division Circuit

- You probably would ask that we can also detect errors with the Hamming code. However it needs matrix multiplication. The division can actually be done very efficiently, even with hardware.
- Division of polynomials can be done efficiently by the division circuit. (just to know there exists such a thing, no need to understand it)

Cyclic Code

\square One way of thinking it is to write it out as the generator matrix

$$
G=\left(\begin{array}{cccccccccc}
g_{n-k} & g_{n-k-1} & \ldots & g_{1} & g_{0} & 0 & 0 & 0 & \ldots & 0 \\
0 & g_{n-k} & g_{n-k-1} & \ldots & g_{1} & g_{0} & 0 & 0 & \ldots & 0 \\
& & & . & & & & & & \\
& & & . & & & & & & \\
0 & 0 & \ldots & 0 & g_{n-k} & g_{n-k-1} & \ldots & g_{1} & g_{0} & 0 \\
0 & 0 & 0 & \ldots & 0 & g_{n-k} & g_{n-k-1} & \cdots & g_{1} & g_{0}
\end{array}\right)
$$

- So, clearly, it is a linear code. Each row of the generator matrix is just a shifted version of the first row. Unlike Hamming Code.
- Why is it a cyclic code?

Example

\square The cyclic shift of $C(x)=x^{6}+x^{4}+x+1$ is $C^{1}(x)=x^{5}+x^{2}+x$ +1 .
\square It is still a code polynomial, because the code polynomial is $m(x)$ $=x^{2}+1$.

Cyclic Code

\square Given a code polynomial

$$
C(x)=C_{n-1} x^{n-1}+C_{n-2}^{-} x^{n-2}+\ldots+C_{1} x+C_{0}
$$

- We have
$x C(x)=C_{n-1}\left(x^{n}-1\right)+C_{n-2} x^{n-1}+\ldots+C_{1} x^{2}+C_{0} x+C_{n-1}=C_{n-1}\left(x^{n}-1\right)+C^{1}(x)$.
- Therefore, $C^{l}(x)$ is the cyclic shift of $C(x)$ and
- has a degree of no more than $n-1$
- divides $g(x)$ (why?) hence is a code polynomial.

Cyclic Code

- To generate a cyclic code is to find a polynomial that
- has degree $n-k$
- is a factor of $x^{n}-1$.

Generating Systematic Cyclic Code

\square A systematic code means that the first k bits are the data bits and the rest $n-k$ bits are parity checking bits.
回 To generate it, we let

$$
C(x)=m(x) x^{n-k}-r(x),
$$

where

$$
r(x)=m(x) x^{n-k} \bmod g(x) .
$$

- The claim is that $C(x)$ must divide $g(x)$ hence is a code polynomial.
$>33 \bmod 7=5$. Hence $33-5=28$ can be divided by 7 .

Example

回 $(7,4)$ cyclic code with $g(x)=x^{3}+x+1$.
回 If $m(x)=x^{3}+1$, the non-systematic code is $C(x)=x^{6}+x^{4}+x+$ 1.
\square What is the systematic code?

Binary Function Expression

- So far have seen to possible ways
- Binary equations
- Truth tables
\square What other ways are there?

Standard Forms

\square Facilitate simplification
\square Result in more desirable implementations
\square Standard Forms rely on two type of terms

- Product Terms - Terms that are ANDed together
» XYZ
» $(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})(\mathrm{A}+\mathrm{D})$
- Sum Terms - Terms that are ORed together
» $\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
» $\mathrm{XYZ}+\mathrm{VX}$

Minterms

\square Boolean Functions can be defined by truth tables. In a Boolean function, a product term in which all the variables appear is called a minterm of the function.
\square Minterms specify the function as an OR of the minterms (product terms).

Minterm for 3 variables

■ Table 2-6 from text

TABLE 2-6Minterms for Three Variables

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Product Term	Symbol	\mathbf{m}_{0}	\mathbf{m}_{1}	\mathbf{m}_{2}	$\mathrm{~m}_{3}$	$\mathrm{~m}_{4}$	$\mathrm{~m}_{5}$	$\mathrm{~m}_{6}$	$\mathrm{~m}_{7}$
0	0	0	$\bar{X} \bar{Y} \bar{Z}$	$\mathrm{~m}_{0}$	1	0	0	0	0	0	0	0
0	0	1	$\bar{X} \bar{Y} Z$	$\mathrm{~m}_{1}$	0	1	0	0	0	0	0	0
0	1	0	$\bar{X} Y \bar{Z}$	$\mathrm{~m}_{2}$	0	0	1	0	0	0	0	0
0	1	1	$\bar{X} Y \bar{Z}$	$\mathrm{~m}_{3}$	0	0	0	1	0	0	0	0
1	0	0	$X \bar{Y} \bar{Z}$	$\mathrm{~m}_{4}$	0	0	0	0	1	0	0	0
1	0	1	$X \bar{Y} Z$	$\mathrm{~m}_{5}$	0	0	0	0	0	1	0	0
1	1	0	$X Y \bar{Z}$	$\mathrm{~m}_{6}$	0	0	0	0	0	0	1	0
1	1	1	$X Y Z$	$\mathrm{~m}_{7}$	0	0	0	0	0	0	0	1

Minterms for n variable functions

回 For 2 variables have 4 minterms

- X'Y' X'Y XY' XY

回 For 3 variables have 8 minterms

- X'Y'Z' X'Y'Z ... XYZ
\square In general, if a function has n variables there are 2^{n} minterms
\square The subscript on the minterm is the decimal of the binary value represented

Maxterms

回 A sum term that contains all the variables in complemented or un-complemented form is called a maxterm.
\square As before, if there a n variables then there are 2^{n} maxterms.

Maxterm table

\square The maxterms

TABLE 2-7Maxterms for Three Variables

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Sum Term	Symbol	$\mathbf{M}_{\mathbf{0}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	\mathbf{M}_{3}	\mathbf{M}_{4}	$\mathbf{M}_{\mathbf{5}}$	\mathbf{M}_{6}	$\mathbf{M}_{\mathbf{7}}$
0	0	0	$X+Y+Z$	\mathbf{M}_{0}	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\bar{Z}$	M_{1}	1	0	1	1	1	1	1	1
0	1	0	$X+\bar{Y}+Z$	\mathbf{M}_{2}	1	1	0	1	1	1	1	1
0	1	1	$X+\bar{Y}+\bar{Z}$	\mathbf{M}_{3}	1	1	1	0	1	1	1	1
1	0	0	$\bar{X}+Y+Z$	M_{4}	1	1	1	1	0	1	1	1
1	0	1	$\bar{X}+\bar{Y}+\bar{Z}$	\mathbf{M}_{5}	1	1	1	1	1	0	1	1
1	1	0	$\bar{X}+\bar{Y}+Z$	\mathbf{M}_{6}	1	1	1	1	1	1	0	1
1	1	1	$\bar{X}+\bar{Y}+\bar{Z}$	\mathbf{M}_{7}	1	1	1	1	1	1	1	0

Specifying functions

\square Functions can be specified in minterm or maxterm notation
\square Minterm

- $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum \mathrm{m}(0,2,5,7)$

$$
=X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z+X Y Z
$$

- And then you can work on simplifying this
- Or could have also had
- $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{5}+\mathrm{m}_{7}$

More examples

回 From text

- $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})^{\prime}=\sum \mathrm{m}(1,3,4,6)$

$$
=\left(\mathrm{m}_{1}+\mathrm{m}_{3}+\mathrm{m}_{4}+\mathrm{m}_{6}\right)
$$

- Or complementing both sides of the equation
$-\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\left(\mathrm{m}_{1}+\mathrm{m}_{3}+\mathrm{m}_{4}+\mathrm{m}_{6}\right)$,
- By DeMorgan's

$$
\begin{aligned}
& =m_{1}^{\prime} \cdot m_{3}^{\prime} \cdot m_{4}^{\prime} \cdot m_{6}^{\prime} \\
& =M_{1} \cdot M_{3} \cdot M_{4} \cdot M_{6}
\end{aligned}
$$

- As $\mathrm{m}_{\mathrm{j}}{ }^{\prime}=\mathrm{M}_{\mathrm{j}}$

And to continue

\square Then have:

- $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{M}_{1} \cdot \mathrm{M}_{3} \cdot \mathrm{M}_{4} \cdot \mathrm{M}_{6}$
- $=\left(\mathrm{X}+\mathrm{Y}+\mathrm{Z}^{\prime}\right)\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right)\left(\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}\right)\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}\right)$
\square Another expression form for the function as a product of maxterms
$\square \mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Pi \mathrm{M}(1,3,4,6)$

Another example

回 Express the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{C}$ in minterm notation
\square First expand to where each term has all three variables in it.
\square AND term with 1 to expand. For the $1^{\text {st }}$ term $1=$ $\left(C+C^{\prime}\right)$ and for the $2^{\text {nd }}$ the 1 is $\left(B+B^{\prime}\right)$
回Now have
$-\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AB}\left(\mathrm{C}+\mathrm{C}^{\prime}\right)+\mathrm{A}^{\prime} \mathrm{C}\left(\mathrm{B}^{\prime}+\mathrm{B}^{\prime}\right)$
$-F(A, B, C)=A B C+A B C^{\prime}+A^{\prime} B C+A^{\prime} B^{\prime} C$

$$
=m_{7}+m_{6}+m_{3}+m_{1}
$$

Summary of important properties

\square Most important properties of minterms:

- There are 2^{n} minterms for n Boolean variables. These minterms can be generated from the binary numbers from 0 to $2^{\mathrm{n}}-1$
- Any Boolean function can be expressed as a logical sum of minterms.
- The complement of a function contains those minterms not included in the original function.
- A function that contains all 2^{n} minterms is equal to a logical 1 .

Expansion of another function

■ Express $\mathrm{E}=\mathrm{Y}^{\prime}+\mathrm{X}^{\prime} \mathrm{Z}^{\prime}$ in minterm notation.

$$
\begin{aligned}
\mathrm{E} & =\left(\mathrm{X}^{+}+\mathrm{X}^{\prime}\right) \mathrm{Y}^{\prime}+\mathrm{X}^{\prime} Z^{\prime}\left(Y^{\prime}+\mathrm{Y}^{\prime}\right) \\
& =X Y^{\prime}\left(Z+Z^{\prime}\right)+\mathrm{X}^{\prime} \mathrm{Y}^{\prime}\left(Z+Z^{\prime}\right)+\mathrm{X}^{\prime} Y Z^{\prime}+\mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime} \\
& =X Y^{\prime} Z+X Y^{\prime} Z^{\prime}+\mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z+\mathrm{X}^{\prime} \mathrm{Y}^{\prime} Z^{\prime}+\mathrm{X}^{\prime} \mathrm{YZ} Z^{\prime} \\
& =\mathrm{m}_{5}+\mathrm{m}_{4}+\mathrm{m}_{1}+\mathrm{m}_{0}+\mathrm{m}_{2} \\
& =\mathrm{m}_{5}+\mathrm{m}_{4}+\mathrm{m}_{2}+\mathrm{m}_{1}+\mathrm{m}_{0}
\end{aligned}
$$

\square Text shows how to find the minterm expression using a truth table.

Sum-of-Products

\square Starting with the minterm specification of a function

- $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum \mathrm{m}(2,3,4,7)$

$$
\begin{aligned}
& =\left(m_{2}+m_{3}+m_{4}+m_{7}\right) \\
& =X^{\prime} Y Z Z^{\prime}+X^{\prime} Y Z+X Y^{\prime} Z^{\prime}+X Y Z
\end{aligned}
$$

\square Each minterm represents a product term and then we sum them to generate the function.
\square This form is called sum-of-products.
\square Even when in minimal form it is still the sum-ofproducts.

Producing sum-of-products

回 Form other form of the function

- $\mathrm{F}=\mathrm{AB}+\mathrm{C}(\mathrm{D}+\mathrm{E})$
- Can distribute the C
- $\mathrm{F}=\mathrm{AB}+\mathrm{CD}+\mathrm{CE}$
- And now have the function in sum-of-products form.
- The sum-of-products form is a 2 level implementation of the function in gates

