
Digital Design and Binary Numbers

UNIT-1

 Digital Systems and Binary Numbers

 Digital age and information age

 Digital computers

 General purposes

 Many scientific, industrial and commercial applications

 Digital systems

 Telephone switching exchanges

 Digital camera

 Electronic calculators, PDA's

 Digital TV

 Discrete information-processing systems

 Manipulate discrete elements of information

 For example, {1, 2, 3, …} and {A, B, C, …}…

Analog and Digital Signal

 Analog system

 The physical quantities or signals may vary continuously over a specified

range.

 Digital system

 The physical quantities or signals can assume only discrete values.

 Greater accuracy

t

X(t)

t

X(t)

Analog signal Digital signal

Binary Digital Signal

 An information variable represented by physical quantity.

 For digital systems, the variable takes on discrete values.

 Two level, or binary values are the most prevalent values.

 Binary values are represented abstractly by:

 Digits 0 and 1

 Words (symbols) False (F) and True (T)

 Words (symbols) Low (L) and High (H)

 And words On and Off

 Binary values are represented by values

or ranges of values of physical quantities.

t

V(t)

Binary digital signal

Logic 1

Logic 0

undefine

Decimal Number System

 Base (also called radix) = 10

 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

 Digit Position

 Integer & fraction

 Digit Weight

 Weight = (Base)
Position

 Magnitude

 Sum of “Digit x Weight”

 Formal Notation

1 0 -1 2 -2

5 1 2 7 4

10 1 0.1 100 0.01

500 10 2 0.7 0.04

d2*B
2
+d1*B

1
+d0*B

0
+d-1*B

-1
+d-2*B

-2

(512.74)10

Octal Number System

 Base = 8

 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }

 Weights

 Weight = (Base)
Position

 Magnitude

 Sum of “Digit x Weight”

 Formal Notation
1 0 -1 2 -2

8 1 1/8 64 1/64

5 1 2 7 4

5 *8
2
+1 *8

1
+2 *8

0
+7 *8

-1
+4 *8

-

2

 =(330.9375)10

 (512.74)8

Binary Number System

 Base = 2

 2 digits { 0, 1 }, called binary digits or “bits”

 Weights

 Weight = (Base)
Position

 Magnitude

 Sum of “Bit x Weight”

 Formal Notation

 Groups of bits 4 bits = Nibble

 8 bits = Byte

1 0 -1 2 -2

2 1 1/2 4 1/4

1 0 1 0 1

1 *2
2
+0 *2

1
+1 *2

0
+0 *2

-1
+1 *2

-

2

 =(5.25)10

 (101.01)2

1 0 1 1

1 1 0 0 0 1 0 1

Hexadecimal Number System

 Base = 16

 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }

 Weights

 Weight = (Base)
Position

 Magnitude

 Sum of “Digit x Weight”

 Formal Notation
1 0 -1 2 -2

16 1 1/16 256 1/256

1 E 5 7 A

1 *16
2
+14 *16

1
+5 *16

0
+7 *16

-1
+10 *16

-2

 =(485.4765625)10

(1E5.7A)16

The Power of 2

n 2n

0 20=1

1 21=2

2 22=4

3 23=8

4 24=16

5 25=32

6 26=64

7 27=128

n 2n

8 28=256

9 29=512

10 210=1024

11 211=2048

12 212=4096

20 220=1M

30 230=1G

40 240=1T

Mega

Giga

Tera

Kilo

Addition

 Decimal Addition

5 5

5 5 +

0 1 1

= Ten ≥ Base

 Subtract a Base

1 1 Carry

Binary Addition

 Column Addition

1 0 1 1 1 1

1 1 1 1 0 +

0 0 0 0 1 1 1

≥ (2)10

1 1 1 1 1 1

= 61

= 23

= 84

Binary Subtraction

 Borrow a “Base” when needed

0 0 1 1 1 0

1 1 1 1 0 −

0 1 0 1 1 1 0

= (10)2

2

2

2 2

1

0 0 0

1

= 77

= 23

= 54

Binary Multiplication

 Bit by bit

0 1 1 1 1

0 1 1 0

0 0 0 0 0

0 1 1 1 1

0 1 1 1 1

0 0 0 0 0

0 1 1 0 1 1 1 0

x

Number Base Conversions

Decimal

(Base 10)

Octal

(Base 8)

Binary

(Base 2)

Hexadecimal

(Base 16)

Evaluate
Magnitude

Evaluate
Magnitude

Evaluate
Magnitude

Decimal (Integer) to Binary Conversion

 Divide the number by the ‘Base’ (=2)

 Take the remainder (either 0 or 1) as a coefficient

 Take the quotient and repeat the division

Example: (13)10

Quotient Remainder Coefficient

Answer: (13)10 = (a3 a2 a1 a0)2 = (1101)2

MSB LSBMSB LSB

13 / 2 = 6 1 a0 = 1

 6 / 2 = 3 0 a1 = 0

 3 / 2 = 1 1 a2 = 1
 1 / 2 = 0 1 a3 = 1

Decimal (Fraction) to Binary Conversion

 Multiply the number by the ‘Base’ (=2)

 Take the integer (either 0 or 1) as a coefficient

 Take the resultant fraction and repeat the division

Example: (0.625)10

Integer Fraction Coefficient

Answer: (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2

MSB LSBMSB LSB

0.625 * 2 = 1 . 25

0.25 * 2 = 0 . 5 a-2 = 0

0.5 * 2 = 1 . 0 a-3 = 1

a-1 = 1

Decimal to Octal Conversion

Example: (175)10

Quotient Remainder Coefficient

Answer: (175)10 = (a2 a1 a0)8 = (257)8

175 / 8 = 21 7 a0 = 7

 21 / 8 = 2 5 a1 = 5

 2 / 8 = 0 2 a2 = 2

Example: (0.3125)10

Integer Fraction Coefficient

Answer: (0.3125)10 = (0.a-1 a-2 a-3)8 = (0.24)8

0.3125 * 8 = 2 . 5

0.5 * 8 = 4 . 0 a-2 = 4

a-1 = 2

Binary − Octal Conversion

 8 = 23

 Each group of 3 bits represents an octal

digit

Octal Binary

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

Example:

(1 0 1 1 0 . 0 1)2

(2 6 . 2)8

Assume Zeros

Works both ways (Binary to Octal & Octal to Binary)

Binary − Hexadecimal Conversion

 16 = 24

 Each group of 4 bits represents a

hexadecimal digit

Hex Binary
0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

A 1 0 1 0

B 1 0 1 1

C 1 1 0 0

D 1 1 0 1

E 1 1 1 0

F 1 1 1 1

Example:

(1 0 1 1 0 . 0 1)2

(1 6 . 4)16

Assume Zeros

Works both ways (Binary to Hex & Hex to Binary)

Octal − Hexadecimal Conversion

 Convert to Binary as an intermediate step

Example:

(0 1 0 1 1 0 . 0 1 0)2

(1 6 . 4)16

Assume Zeros

Works both ways (Octal to Hex & Hex to Octal)

(2 6 . 2)8

Assume Zeros

Decimal, Binary, Octal and Hexadecimal

Decimal Binary Octal Hex
00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Complements

 There are two types of complements for each base-r system: the radix complement and

diminished radix complement.

 Diminished Radix Complement - (r-1)’s Complement

 Given a number N in base r having n digits, the (r–1)’s complement of N is

defined as:

 (rn –1) – N

 Example for 6-digit decimal numbers:

 9’s complement is (rn – 1)–N = (106–1)–N = 999999–N

 9’s complement of 546700 is 999999–546700 = 453299

 Example for 7-digit binary numbers:

 1’s complement is (rn – 1) – N = (27–1)–N = 1111111–N

 1’s complement of 1011000 is 1111111–1011000 = 0100111

 Observation:

 Subtraction from (rn – 1) will never require a borrow

 Diminished radix complement can be computed digit-by-digit

 For binary: 1 – 0 = 1 and 1 – 1 = 0

Complements

 1’s Complement (Diminished Radix Complement)

 All ‘0’s become ‘1’s

 All ‘1’s become ‘0’s

Example (10110000)2

 (01001111)2

If you add a number and its 1’s complement …

1 0 1 1 0 0 0 0

+ 0 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

Complements

 Radix Complement

 Example: Base-10

 Example: Base-2

The r's complement of an n-digit number N in base r is defined as

rn – N for N ≠ 0 and as 0 for N = 0. Comparing with the (r 1) 's

complement, we note that the r's complement is obtained by adding 1

to the (r 1) 's complement, since rn – N = [(rn 1) – N] + 1.

The 10's complement of 012398 is 987602

The 10's complement of 246700 is 753300

The 2's complement of 1101100 is 0010100

The 2's complement of 0110111 is 1001001

Complements

 2’s Complement (Radix Complement)

 Take 1’s complement then add 1

 Toggle all bits to the left of the first ‘1’ from the right

Example:

Number:

1’s Comp.:

0 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

+ 1

OR

1 0 1 1 0 0 0 0

0 0 0 0 1 0 1 0

Complements

 Subtraction with Complements

 The subtraction of two n-digit unsigned numbers M – N in base r can be

done as follows:

Complements

 Example 1.5

 Using 10's complement, subtract 72532 – 3250.

 Example 1.6

 Using 10's complement, subtract 3250 – 72532.

There is no end carry.

Therefore, the answer is – (10's complement of 30718) = 69282.

Complements

 Example

 Given the two binary numbers X = 1010100 and Y = 1000011, perform the

subtraction (a) X – Y ; and (b) Y X, by using 2's complement.

There is no end carry.

Therefore, the answer is

Y – X = (2's complement

of 1101111) = 0010001.

Complements

 Subtraction of unsigned numbers can also be done by means of the (r 1)'s

complement. Remember that the (r 1) 's complement is one less then the r's

complement.

 Example

 Repeat Example, but this time using 1's complement.

There is no end carry,

Therefore, the answer is Y –

X = (1's complement of

1101110) = 0010001.

 Signed Binary Numbers

To represent negative integers, we need a notation for negative

values.

It is customary to represent the sign with a bit placed in the

leftmost position of the number since binary digits.

The convention is to make the sign bit 0 for positive and 1 for

negative.

Example:

Table 1.3 lists all possible four-bit signed binary numbers in the

three representations.

Signed Binary Numbers

Signed Binary Numbers

 Arithmetic addition

 The addition of two numbers in the signed-magnitude system follows the rules of

ordinary arithmetic. If the signs are the same, we add the two magnitudes and

give the sum the common sign. If the signs are different, we subtract the smaller

magnitude from the larger and give the difference the sign if the larger magnitude.

 The addition of two signed binary numbers with negative numbers represented in

signed-2's-complement form is obtained from the addition of the two numbers,

including their sign bits.

 A carry out of the sign-bit position is discarded.

 Example:

Signed Binary Numbers

 Arithmetic Subtraction

 In 2’s-complement form:

 Example:

1. Take the 2’s complement of the subtrahend (including the sign bit)

and add it to the minuend (including sign bit).

2. A carry out of sign-bit position is discarded.

() () () ()

() () () ()

A B A B

A B A B

(6) (13) (11111010 11110011)

(11111010 + 00001101)

00000111 (+ 7)

 Binary Codes

 BCD Code

 A number with k decimal digits will

require 4k bits in BCD.

 Decimal 396 is represented in BCD

with 12bits as 0011 1001 0110, with

each group of 4 bits representing one

decimal digit.

 A decimal number in BCD is the

same as its equivalent binary number

only when the number is between 0

and 9.

 The binary combinations 1010

through 1111 are not used and have

no meaning in BCD.

Binary Code

 Example:

 Consider decimal 185 and its corresponding value in BCD and binary:

 BCD addition

Binary Code

 Example:

 Consider the addition of 184 + 576 = 760 in BCD:

 Decimal Arithmetic: (+375) + (-240) = +135

Hint 6: using 10’s of BCD

Binary Codes

 Other Decimal Codes

Binary Codes

 Gray Code

 The advantage is that only bit in the

code group changes in going from

one number to the next.

» Error detection.

» Representation of analog data.

» Low power design.

 000 001

010

100

110 111

101

011

1-1 and onto!!

Binary Codes

 American Standard Code for Information Interchange (ASCII) Character Code

Binary Codes

 ASCII Character Code

ASCII Character Codes

 American Standard Code for Information Interchange (Refer to

Table 1.7)

 A popular code used to represent information sent as character-

based data.

 It uses 7-bits to represent:

 94 Graphic printing characters.

 34 Non-printing characters.

 Some non-printing characters are used for text format (e.g. BS =

Backspace, CR = carriage return).

 Other non-printing characters are used for record marking and

flow control (e.g. STX and ETX start and end text areas).

ASCII Properties

 ASCII has some interesting properties:

 Digits 0 to 9 span Hexadecimal values 3016 to 3916

 Upper case A-Z span 4116 to 5A16

 Lower case a-z span 6116 to 7A16

» Lower to upper case translation (and vice versa) occurs by flipping bit 6.

Binary Codes

 Error-Detecting Code

 To detect errors in data communication and processing, an eighth bit is

sometimes added to the ASCII character to indicate its parity.

 A parity bit is an extra bit included with a message to make the total

number of 1's either even or odd.

 Example:

 Consider the following two characters and their even and odd parity:

Binary Codes

 Error-Detecting Code

 Redundancy (e.g. extra information), in the form of extra bits, can be

incorporated into binary code words to detect and correct errors.

 A simple form of redundancy is parity, an extra bit appended onto the code

word to make the number of 1’s odd or even. Parity can detect all single-

bit errors and some multiple-bit errors.

 A code word has even parity if the number of 1’s in the code word is even.

 A code word has odd parity if the number of 1’s in the code word is odd.

 Example:

 10001001

10001001

1

0 (odd parity) Message B:

Message A: (even parity)

Floating-Point Representation

 If we are clever programmers, we can perform

floating-point calculations using any integer format.

 This is called floating-point emulation, because

floating point values aren’t stored as such; we just

create programs that make it seem as if floating-

point values are being used.

Most of today’s computers are equipped with

specialized hardware that performs floating-point

arithmetic with no special programming required.

 Not embedded processors!

 Floating-point numbers allow an arbitrary

number of decimal places to the right of the

decimal point.

 For example: 0.5 0.25 = 0.125

 They are often expressed in scientific notation.

 For example:

0.125 = 1.25 10-1

5,000,000 = 5.0 106

Floating-Point Representation

 Computers use a form of scientific notation for

floating-point representation

 Numbers written in scientific notation have three

components:

Floating-Point Representation

 Computer representation of a floating-point

number consists of three fixed-size fields:

 This is the standard arrangement of these fields.

Note: Although “significand” and “mantissa” do not technically mean the same

thing, many people use these terms interchangeably. We use the term “significand”

to refer to the fractional part of a floating point number.

Floating-Point Representation

 The one-bit sign field is the sign of the stored value.

 The size of the exponent field determines the range

of values that can be represented.

 The size of the significand determines the precision

of the representation.

Floating-Point Representation

We introduce a hypothetical “Simple Model” to

explain the concepts

 In this model:

 A floating-point number is 14 bits in length

 The exponent field is 5 bits

 The significand field is 8 bits

Floating-Point Representation

 The significand is always preceded by an implied

binary point.

 Thus, the significand always contains a fractional

binary value.

 The exponent indicates the power of 2 by which the

significand is multiplied.

Floating-Point Representation

 Example:
 Express 3210 in the simplified 14-bit floating-point model.

 We know that 32 is 25. So in (binary) scientific
notation 32 = 1.0 x 25 = 0.1 x 26.

 In a moment, we’ll explain why we prefer the second notation
versus the first.

 Using this information, we put 110 (= 610) in the
exponent field and 1 in the significand as shown.

Floating-Point Representation

 The illustrations shown at

the right are all equivalent

representations for 32

using our simplified

model.

 Not only do these

synonymous

representations waste

space, but they can also

cause confusion.

 Floating-Point Representation

 Another problem with our system is that we have

made no allowances for negative exponents. We

have no way to express 0.5 (=2 -1)! (Notice that

there is no sign in the exponent field.)

 All of these problems can be fixed with no

changes to our basic model.

Floating-Point Representation

 To resolve the problem of synonymous forms,

we establish a rule that the first digit of the

significand must be 1, with no ones to the left of

the radix point.

 This process, called normalization, results in a

unique pattern for each floating-point number.

 In our simple model, all significands must have the

form 0.1xxxxxxxx

 For example, 4.5 = 100.1 x 20 = 1.001 x 22 = 0.1001 x

23. The last expression is correctly normalized.

 In our simple instructional model, we use no implied bits.

Floating-Point Representation

 To provide for negative exponents, we will use a

biased exponent.

 A bias is a number that is approximately midway

in the range of values expressible by the

exponent. We subtract the bias from the value

in the exponent to determine its true value.

 In our case, we have a 5-bit exponent. We will use 16

for our bias. This is called excess-16 representation.

 In our model, exponent values less than 16 are

negative, representing fractional numbers.

Floating-Point Representation

 Example:

 Express 3210 in the revised 14-bit floating-point model.

 We know that 32 = 1.0 x 25 = 0.1 x 26.

 To use our excess 16 biased exponent, we add 16 to

6, giving 2210 (=101102).

 So we have:

Example 1

 Example:
 Express 0.062510 in the revised 14-bit floating-point model.

 We know that 0.0625 is 2-4. So in (binary) scientific

notation 0.0625 = 1.0 x 2-4 = 0.1 x 2 -3.

 To use our excess 16 biased exponent, we add 16 to

-3, giving 1310 (=011012).

Example 2

 Example:
 Express -26.62510 in the revised 14-bit floating-point model.

 We find 26.62510 = 11010.1012. Normalizing, we

have: 26.62510 = 0.11010101 x 2 5.

 To use our excess 16 biased exponent, we add 16 to

5, giving 2110 (=101012). We also need a 1 in the sign

bit.

Example 3

 The IEEE has established a standard for

floating-point numbers

 The IEEE-754 single precision floating point

standard uses an 8-bit exponent (with a bias of

127) and a 23-bit significand.

 The IEEE-754 double precision standard uses

an 11-bit exponent (with a bias of 1023) and a

52-bit significand.

Floating-Point Standards

 In both the IEEE single-precision and double-

precision floating-point standard, the significant has

an implied 1 to the LEFT of the radix point.

 The format for a significand using the IEEE format is: 1.xxx…

 For example, 4.5 = .1001 x 23 in IEEE format is 4.5 = 1.001 x 22. The

1 is implied, which means is does not need to be listed in the

significand (the significand would include only 001).

Floating-Point Representation

 Example: Express -3.75 as a floating point number

using IEEE single precision.

 First, let’s normalize according to IEEE rules:

 3.75 = -11.112 = -1.111 x 21

 The bias is 127, so we add 127 + 1 = 128 (this is our

exponent)

 The first 1 in the significand is implied, so we have:

 Since we have an implied 1 in the significand, this equates

to

-(1).1112 x 2 (128 – 127) = -1.1112 x 21 = -11.112 = -3.75.

(implied)

Floating-Point Representation

Linear Block Code

 Hamming Code is a Linear Block Code. Linear Block Code

means that the codeword is generated by multiplying the message

vector with the generator matrix.

 Minimum weight as large as possible. If minimum weight is

2t+1, capable of detecting 2t error bits and correcting t error bits.

Cyclic Codes

 Hamming code is useful but there exist codes that offers same (if

not larger) error control capabilities while can be implemented

much simpler.

 Cyclic code is a linear code that any cyclic shift of a codeword

is still a codeword.

 Makes encoding/decoding much simpler, no need of matrix

multiplication.

Cyclic code

• Polynomial representation of cyclic codes.

 C(x) = Cn-1x
n-1 + Cn-2x

n-2 + … + C1x
1 + C0x

0 ,

 where, in this course, the coefficients belong to the
binary field {0,1}.

• That is, if the codeword is (1010011) (c6 first, c0 last),
we write it as x6 + x4 + x + 1.

• Addition and subtraction of polynomials – Done by
doing binary addition or subtraction on each bit
individually, no carry and no borrow.

• Division and multiplication of polynomials. Try divide
x3 + x2 + x + 1 by x + 1.

Cyclic Code

 A (n,k) cyclic code can be generated by a polynomial g(x)
which has
 degree n-k and

 is a factor of xn - 1.

 Call it the generator polynomial.

 Given message bits, (mk-1…m1m0), the code is generated
simply as:

• In other words, C(x) can be considered as the
product of m(x) and g(x).

Example

 A (7,4) cyclic code with g(x) = x3 + x + 1.

 If m(x) = x3 + 1, C(x) = x6 + x4 + x + 1.

Error Detection with Cyclic Code

 A (7,4) cyclic code with g(x) = x3 + x + 1.

 If the received polynomial is x6 + x5 + x2 + 1, are there any

errors? Or, is this a code polynomial?

Error Detection with Cyclic Code

 A (7,4) cyclic code with g(x) = x3 + x + 1.

 If the received polynomial is x6 + x5 + x2 + 1, are there any

errors?

 We divide x6 + x5 + x2 + 1 by x3 + x + 1, and the remainder is x3

+ 1. The point is that the remainder is not 0. So it is not a code

polynomial, so there are errors.

Cyclic code used in IEEE 802

 g(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 +

x4 + x2 + x + 1

 all single and double bit errors

 all errors with an odd number of bits

 all burst errors of length 32 or less

Division Circuit

• You probably would ask that we can also detect errors with the
Hamming code. However it needs matrix multiplication. The
division can actually be done very efficiently, even with
hardware.

• Division of polynomials can be done efficiently by the division
circuit. (just to know there exists such a thing, no need to
understand it)

Cyclic Code

 One way of thinking it is to write it out as the generator matrix

 • So, clearly, it is a linear code. Each row of the
generator matrix is just a shifted version of the
first row. Unlike Hamming Code.

• Why is it a cyclic code?

Example

 The cyclic shift of C(x) = x6 + x4 + x + 1 is C1(x) = x5 + x2 + x

+ 1.

 It is still a code polynomial, because the code polynomial is m(x)

= x2 +1.

Cyclic Code

 Given a code polynomial

• We have

• Therefore, C1(x) is the cyclic shift of C(x) and

• has a degree of no more than n-1

• divides g(x) (why?) hence is a code
polynomial.

Cyclic Code

 To generate a cyclic code is to find a polynomial that

 has degree n-k

 is a factor of xn -1.

Generating Systematic Cyclic Code

 A systematic code means that the first k bits are the data bits

and the rest n-k bits are parity checking bits.

 To generate it, we let

 where

• The claim is that C(x) must divide g(x) hence is
a code polynomial.

 33 mod 7 = 5. Hence 33-5=28 can be divided by 7.

Example

 A (7,4) cyclic code with g(x) = x3 + x + 1.

 If m(x) = x3 + 1, the non-systematic code is C(x) = x6 + x4 + x +

1.

 What is the systematic code?

Binary Function Expression

 So far have seen to possible ways

 Binary equations

 Truth tables

 What other ways are there?

Standard Forms

 Facilitate simplification

 Result in more desirable implementations

 Standard Forms rely on two type of terms

 Product Terms – Terms that are ANDed together

» XYZ

» (A+B)(C+D)(A+D)

 Sum Terms – Terms that are ORed together

» X+Y+Z

» XYZ + VX

Minterms

 Boolean Functions can be defined by truth tables. In a Boolean

function, a product term in which all the variables appear is called

a minterm of the function.

 Minterms specify the function as an OR of the minterms (product

terms).

Minterm for 3 variables

 Table 2-6 from text

Minterms for n variable functions

 For 2 variables have 4 minterms

 X’Y’ X’Y XY’ XY

 For 3 variables have 8 minterms

 X’Y’Z’ X’Y’Z … XYZ

 In general, if a function has n variables there are 2n minterms

 The subscript on the minterm is the decimal of the binary value

represented

Maxterms

 A sum term that contains all the variables in complemented or

un-complemented form is called a maxterm.

 As before, if there a n variables then there are 2n maxterms.

Maxterm table

 The maxterms

Specifying functions

 Functions can be specified in minterm or maxterm notation

 Minterm

 F(X,Y,Z) = ∑m(0,2,5,7)

 = X’Y’Z’ + X’YZ’ + XY’Z + XYZ

 And then you can work on simplifying this

 Or could have also had

 F(X,Y,Z) = m0 + m2 + m5 + m7

More examples

 From text

 F(X,Y,Z)’ = ∑m(1,3,4,6)

 = (m1+m3+m4+m6)

 Or complementing both sides of the equation

 F(X,Y,Z) = (m1+m3+m4+m6)’

 By DeMorgan’s

 = m1’ · m3’ · m4’ · m6’

 = M1 · M3 · M4 · M6

 As mj’ = Mj

And to continue

 Then have:

 F(X,Y,Z) = M1 · M3 · M4 · M6

 =(X+Y+Z’)(X+Y’+Z’)(X’+Y+Z)(X’+Y’+Z)

 Another expression form for the function as a product of

maxterms

 F(X,Y,Z) = ∏M (1,3,4,6)

Another example

Express the function F(A,B,C) = AB+A’C in
minterm notation

First expand to where each term has all three
variables in it.

AND term with 1 to expand. For the 1st term 1=
(C+C’) and for the 2nd the 1 is (B+B’)

Now have
 F(A,B,C)=AB(C+C’) + A’C(B+B’)

 F(A,B,C)=ABC + ABC’ + A’BC + A’B’C

 = m7 + m6 + m3 + m1

Summary of important properties

 Most important properties of minterms:

 There are 2n minterms for n Boolean variables. These minterms can be

generated from the binary numbers from 0 to 2n -1

 Any Boolean function can be expressed as a logical sum of minterms.

 The complement of a function contains those minterms not included in the

original function.

 A function that contains all 2n minterms is equal to a logical 1.

Expansion of another function

 Express E = Y’ + X’Z’ in minterm notation.

 E = (X+X’)Y’ + X’Z’(Y+Y’)

 = XY’(Z+Z’) + X’Y’(Z+Z’)+X’YZ’+X’Y’Z’

 = XY’Z+XY’Z’+X’Y’Z+X’Y’Z’+X’YZ’

 = m5 + m4 + m1 + m0 + m2

 = m5 + m4 + m2 + m1 + m0

 Text shows how to find the minterm expression using a truth

table.

Sum-of-Products

Starting with the minterm specification of a function
 F(X,Y,Z) = ∑m(2,3,4,7)

 = (m2+m3+m4+m7)

 = X’YZ’ + X’YZ + XY’Z’ + XYZ

Each minterm represents a product term and then
we sum them to generate the function.

This form is called sum-of-products.

Even when in minimal form it is still the sum-of-
products.

Producing sum-of-products

 Form other form of the function

 F = AB + C(D + E)

 Can distribute the C

 F = AB + CD + CE

 And now have the function in sum-of-products form.

 The sum-of-products form is a 2 level implementation of the function in

gates

