# Asynchronous Sequential Logic 

UNIT-5

## Introduction

- Synchronous Sequential Circuits

The change of internal state occurs in response to the synchronized clock pulse.

Memory elements are clocked flip-flops.

- Asynchronous Sequential Circuits

The change of internal state occurs when there is a change in the input variables.
Memory elements are unclocked flip-flops or timedelay elements.

## Introduction

- Synchronous Sequential Circuits

Timing problems are eliminated by triggering all flip-flops with pulse edge.

- Asynchronous Sequential Circuits

Care must be taken to ensure that each new state is stable even though Higher speed, More economical a feedback path exists.

## Introduction

## - Asynchronous Sequential Circuits

When an input variable changes in value, the $y$ secondary variables do not change instantaneously.



Fig. 9-1 Block Diagram of an Asynchronous Sequential Circuit

## Introduction

## - Asynchronous Sequential Circuits

In steady-state condition, the $y$ 's and the $Y$ 's are the same, but during transition they are not.


$k$ excitation
variables
(next state)

Fig. 9-1 Block Diagram of an Asynchronous Sequential Circuit

## Introduction

## - fundamental mode

fundamental mode :Only one input variable can change at any one time and the time between two input changes must be longer than the time it takes the circuit to reach a stable state.

## Analysis Procedure

## Transition Table



$$
Y_{1}=x y_{1}+x^{\prime} y_{2}
$$

$$
Y_{2}=x y_{1}^{\prime}+x y_{2}
$$

## Analysis Procedure

## Transition Table

$$
Y_{1}=x y_{1}+x y_{2} \quad Y_{2}=x y_{1}^{\prime}+x^{\prime} y_{2}
$$



## Analysis Procedure

## Transition Table

For a state to be stable, the value of $Y$ must be the same as that of $y=y_{1} y_{2}$

(c) Transition table

## Analysis Procedure


(c) Transition table

## Analysis Procedure

## Transition Table

Consider the square for $x=0$ and $\boldsymbol{y}=00$. It is stable.
$x$ changes from 0 to 1 . The circuit changes the value of $Y$ to 01 . The state is unstable.

The feedback causes a change in $\boldsymbol{y}$ to 01 . The circuit reaches stable.

(c) Transition table

## Analysis Procedure

## Transition Table

In general, if a change in the input takes the circuit to an unstable state, $y$ will change until it reaches a stable state.

(c) Transition table

## Analysis Procedure

Flow Table
Flow Table

(c) Transition table

## Analysis Procedure

## Flow Table

It is called primitive flow table because it has only one stable state in each row.


|  | $x_{1} x_{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
| $a$ | (a), 0 | (a), 0 | (a) 0 | $b, 0$ |
| $b$ | $a, 0$ | $a, 0$ | (b) , 1 | (b), 0 |

(b) Two states with two inputs and one output

It is a flow table with more than one stable state in the same row.

## Analysis Procedure

Flow Table

(c) Transition table

(a) Transition table $Y=x_{1} x^{\prime}{ }_{2}+x_{1} y$
$x_{1} x_{2}$

|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |

(b) Map for output

$$
z=x_{1} x_{2} y
$$

## Analysis Procedure


(a) Transition table
$Y=x_{1} x_{2}^{\prime}+x_{1} y$

(b) Map for output

$$
z=x_{1} x_{2} y
$$



## Analysis Procedure

## Race Conditions



## Analysis Procedure

## Race Conditions

Critical Race:
State variables change from 00 to 11. The possible transition could be

It is a critical race. The final stable state depends on the order in which the state variables change.
(b) Possible transitions:

## Analysis Procedure

## Race Conditions

Cycle
It st
When a circuit goes through a the 0 th unique sequence of unstable states. it is said to have a cycle. The sequence is as follows,


(c) Unstable

## Analysis Procedure

## Stability Consideration

Column 11 has no stable state. With input $x_{1} x_{2}=11, Y$ and $y$ are never the same.

This will cause instability.

(a) Logic diagram

(b) Transition table

## Circuits with Latches

## SR Latch

## The circuit diagram and truth table of the $S R$ latch are shown as follows,



| $S$ | $R$ | $Q$ | $Q^{\prime}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 |

$($ After $S R=10)$
$($ After $S R=01)$
(b) Truth table

## Circuits with Latches

## SR Latch

## The circuit diagram of the $S R$ latch can be redrawn as follows,



|  | 00 | 01 | 11 | 10 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |

$$
\begin{aligned}
& Y=S R^{\prime}+R^{\prime} y \\
& Y=S+R^{\prime} y \text { when } S R=0
\end{aligned}
$$

(c) Circuit showing feedback
(d) Transition table

## Circuits with Latches

## SR Latch

$$
\begin{aligned}
Y & =\left[(S+y)^{\prime}+R\right]^{\prime} \\
& =(S+y) R^{\prime}=S R^{\prime}+R^{\prime} y
\end{aligned}
$$



$$
\left.\begin{array}{l}
S R^{\prime}+S R=S\left(R^{\prime}+R\right)=S \\
S R=0
\end{array}\right\} \quad S R^{\prime}=S
$$

$\Longrightarrow Y=S R^{\prime}+R^{\prime} y=S+R^{\prime} y \quad$ when $S R=0$

## Circuits with Latches

## Analysis Example

$$
\begin{aligned}
& S_{1}=x_{1} y_{2} \\
& S_{2}=x_{1} x_{2} \\
& R_{1}=x_{1}^{\prime} x_{2}^{\prime} \\
& R_{2}=x^{\prime} y_{1} \\
& S_{1} R_{1}=x_{1} y_{2} x_{1}^{\prime} x_{2}^{\prime}=0 \\
& S_{2} R_{2}=x_{1} x_{2} x_{2}^{\prime} y_{1}=0
\end{aligned}
$$



## Circuits with Latches

## Analysis Example

$$
\begin{aligned}
& Y_{1}=S_{1}+R^{\prime}{ }_{1} y_{1}=x_{1} y_{2}+\left(x_{1}+x_{2}\right) y_{1} \\
& Y_{2}=S_{2}+R^{\prime}{ }_{2} y_{2}=x_{1} x_{2}+\left(x_{2}+y_{1}^{\prime}\right) y_{2} \\
& \text { There is a critical race } \\
& \text { condition }
\end{aligned}
$$

## Circuits with Latches

## Latch Excitation Table

A table that lists the required inputs $S$ and $R$ for each of the possible transitions from $\boldsymbol{y}$ to $\boldsymbol{Y}$

The first two columns list the four possible transitions from $\boldsymbol{y}$ to $\boldsymbol{Y}$.
(b) Latch exciration table

The next two columns specify the required input values that will result in the specified transition.

## Circuits with Latches

## Implementation Example

| $x_{1} x_{2}$ |  |  |  |  | $y$ |  | Y | $S$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |  |  |  |  |  |
| 0 | 0 | (0) | (0) | 1 |  | 0 | 0 | 0 | $X$ |
| 1 |  |  | ( | 1 |  | 0 | 1 | 1 | 0 |
|  | 0 | 0 | (1) | (1) |  | 1 | 0 | 0 | 1 |
|  |  |  |  |  |  | 1 | 1 | $X$ | 1 |
|  | (a) Transition table$Y=x_{1} x_{2}^{\prime}+x_{1} y$ |  |  |  | (b) Latch excitation table |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| $x_{1} x_{2}$ |  |  |  |  | $x_{1} x_{2}$ |  |  |  |  |
| $y$0 | 00 | 01 | 11 | 10 |  | 00 | 01 | 11 | 10 |
|  | 0 | 0 | 0 | (1) | 0 | $X$ | $X$ | X | 0 |
| 1 | 0 | 0 | $X$ | X | 1 | 1 | 1. | 0 | 0 |
|  | (c) Map for $S=x_{1} x^{\prime}{ }_{2}$ |  |  |  | (d) Map for $R=x^{\prime}{ }_{1}$ |  |  |  |  |

## Circuits with Latches

## Implementation Example

$$
S=x_{1} x_{2}^{\prime} \quad R=x_{1}^{\prime}
$$

## Circuit with NOR latch



Circuit with NAND latch


## Design Procedure

## Design Example

Design a gated latch circuit with $t$
Gated-Latch Total States and $D$ (data), and one output $Q$.
comments
$D=Q$ because $G=1$
$D=Q$ because $G=1$
After state $a$ or $d$
After state $c$
After state $b$ or $f$
After state $e$

## Design Procedure

## Design Example

|  | Inputs |  | Output |
| :---: | :---: | :---: | :---: |
| State | $D$ | $G$ | $Q$ |
| $a$ | 0 | 1 | 0 |
| $b$ | 1 | 1 | 1 |
| $c$ | 0 | 0 | 0 |
| $d$ | 1 | 0 | 0 |
| $e$ | 1 | 0 | 1 |
| $f$ | 0 | 0 | 1 |


| $a$ | $D G$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
|  | $c,-$ | (a), 0 | $b$, - | - , - |
| $b$ | - , - | $a,-$ | (b), 1 | $e,-$ |
| c | (c), 0 | $a$, - | - , - | d , - |
| $d$ | $c,-$ | - , - | $b$, - | (d), 0 |
| $e$ | $f,-$ | - , - | $b$, - | (e), 1 |
| $f$ | (f) 1 | $a$, - | - , | $e,-$ |

## D1Two of more rows in the primitive flow

 table can be merged into one row if
## Reduction

 there are non-conflicting states and outputs in each of the columns.
## Primitive Flor ante

|  | $D G$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
| $a$ | $c,-$ | (a), 0 | $b$, - | -, - |
| $b$ | - , - | $a,-$ | (b), 1 | $e,-$ |
| c | (c), 0 | $a,-$ | - , - | d , - |
| $d$ | $c,-$ | - , - | $b$, - | (d), 0 |
| $e$ | $f,-$ | - , - | $b$, - | (e), 1 |
| $f$ | (f) , 1 | $a$, - | - , - | $e,-$ |



|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| $a$ | $c$, - | (a), 0 | $b$, - | -, - |
| c | (c) , 0 | $a$, - | - , - | d , - |
| $d$ | $c,-$ | - , - | $b$, - | (d), 0 |
|  | $D G$ |  |  |  |


| 00 |
| :---: |
| 01 |
| 01 | |  | 11 | 10 |  |
| :---: | :---: | :---: | :---: |
| $b$ | ,-- | $a,-$ | $b, 1$ |
| $e$ | $e,-$ |  |  |
|  | $f,-$ | ,-- | $b,-$ |

## Design Procedure

## Reduction of the

## Primitive Flow Table

| $a, c, d$ | $D G$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
|  | (c) 0 | (a), 0 | $b$, - | (d), 0 |
| $b, e, f$ | (f) 1 | $a,-$ | (b) , 1 | (e) 1 |




|  | $\sqrt{\square}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $D G$ |  |  |  |
|  | 00 | 01 | 11 | 10 |
| $a$ | (a), 0 | (a) 0 | $b$, - | (a) 0 |
| $b$ | (b) , 1 | $a$, - | (b) , 1 | (b) 1 |


|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| $b$ | - , - | $a,-$ | (b) , 1 | $e,-$ |
| $e$ | $f,-$ | - , - | $b$, - | (e) 1 |
| $f$ | (f), 1 | $a$, - | - , - | $e,-$ |

## Design Procedure

## Transition Table and Logic Diagram


(a) $Y=D G+G^{\prime} y$

(b) $Q=Y$


## Design Procedure

## Circuit With $\boldsymbol{S R}$ Latch



## Design Procedure

## Assigning Output to Unstable States

1. Assign a 0 to an output variable associated with an unstable state that is a transient state between two stable states that have a 0 in the corresponding output variable.
2. Assign a 1 to an output variable associated with an unstable state that is a transient state between two stable states that have a 1 in the corresponding output variable.
3. Assign a don't-care condition to an output variable associated with an unstable state that is a transient state between two stable states that have different values in the corresponding output variable.

## Reduction of State and Flow Tables

## Equivalent States

Two states are equivalent if for each possible input, they give exactly the same output and go to the same next states or to equivalent next states.

The characteristic of equivalent states is that if ( $a, b$ ) imply ( $c, d$ ) and ( $c, d$ ) imply ( $(a, b)$, then both pairs of states are equivalent.

## Reduction of State and Flow Tables

## Implication Table

Two states are equivalent if for each possible input, they give exactly the same output and go to the same next states or to equivalent next states.

The characteristic of equivalent states is that if $(a, b)$ imply $(c, d)$ and $(c, d)$ imply $(a, b)$, then both pairs of states are equivalent.

## Reduction of State and Flow Tables

## Implication • Without the first



## Reduction of State and Flow Tables

## Implied Pairs

| example |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{S}_{\mathrm{n}} \mathbf{X}_{1} \mathbf{X}$ | 00 | 01 | 11 | 10 |
| ${ }^{\text {A }}$ | D/0 | D/0 | F/0 | A/0 |
| B | C/1 | D/0 | E/1 | F/0 |
| C | C/1 | D/0 | E/1 | A/0 |
| D | D/0 | B/0 | A/0 | F/0 |
| E | C/1 | F/0 | E/1 | A/0 |
| G | D/0 | D/0 | A/0 | F/0 |
| G | G/0 | G/0 | A/0 | A/0 |
| H | B/1 | D/0 | E/1 | A/0 |



## Reduction of State and Flow Tables

The equivalent states: $[\mathrm{A}, \mathrm{F} \mid, ~[\mathrm{~B}, \mathrm{H}], ~[\mathrm{~B}, \mathrm{C}], ~[\mathrm{C}, \mathrm{H}]$ 。 Denoted by A Denoted by B t. ivalent stater
$[\mathrm{A}, \mathrm{F}],[\mathrm{B}, \mathrm{C}, \mathrm{H}]$,
[D], [E], [G]

| $\mathbf{S}_{\mathrm{n}}^{\mathbf{X}_{1} \mathbf{X}_{2}}$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| A | D/0 | D/0 | A/0 | A/0 |
| B | C/1 | D/0 | E/1 | A/0 |
| D | D/0 | B/0 | A/0 | A/0 |
| E | B/1 | A/0 | E/1 | A/0 |
| G | G/0 | G/0 | A/0 | A/0 |

$\mathbf{S}_{\mathrm{n}+1} / \mathbf{Z}_{\mathrm{n}}$


## Race-Free State Assignment

The primary objective in choosing a proper binary state assignment is the prevention of critical races.

Critical races can be avoided by making a binary state assignment in such a way that only one variable changes at any given time when a state transition occurs in the flow table.

## Race-Free State Assignment

## Three-Row Flow-Table Example


(a) Flow table

(b) Transition diagram

This assignment will cause a critical race during the transition from $a$ to $c$.

## Race-Free State Assignment

## Three-Row Flow-Table Example


(a) Flow table


The transition from $a$ to $c$ must now go through $d$, thus avoiding a critical race.

## Race-Free State Assignment

## Multiple-Row Method

In the multiple-row assignment, each state in the original flow table is replaced by two or more combinations of state variables.

(a) Binary assignment

## Race-Free State Assignment

## Multiple-Row Method


(a) Flow table

The original flow table

|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| $000=a_{1}$ | $b_{1}$ | (a) | $d_{1}$ | $a_{1}$ |
| $111=a_{2}$ | $b_{2}$ | $a_{2}$ | $d_{2}$ | $a_{2}$ |
| $001=b_{1}$ | $b_{1}$ | $d_{2}$ | $b_{1}$ | $a_{1}$ |
| $110=b_{2}$ | $b_{2}$ | $d_{1}$ | $b_{2}$ | $a_{2}$ |
| $011=c_{1}$ | $c_{1}$ | $a_{2}$ | $b_{1}$ | $c_{1}$ |
| $100=c_{2}$ | $c_{2}$ | $a_{1}$ | $b_{2}$ | (c2) |
| $010=d_{1}$ | $c_{1}$ | d $d_{1}$ | d $d_{1}$ | $c_{1}$ |
| $101=d_{2}$ | $c_{2}$ | d $d_{2}$ | $d_{2}$ | $c_{2}$ |

(b) Flow table

## Hazards

Hazards are unwanted switching transients that may appear at the output of a circuit because different paths exhibit different propagation delays.

Hazards occur in combinational circuits, where they may cause a temporary false-output value.

When hazards occur in sequential circuits, it may result in a transition to a wrong stable state.

## Hazards

## Hazards in Combinational Circuits



## Hazards

## Hazards in Combinational Circuits


(a) Static 1-hazard
(b) Static 0-hazard

(c) Dynamic hazard

## Hazards

## Hazards in Combinational Circuits


(a) $Y=x_{1} x_{2}+x^{\prime}{ }_{2} x_{3}$

The hazard exists
because the change of input results in a different product term covering the two minterms.

## Hazards

## Hazards in Combinational Circuits



## Hazards

## Hazards in Combinational Circuits



Fig. 9-36 Hazard-Free Circuit

## Hazards

## Implementation with SR Latches

Consider a NAND $S \Gamma$
Boolean functions fo

$$
S=A B+C D
$$

Since this is a NAND latch, we apply the complemented values to the inputs:

$$
R=A^{\prime} C
$$

$$
S=(A B+C D)^{\prime}=(A B)^{\prime}(C D)^{\prime}
$$

$$
R=\left(A^{\prime} C\right)^{\prime}
$$

$Q=\left(Q^{\prime} S\right)^{\prime}=\left[Q^{\prime}(A B)^{\prime}(C D)^{\prime}\right]^{\prime}$

## Hazards

## Implementation with SR Latches

$Q=\left(Q^{\prime} S\right)^{\prime}=\left[Q^{\prime}(A B)^{\prime}(C D)^{\prime}\right]^{\prime}$


## Design Example

## The Recommended Procedure

1. State the design specifications
2. Derive a primitive flow table
3. Reduce the flow table by merging the rows
4. Make a race-free binary state assignment
5. Obtain the transition table and output map
6. Obtain the logic diagram using $S R$ latch

## Design Example

## Design Specifications

It is necessary to design a negative-edgetriggered flip-flop. The circuit has two inputs, $T$ (toggle) and $C$ (clock), and one output, $Q$.

## Design Example

## Primitive Flow Table

## Specification of Total States

|  | Inputs |  | Output | Comments |
| :---: | :---: | :---: | :---: | :---: |
| State | $T$ | $C$ | $Q$ |  |
| $a$ | 1 | 1 | 0 | Initial input is 0 |
| $b$ | 1 | 0 | 1 | After state $a$ |
| $c$ | 1 | 1 | 1 | Initial input is 1 |
| $d$ | 1 | 0 | 0 | After state $c$ |
| $e$ | 0 | 0 | 0 | After state $d$ or $f$ |
| $f$ | 0 | 1 | 0 | After state $e$ or $a$ |
| $g$ | 0 | 0 | 1 | After state $b$ or $h$ |
| $h$ | 0 | 1 | 1 | After state $g$ or $c$ |

# Primitive Flow <br> Table 

## Design Example

## Primitive Flow Table

## Implication Table



## Design Example

## Merging the Flow Table

The compatible pairs:

$$
\begin{aligned}
& (a, f)(b, g)(b, h) \\
& (c, h)(d, e)(d, f) \\
& (e, f)(g, h)
\end{aligned}
$$

## Design Example

## Merging the Flow Table



The maximal compatible set:
$(a, f)(b, g, h)(c, h)$
$(d, e, f$ )

## Design Example

## Merging the Flow Table

Reduced
flow table

(a)

|  | TC |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
| $a$ | d,- | (a),0 | (a), 0 | (b) ,- |
| $b$ | (b) , 1 | (b), 1 | $c$, - | (b) 1 |
| c | $b$, - | (c), 1 | (c) 1 | d,- |
| $d$ | (d) 0 | (d), 0 | $a,-$ | (d), 0 |

(b)

## Design Example

## State Assignment and Transition Table


(a) Transition table

| $y_{1} y_{2}$ | TC |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
| 00 | 0 | 0 | 0 | X |
| 01 | 1 | 1 | 1 | 1 |
| 11 | 1 | 1 | 1 | $X$ |
| 10 | 0 | 0 | 0 | 0 |

(b) Output map $Q=y_{2}$

## Design Example

## Logic Diagram

| $T C$ |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| $y_{1} y_{2}$ | 00 |  |  |  |
| 00 | 01 | 11 | 10 |  |
|  | 1 | 0 | 0 | 0 |
|  | 0 | 0 | 1 | 0 |
|  | 0 | $X$ | $X$ | $X$ |
| 10 | $X$ | $X$ | 0 | $X$ |
|  |  |  |  |  |

(a) $S_{1}=y_{2} T C+y_{2}^{\prime} T^{\prime} C^{\prime}$

| $T C$ |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| $y_{1} y_{2}$ |  |  |  | 00 |
|  | 01 | 0 | 11 | 10 |
|  | 0 | 0 | 0 | 1 |
|  | $X$ | $X$ | $X$ | $X$ |
| 11 | $X$ | $X$ | $X$ | 0 |
| 10 | 0 | 0 | 0 | 0 |
|  |  |  |  |  |

(c) $S_{2}=y_{1}^{\prime} T C^{\prime}$

(b) $R_{1}=y_{2} T^{\prime} C^{\prime}+y_{2}^{\prime} T C$

| $y_{1} y_{2}$ | TC |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 11 | 10 |
| 00 | $X$ | $X$ | X | 0 |
| 01 | 0 | 0 | 0 | 0 |
| 11 | 0 | 0 | 0 | 1 |
| 10 | $X$ | $X$ | X | $X$ |

(d) $R_{2}=y_{1} T C^{\prime}$

## Design Example

## Logic Diagram



