Synchronous Sequential Logic

\star UNIT-4

Sequential Circuits

* Asynchronous

* Synchronous

Latches

$\star \operatorname{SR}$ Latch

Initial Value

Latches

$\star \operatorname{SR}$ Latch

S	R	Q_{0}	Q	Q^{\prime}
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
$Q=1$				
$Q=Q_{0}$				

Latches

$\star \operatorname{SR}$ Latch

S	R	Q_{0}	Q	Q^{\prime}
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
Q				
$Q=1$				
$Q=1$				
$Q=Q_{0}$				

Latches

$\star \operatorname{SR}$ Latch

$\left.\begin{array}{|ccc|c|c|}\hline S & R & Q_{0} & Q & Q^{\prime} \\ \hline 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 & 0 \\ \hline 1 & 1 & 0 & 0 & 0 \\ \hline & & & & \\ \hline\end{array}\right\}=Q_{0}$

Latches

$\star S R$ Latch

$S R Q_{0}$	0	Q^{\prime}
0000	0	1
$\begin{array}{llll}0 & 0 & 1\end{array}$	1	0
$\begin{array}{llll}0 & 1 & 0\end{array}$	0	1
$\begin{array}{llll}0 & 1 & 1\end{array}$	0	1
100	1	0
101	1	0
110	0	0
111	0	0

Latches

* SR Latch

No change
Reset
Set
Invalid

S	R	Q
0	0	$Q=Q^{\prime}=1$
$\mathbf{0}$	1	1
1	0	0
1	1	Q_{0}

Invalid
Set
Reset
No change

Latches

* SR Latch

No change
Reset
Set
Invalid

$S^{\prime} R$	Q
0	0
$Q=Q^{\prime}=1$	
0	1
1	1
1	0
1	1

Invalid
Set
Reset
No change

Controlled Latches

$\star S R$ Latch with Control Input

C	S	R	Q
0	\mathbf{x}	\mathbf{x}	Q_{0}
1	0	0	Q_{0}
1	0	1	0
1	1	0	1
1	1	1	$Q=Q^{\prime}$

No change
No change
Reset
Set
Invalid

Controlled Latches

\star D Latch $(D=D a t a)$

C	D	Q
0	\mathbf{x}	Q_{0}
$\mathbf{1}$	0	0
1	1	1

No change
Reset
Set

Timing Diagram

Controlled Latches

\star D Latch $(D=D a t a)$

C	D	Q
0	x	Q_{0}
1	0	0
1	1	1

No change
Reset
Set

Timing Diagram

Flip-Flops

\star Controlled latches are level-triggered

\star Flip-Flops are edge-triggered

Flip-Flops

\star Master-Slave D Flip-Flop

Flip-Flops

* Edge-Triggered \boldsymbol{D} Flip-Flop

Negative Edge

Flip-Flops

* JK Flip-Flop

$$
D=J Q^{\prime}+K^{\prime} Q
$$

Flip-Flops

\star T Flip-Flop

$D=J Q^{\prime}+K^{\prime} Q$
$D=T Q^{\prime}+T^{\prime} Q=T \oplus Q$

Flip-Flop Characteristic Tables

Reset Set

No change
Reset
Set
Toggle

No change
Toggle

Flip-Flop Characteristic Equations

$$
Q(t+1)=D
$$

$$
Q(t+1)=J Q^{\prime}+K^{\prime} Q
$$

$$
Q(t+1)=T \oplus Q
$$

Flip-Flop Characteristic Equations

太 Analysis / Derivation

$\left.\begin{array}{|ccc|c|}\hline J & K & Q(t) & Q(t+1) \\ \hline \vdots \cdots \cdots & 0 & 0 & 0 \\ \hline \vdots & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & \\ \hline 0 & 1 & 1 & \\ \hline 1 & 0 & 0 & \\ \hline 1 & 0 & 1 & \\ \hline 1 & 1 & 0 & \\ \hline 1 & 1 & 1 & \\ \hline\end{array}\right\}$ No change

Flip-Flop Characteristic Equations

太 Analysis / Derivation

$\left.\begin{array}{|ccc|c|}\hline J & K & Q(t) & Q(t+1) \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline \vdots 0 & 1 & \vdots & 0 \\ \hline \vdots & 0 \\ \hline \vdots & 1 & \vdots & 1 \\ \hline 1 & 0 & 0 & \\ \hline 1 & 0 & 1 & \\ \hline 1 & 1 & 0 & \\ \hline 1 & 1 & 1 & \\ \hline\end{array}\right\}$ No change

Flip-Flop Characteristic Equations

太 Analysis / Derivation

$\left.\begin{array}{|ccc|c|}\hline J & K & Q(t) & Q(t+1) \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline \vdots 1 & 0 & \vdots & 0 \\ \hline 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & \\ \hline 1 & 1 & 1 & \\ \hline\end{array}\right\} \quad$ No change

Flip-Flop Characteristic Equations

太 Analysis / Derivation

$\left.\begin{array}{|ccc|c|}\hline J & K & Q(t) & Q(t+1) \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline \cdots \cdots \cdots \cdots & 0 & 1 \\ \hline \vdots 1 & 1 & \vdots & 1 \\ \hline 1 & 0 \\ \hline\end{array}\right\} \quad$ No change

Flip-Flop Characteristic Equations

太 Analysis / Derivation

J	K	$Q(t)$	$Q(t+1)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$
Q(t+1)=J Q^{\prime}+K^{\prime} Q
$$

Flip-Flops with Direct Inputs

^ Asynchronous Reset

Flip-Flops with Direct Inputs

^ Asynchronous Reset

R^{\prime}	D	$C L K$	$Q(t+1)$
$\mathbf{0}$	\mathbf{x}	\mathbf{x}	0
$\mathbf{1}$	$\mathbf{0}$	\uparrow	0
$\mathbf{1}$	$\mathbf{1}$	\uparrow	1

Flip-Flops with Direct Inputs

* Asynchronous Preset and Clear

$P R^{\prime}$	$C L R^{\prime}$	D	$C L K$	$Q(t+1)$
$\mathbf{1}$	$\mathbf{0}$	\mathbf{x}	\mathbf{x}	$\mathbf{0}$

Flip-Flops with Direct Inputs

* Asynchronous Preset and Clear

$P R^{\prime}$	CLR'	D	$C L K$	$Q(t+1)$
$\mathbf{1}$	$\mathbf{0}$	\mathbf{x}	\mathbf{x}	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	\mathbf{x}	\mathbf{x}	$\mathbf{1}$

Flip-Flops with Direct Inputs

* Asynchronous Preset and Clear

$P R^{\prime}$	$C L R^{\prime}$	D	$C L K$	$Q(t+1)$
$\mathbf{1}$	$\mathbf{0}$	\mathbf{x}	\mathbf{x}	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	\mathbf{x}	\mathbf{x}	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	\uparrow	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	\uparrow	$\mathbf{1}$

Analysis of Clocked Sequential Circuits

* The State
- State $=$ Values of all Flip-Flops

Example

$A B=00$

Analysis of Clocked Sequential Circuits

* State Equations

$$
\begin{aligned}
A(t+1) & =D_{A} \\
& =A(t) x(t)+B(t) x(t) \\
& =A x+B x \\
B(t+1) & =D_{B} \\
& =A^{\prime}(t) x(t) \\
& =A^{\prime} x \\
y(t) & =[A(t)+B(t)] x^{\prime}(t) \\
& =(A+B) x
\end{aligned}
$$

Analysis of Clocked Sequential Circuits

* State Table (Transition Table)

Present State	Input	Next State	Output
$A \quad B$	x	$A \quad B$	v
0	0	0	0
0, 0 :	1	$0 \quad 1$	0
$0 \quad 1$	0	0	1
0	1	11	0
1	0	0 0	1
10	1	10	0
1	0	0	1
11	1	10	0

$$
\begin{aligned}
A(t+1) & =A x+B x \\
B(t+1) & =A^{\prime} x \\
y(t) & =(A+B) x
\end{aligned}
$$

Analysis of Clocked Sequential Circuits

* State Table (Transition Table)

Present State	Next State				Output		
	$x=0$	$x=1$	$x=0$	$x=1$			
A	A	B	A	B	y	y	
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

$A(t+1)=A x+B x$ $B(t+1)=A^{\prime} x$

$$
y(t)=(A+B) x^{\prime}
$$

Analysis of Clocked Sequential Circuits

* State Diagram

Present State	Next State				Output		
	$x=1$	$x=0$	$x=1$				
0	B	A	B	A	B	y	
0	0	0	0	1	0	0	
0	1	0	0	1	1	1	
1	0	0	0	1	0	1	
1	1	0	0	1	0	1	

Analysis of Clocked Sequential Circuits

* D Flip-Flops

Example:

Present State	Input	Next State
A	x	y
0	0	0
	0	
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
	0	

$$
A(t+1)=D_{A}=A \oplus x \oplus y
$$

Analysis of Clocked Sequential Circuits

\star JK Flip-Flops
Example:

| Present
 State | \mathbf{I} / \mathbf{P} | Next
 State | Flip-Flop
 Inputs | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | x | A | B | J_{A} | K_{A} | J_{B} | K_{B} |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |

$$
\begin{array}{rlr}
J_{A}=B & K_{A}=B x \\
J_{B}=x & K_{B}=A \oplus x \\
A(t+1) & =J_{A} Q_{A}^{\prime}+K_{A}^{\prime} Q_{A} \\
& =A^{\prime} B+A B^{\prime}+A x \\
B(t+1) & =J_{B} Q^{\prime}{ }_{B}+K_{B}^{\prime} Q_{B} \\
& =B^{\prime} x^{\prime}+A B x+A^{\prime} B x
\end{array}
$$

Analysis of Clocked Sequential Circuits

\star JK Flip-Flops
Example:

Present State	\mathbf{I} / \mathbf{P}	Next State	Flip-Flop Inputs					
A	B	x	A	B	J_{A}	K_{A}	J_{B}	K_{B}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Analysis of Clocked Sequential Circuits

\star T Flip-Flops
Example:

Present State	\mathbf{I} / \mathbf{P}	Next State	F.F Inputs		\mathbf{O} / \mathbf{P}		
A	B	x	A	B	T_{A}	T_{B}	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

$$
\begin{aligned}
T_{A} & =B \boldsymbol{x} \quad T_{B}=x \\
y & =A B \\
A(t+1) & =T_{A} Q^{\prime}{ }_{A}+T^{\prime}{ }_{A} Q_{A} \\
& =A B^{\prime}+A x^{\prime}+A^{\prime} B x \\
B(t+1) & =T_{B} Q^{\prime}{ }_{B}+T_{B}^{\prime} Q_{B} \\
& =x \oplus B
\end{aligned}
$$

Analysis of Clocked Sequential Circuits

\star T Flip-Flops
Example:

Present State	I/P	Next State	$\begin{gathered} \text { F.F } \\ \text { Inputs } \end{gathered}$		O/P
$A \quad B$	x	$A \quad B$	T_{A}	T_{B}	y
$0 \quad 0$	0	0	0	0	0
$0 \quad 0$	1	$0 \quad 1$	0	1	0
$0 \quad 1$	0	01	0	0	0
$0 \quad 1$	1	10	1	1	0
10	0	10	0	0	0
10	1	11	0	1	0
11	0	11	0	0	1
11	1	0	1	1	1

State Reduction and Assignment

\star State Reduction
Reductions on the number of flip-flops and the number of gates.

- A reduction in the number of states may result in a reduction in the number of flip-flops.
- An example state diagram showing in Fig. 5.25.

Fig. 5.25 State diagram

State Reduction

State: a a b d effgig a
Input: $0 \begin{array}{lllllllllll} & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$
Output: $0 \times 0 \begin{array}{llllllll}0 & 0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$

- Only the input-output sequences are important.
- Two circuits are equivalent
- Have identical outputs for all input sequences;
- The number of states is not important.

Fig. 5.25 State diagram

* Equivalent states

- Two states are said to be equivalent
- For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
Table 5.6
State Table

* Reducing the state table

- $e=g($ remove $g) ;$
- $d=f$ (remove f);

Table 5.7
Reducing the State Table

Next State

Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
a	a	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	f	0	1
e	a	f	0	1
f	e	f	0	1

- The reduced finite state machine

Table 5.8
Reduced State Table

	Next State			Output	
Present State	$\mathbf{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\mathbf{x}=\mathbf{0}$	
$\boldsymbol{x}=\mathbf{1}$					
a	a	b		0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

$$
\begin{array}{ccccccccccccc}
\text { State: } & a & a & b & c & d & e & d & d & e & d & e & a \\
\text { Input: } & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \\
\text { Output: } & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 &
\end{array}
$$

- The checking of each pair of states for possible equivalence can be done systematically using Implication Table.
- The unused states are treated as don't-care condition \Rightarrow fewer combinational gates.
Table 5.8
Reduced State Table

	Next State			Output	
Present State	$\boldsymbol{x = 0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	
$\boldsymbol{x}=\mathbf{1}$					
a	a	b		0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Fig. 5.26 Reduced State diagram

Implication Table

* The state-reduction procedure for completely specified state tables is based on the algorithm that two states in a state table can be combined into one if they can be shown to be equivalent. There are occasions when a pair of states do not have the same next states, but, nonetheless, go to equivalent next states. Consider the following state table:

Present State	Next State			Output	
	$\mathbf{x = 0}$	$\mathbf{x = 1}$		$\mathbf{x}=\mathbf{0}$	
a	c	b	0	$\mathbf{x}=\mathbf{1}$	
b	d	a	0	1	
c	a	d	1	1	
d	b	d	1	0	

$\star(a, b)$ imply (c, d) and (c, d) imply (a, b). Both pairs of states are equivalent; i.e., a and b are equivalent as well as c and d.

Implication Table

\star The checking of each pair of states for possible equivalence in a table with a large number of states can be done systematically by means of an implication table. This a chart that consists of squares, one for every possible pair of states, that provide spaces for listing any possible implied states. Consider the following state table:

Present State	Next State			Output	
	$\mathbf{x = 0}$	$\mathbf{x = 1}$		$\mathbf{x = 0}$	
a	d	6	0	0	
b	e	a	0	0	
c	g	f	0	1	
d	a	d	1	0	
e	a	d	1	0	
f	c	b	0	0	
g	a	e	1	0	

Implication Table

\star The implication table is:

Implication Table

* On the left side along the vertical are listed all the states defined in the state table except the last, and across the bottom horizontally are listed all the states except the last.
* The states that are not equivalent are marked with a ' x ' in the corresponding square, whereas their equivalence is recorded with a ' $\sqrt{ }$ '.
* Some of the squares have entries of implied states that must be further investigated to determine whether they are equivalent or not.
* The step-by-step procedure of filling in the squares is as follows:

1. Place a cross in any square corresponding to a pair of states whose outputs are not equal for every input.
2. Enter in the remaining squares the pairs of states that are implied by the pair of states representing the squares. We do that by starting from the top square in the left column and going down and then proceeding with the next column to the right.

Implication Table

3. Make successive passes through the table to determine whether any additional squares should be marked with a ' x '. A square in the table is crossed out if it contains at least one implied pair that is not equivalent.
4. Finally, all the squares that have no crosses are recorded with check marks. The equivalent states are: $(a, b),(d, e),(d, g),(e, g)$.

We now combine pairs of states into larger groups of equivalent states. The last three pairs can be combined into a set of three equivalent states (d, e, g) because each one of the states in the group is equivalent to the other two. The final partition of these states consists of the equivalent states found from the implication table, together with all the remaining states in the state table that are not equivalent to any other state:

$$
(a, b)(c)(d, e, g)(f)
$$

The reduced state table is:

Implication Table

Present State	Merit 5tate		Mriput	
	$x=0$	$x=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
\because	:'	ו.'	II	11
:	:'	!	1	1
1	$1:$	1.	1	1 !
!	$1 \cdot$. 1	i:	!.

State Assignment

* State Assignment

\star To minimize the cost of the combinational circuits.

- Three possible binary state assignments. (m states need n-bits. where $2^{n}>m$)
Table 5.9
Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

- Any binary number assignment is satisfactory as long as each state is assigned a unique number.
- Use binary assignment 1.

Table 5.10
Reduced State Table with Binary Assignment 1

	Next State			Output	
Present State	$\boldsymbol{x = 0}$	$\boldsymbol{x = \mathbf { 1 }}$		$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$
000	000	001		0	0
001	010	011		0	0
010	000	011		0	0
011	100	011		0	1
100	000	011		0	1

Design Procedure

* Design Procedure for sequential circuit
- The word description of the circuit behavior to get a state diagram;
- State reduction if necessary;
- Assign binary values to the states;
- Obtain the binary-coded state table;
- Choose the type of flip-flops;
- Derive the simplified flip-flop input equations and output equations;
- Draw the logic diagram;

Design of Clocked Sequential Circuits

太 Example:
Detect 3 or more consecutive

State	A	B
$\mathrm{~S}_{0}$	0	0
$\mathrm{~S}_{1}$	0	1
$\mathrm{~S}_{2}$	1	0
$\mathrm{~S}_{3}$	1	1

Design of Clocked Sequential Circuits

Design of Clocked Sequential Circuits

Synthesis using D Flip-Flops

$$
\begin{aligned}
& A(t+1)=D_{A}(A, B, x) \\
&=\sum(3,5,7) \\
& B(t+1)=D_{B}(A, B, x) \\
&=\sum(1,5,7) \\
& y(A, B, x)=\sum(6,7)
\end{aligned}
$$

Design of Clocked Sequential Circuits with D F.F.

太 Example:
Detect 3 or more consecutive
Synthesis using D Flip-Flops

$D_{A}(A, B, x)=\sum(3,5,7)$

$$
=A x+B x
$$

$D_{B}(A, B, x)=\sum(1,5,7)$

$$
=A x+B^{\prime} x
$$

$y(A, B, x)=\sum(6,7)$

$$
=A B
$$

Design of Clocked Sequential Circuits with D F.F.

* Example:

Detect 3 or more consecutive 1
Synthesis using D Flip-Flops

$$
\begin{aligned}
D_{A} & =A x+B x \\
D_{B} & =A x+B^{\prime} x \\
y & =A B
\end{aligned}
$$

Flip-Flop Excitation Tables

Present State	Next State	F.F. Input
$Q(t)$	$Q(t+1)$	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Next State	$\begin{aligned} & \text { F.F. } \\ & \text { Input } \end{aligned}$	
$Q(t)$	$Q(t+1)$	$J K$	00 (No change)
0	0	0 x	$11 \text { (R6 }$
0	1	1 x	11 (Toggle)
1	0	x 1	01 (Reset) 1 (Toggle)
1	1	X 0	$\int_{0}^{0} 0 \text { (No change) }$

$Q(t)$	$Q(t+1)$	T
0	0	0
0	1	1
1	0	1
1	1	0

Design of Clocked Sequential Circuits with JK F.F.

太 Example:
Detect 3 or more consecutive 1,
$J_{A}(A, B, x)=\sum(3)$
$d_{J A}(A, B, x)=\sum(4,5,6,7)$
$K_{A}(A, B, x)=\sum(4,6)$
$d_{K A}(A, B, x)=\sum(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$
$J_{B}(A, B, x)=\sum(1,5)$
$d_{J B}(A, B, x)=\sum(2,3,6,7)$
$K_{B}(A, B, x)=\sum(2,3,6)$
$d_{K B}(A, B, x)=\sum(0,1,4,5)$

Design of Clocked Sequential Circuits with JK F.F.

太 Example:

Synthesis using $J K$ Flip-Flops

$$
\begin{array}{ll}
J_{A}=B \boldsymbol{x} & K_{A}=x^{\prime} \\
J_{B}=x & K_{B}=A^{\prime}+\boldsymbol{x}
\end{array}
$$

Design of Clocked Sequential Circuits with T F.F.

太 Example:
Detect 3 or more consecutive 1 's

Present State	Input	Next State	F.F. Input	
A	B	x	A	B

T_{B}\end{array}\right|\)

$$
\begin{aligned}
& T_{A}(A, B, x)=\sum(\mathbf{3}, \mathbf{4}, \mathbf{6}) \\
& T_{B}(A, B, x)=\sum(1,2,3,5,6)
\end{aligned}
$$

Design of Clocked Sequential Circuits with T F.F.

太 Example:
Detect 3 or more consecutive 1
Synthesis using T Flip-Flops

$$
\begin{aligned}
& T_{A}=A x^{\prime}+A^{\prime} B x \\
& T_{B}=A^{\prime} B+B \oplus x
\end{aligned}
$$

Registers

\star Group of D Flip-Flops

* Synchronized (Single Clock)
* Store Data

Registers

Registers with Parallel Load

* Control Loading the Register with New Data

Registers with Parallel Load

* Should we block the "Clock" to keep the "Data"?

Registers with Parallel Load

* Circulate the "old data"

Shift Registers

* 4-Bit Shift Register

Shift Registers

Serial Transfer

Serial Addition

Universal Shift Register

* Parallel-in Parallel-out
* Serial-in Serial-out
* Serial-in Parallel-out
\star Parallel-in Serial-out

Universal Shift Register

Universal Shift Register

Mode Control		Register
S_{1}	S_{0}	
$\mathbf{0}$	$\mathbf{0}$	No change
$\mathbf{0}$	$\mathbf{1}$	Shift right
$\mathbf{1}$	$\mathbf{0}$	Shift left
$\mathbf{1}$	$\mathbf{1}$	Parallel load

Ripple Counters

* Ripple \leftrightarrow Asynchronous

Ripple Counters

BCD Ripple Counter

Decades Counter

Synchronous Binary Counter

Next
Stage

Up-Down Binary Counter

BCD Counter

BCD Counter

Binary Counter with Parallel Load

BCD Counter Example

Ring Counter

Johnson Counter

