SET THEORY

Set Theory - Definitions and notation

A set is an unordered collection of objects referred to as elements.
A set is said to contain its elements.
Different ways of describing a set.
1 - Explicitly: listing the elements of a set
$\{1,2,3\}$ is the set containing " 1 " and " 2 " and " 3 ." list the members between braces.
$\{1,1,2,3,3\}=\{1,2,3\}$ since repetition is irrelevant.
$\{1,2,3\}=\{3,2,1\}$ since sets are unordered.
$\{1,2,3, \ldots, 99\}$ is the set of positive integers less than 100; use ellipses when the general pattern of the elements is obvious.
$\{1,2,3, \ldots\}$ is a way we denote an infinite set (in this case, the natural numbers).
$\varnothing=\{ \}$ is the empty set, or the set containing no elements.

Set Theory - Definitions and notation

2 - Implicitly: by using a set builder notations, stating the property or properties of the elements of the set.
$S=\{\mathrm{ml} 2 \leq \mathrm{m} \leq 100, \mathrm{~m}$ is integer $\}$
S is
the set of
all m such that
m is between 2 and 100 and
m is integer.

Set Theory - Ways to define sets

Explicitly: \{John, Paul, George, Ringo\}

Set builder: $\{x: x$ is prime $\},\{x \mid x$ is odd $\}$. In general $\{x: P(x)$ is true $\}$, where $\mathrm{P}(\mathrm{x})$ is some description of the set.

Let $\mathrm{D}(\mathrm{x}, \mathrm{y})$ denote " x is divisible by y ."
Give another name for

$$
\{\mathrm{x}: \forall \mathrm{y}((\mathrm{y}>1) \wedge(\mathrm{y}<\mathrm{x})) \rightarrow \neg \mathrm{D}(\mathrm{x}, \mathrm{y})\} .
$$

Can we use any predicate P to define a set $S=\{x: P(x)\}$?

"the set of all sets that do not Set Theory - Russell's Paradox

 contain themselves as members"Can we use any predicate P to define a set No!

$$
S=\{x: P(x)\} ?
$$

Define $S=\{x: x$ is a set where $x \notin x\}$

Then, if $S \in S$, then by defn of $S, S \notin S$.
So S must not be in S, right?

But, if $S \notin S$, then by defn of $S, S \in S$.

There is a town with a barber who shaves all the people (and only the people) who don't shave themselves.

Who shaves the barber?

Set Theory - Russell's Paradox

There is a town with a barber who shaves all the people (and only the nennle) who don't shave themselves.

Does the barber shave himself?

Who shaves the barber?

If the barber does not shave himself, he must abide by the rule and shave himself. If he does shave himself, according to the rule he will not shave himself.

$$
(\exists x)(\operatorname{barber}(x) \wedge(\forall y)(\neg \operatorname{shaves}(y, y) \leftrightarrow \operatorname{shaves}(x, y))
$$

This sentence is unsatisfiable (a contradiction) because of the universal quantifier.
The universal quantifier y will include every single element in the domain, including our infamous barber x . So when the value x is assigned to y , the sentence can be rewritten to:

$$
\begin{aligned}
& \{\neg \operatorname{shaves}(x, x) \leftrightarrow \operatorname{shaves}(x, x)\} \equiv \\
& \{(\operatorname{shaves}(x, x) \vee \operatorname{shaves}(x, x)) \wedge(\neg \operatorname{shaves}(x, x) \vee \neg \operatorname{Shaves}(x, x))\} \equiv \\
& \{\operatorname{shaves}(x, x) \wedge(\neg \operatorname{shaves}(x, x)\} \quad \text { Contradiction! }
\end{aligned}
$$

Set Theory - Definitions and notation

Important Sets
$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of natural numbers, non negative integers, (occasionally IN)
$\mathbf{Z}=\{\ldots,-2,-1,0,1,2,3, \ldots)$, the set of integers
$\mathbf{Z}^{+}=\{1,2,3, \ldots\}$ set of positive integers
$\mathbf{Q}=\{p / q \mid p \in Z, q \in Z$, and $q \neq 0\}$, set of rational numbers
\mathbf{R}, the set of real numbers
Note: Real number are the numbers that can be represented by an infinite decimal representation, such as $3.4871773339 \ldots$. The real numbers include both rational, and irrational numbers such as π and the $\sqrt{2}$ and can be represented as points along an infinitely long number line.

Set Theory - Definitions and notation

$x \in S$ means " x is an element of set S."
$x \notin S$ means " x is not an element of set S."
$A \subseteq B$ means " A is a subset of B."
or, "B contains A."
or, "every element of A is also in B."
or, $\forall x((x \in A) \rightarrow(x \in B))$.

Venn Diagram

Set Theory - Definitions and notation

$A \subseteq B$ means "A is a subset of B."
$A \supseteq B$ means "A is a superset of B."
A = B if and only if A and B have exactly the same elements.

$$
\begin{aligned}
& \text { iff, } A \subseteq B \text { and } B \subseteq A \\
& \text { iff, } A \subseteq B \text { and } A \supseteq B \\
& \text { iff, } \forall x((x \in A) \leftrightarrow(x \in B)) .
\end{aligned}
$$

So to show equality of sets A and B , show:

- $A \subseteq B$
- $\mathrm{B} \subseteq \mathrm{A}$

Set Theory - Definitions and notation

$A \subset B$ means "A is a proper subset of $B . "$
$-\mathrm{A} \subseteq \mathrm{B}$, and $\mathrm{A} \neq \mathrm{B}$.
$-\forall \mathrm{x}((\mathrm{x} \in \mathrm{A}) \rightarrow(\mathrm{x} \in \mathrm{B})) \wedge \neg \forall \mathrm{x}((\mathrm{x} \in \mathrm{B}) \rightarrow(\mathrm{x} \in \mathrm{A}))$
$-\forall x((x \in A) \rightarrow(x \in B)) \wedge \exists x \neg(\neg(x \in B) v(x \in A))$
$-\forall x((x \in A) \rightarrow(x \in B)) \wedge \exists x((x \in B) \wedge \neg(x \in A))$
$-\forall x((x \in A) \rightarrow(x \in B)) \wedge \exists x((x \in B) \wedge(x \notin A))$

Set Theory - Definitions and notation

Quick examples:

$$
\begin{aligned}
& \{1,2,3\} \subseteq\{1,2,3,4,5\} \\
& \{1,2,3\} \subset\{1,2,3,4,5\} \\
& \text { Is } \varnothing \subseteq\{1,2,3\} ? \quad \begin{array}{c}
\text { Yes! } \forall \mathrm{x}(\mathrm{x} \in \varnothing) \rightarrow(\mathrm{x} \in\{1,2,3\}) \text { holds (for all } \\
\quad \text { over empty domain })
\end{array}
\end{aligned}
$$

Is $\varnothing \in\{1,2,3\}$? No!
Is $\varnothing \subseteq\{\varnothing, 1,2,3\}$? Yes!
Is $\varnothing \in\{\varnothing, 1,2,3\}$? Yes!

Set Theory - Definitions and notation

A few more:
Yes

Is $\{a\} \subseteq\{a\}$?
Is $\{a\} \in\{a,\{a\}\}$? Yes

Is $\{a\} \subseteq\{a,\{a\}\} ? \quad$ Yes

Is $\{a\} \in\{a\}$? No

Set Theory - Cardinality

If S is finite, then the cardinality of $\mathrm{S},|\mathrm{S}|$, is the number of distinct elements in S .

$$
\begin{aligned}
& \text { If } S=\{1,2,3\}, \quad|S|=3 . \\
& \text { If } S=\{3,3,3,3,3\}, \quad|S|=1
\end{aligned}
$$

$$
\text { If } S=\varnothing, \quad|S|=0
$$

$$
\text { If } S=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}
$$

$$
|s|=3 .
$$

If $S=\{0,1,2,3, \ldots\},|S|$ is infinite.

Set Theory - Power sets Multisets

If S is a set, then the power set of S is

$$
2^{S}=\{x: x \subseteq S\} . \quad \text { aka } P(S)
$$

$\begin{array}{ll}\text { If } S=\{a\}, & 2^{s}=\{\varnothing,\{a\}\} . \\ \text { If } S=\{a, b\}, & 2^{s}=\{\varnothing,\{a\},\{b\},\{a, b\}\} . \\ \text { If } S=\varnothing, & 2^{s}=\{\varnothing\} . \\ \text { If } S=\{\varnothing,\{\varnothing\}\}, & \text { We } \\ & \quad 2^{s}=\{\varnothing,\{\varnothing\},\{\{\varnothing\}\},\{\varnothing,\{\varnothing\}\}\} .\end{array}$

Fact: if S is finite, $\left|2^{s}\right|=2^{|s|}$. (if $|S|=n,\left|2^{s}\right|=2^{n}$)

Set Theory - Ordered Tuples

Cartesian Product

When order matters, we use ordered n-tuples

The Cartesian Product of two sets A and B is:

$$
A \times B=\{\langle a, b>: a \in A \wedge b \in B\}
$$

If $A=\{$ Charlie, Lucy, Linus $\}$, and $B=$ \{Brown, VanPelt \}, then

A x B $=\{<$ Charlie, Brown $>,<$ Lucy, Brown $>,<$ Linus, Brown>, <Charlie, VanPelt>, <Lucy, VanPelt>, <Linus, VanPelt>\}

We'll use these special sets soon!
$A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{<a_{1}, a_{2}, \ldots, a_{n}>a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}$
Size?
A, B finite $\rightarrow|A \times B|=$?
a) $A \times B$
b) $|A|+|B|$
c) $|A+B|$
d) $|A||B|$

$$
\mathrm{n}^{\mathrm{n}} \text { if }(\forall \mathrm{i})\left|\mathrm{A}_{\mathrm{i}}\right|=\mathrm{n}
$$

Set Theory - Operators

The union of two sets A and B is:

$$
A \cup B=\{x: x \in A \vee x \in B\}
$$

If $A=\{$ Charlie, Lucy, Linus $\}$, and $B=\{$ Lucy, Desi $\}$, then
$A \cup B=\{$ Charlie, Lucy, Linus, Desi $\}$

Set Theory - Operators

The intersection of two sets A and B is:

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

If $A=\{$ Charlie, Lucy, Linus $\}$, and $B=\{$ Lucy, Desi $\}$, then
$\mathrm{A} \cap \mathrm{B}=\{$ Lucy $\}$

Set Theory - Operators

The intersection of two sets A and B is:

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

If $A=\{x: x$ is a US president $\}$, and $B=\{x: x$ is deceased $\}$, then
$A \cap B=\{x: x$ is a deceased US president $\}$

Set Theory - Operators

The intersection of two sets A and B is:

$$
A \cap B=\{x: x \in A \wedge x \in B\}
$$

If $A=\{x: x$ is a US president $\}$, and $B=\{x: x$ is in this room $\}$, then
$\mathrm{A} \cap \mathrm{B}=\{\mathrm{x}: \mathrm{x}$ is a US president in this room $\}=\varnothing$

Sets whose intersection is empty are called disjoint sets

Set Theory - Operators

The complement of a set A is:

$$
\overline{\mathrm{A}}=\{\mathrm{x}: \mathrm{x} \notin \mathrm{~A}\}
$$

If $A=\{x: x$ is bored $\}$, then
$\overline{\mathrm{A}}=\{\mathrm{x}: \mathrm{x}$ is not bored $\}$

$$
\begin{aligned}
& \bar{\varnothing}=U \\
& \text { and } \\
& \bar{U}=\varnothing
\end{aligned}
$$

I.e., $\bar{A}=U-A$, where U is the universal set.
"A set fixed within the framework of a theory and consisting of all objects considered in the theory. "

Set Theory - Operators

The set difference, $\mathrm{A}-\mathrm{B}$, is:

$$
\begin{aligned}
& A-B=\{x: x \in A \wedge x \notin B\} \\
& A-B=A \cap B
\end{aligned}
$$

Set Theory - Operators

The symmetric difference, $A \oplus B$, is:

$$
\begin{aligned}
& A \oplus B=\{x:(x \in A \wedge x \notin B) \vee(x \in B \wedge x \notin A)\} \\
= & (A-B) \cup(B-A)
\end{aligned}
$$

like
"exclusive
or"

Set Theory - Operators

Theorem: $A \oplus B=(A-B) \cup(B-A)$

Proof: $A \oplus B=\{x:(x \in A \wedge x \notin B) v(x \in B \wedge x \notin A)\}$

$$
\begin{aligned}
& =\{x:(x \in A-B) \vee(x \in B-A)\} \\
& =\{x: x \in((A-B) \cup(B-A))\} \\
& =(A-B) \cup(B-A)
\end{aligned}
$$

Directly from defns. Semantically clear.

Set Theory - Identities

Identity
$A \cap U=A$
$A \cup \varnothing=A$

Domination
$A \cup U=U$
$A \cap \varnothing=A$
Idempotent
$A \cup A=A$
$A \cap A=A$

Set Theory - Identities, cont.

Complement Laws

$$
\begin{aligned}
& A \cup \bar{A}=U \\
& A \cap \bar{A}=\varnothing
\end{aligned}
$$

Double complement

$$
\overline{\bar{A}}=A
$$

Set Theory - Identities, cont.

Commutativity
$A \cup B=B \cup A$
$A \cap B=B \cap A$
Associativity

Distributivity

$$
\begin{aligned}
& (A \cup B) \cup C=A \cup(B \cup C) \\
& (A \cap B) \cap C=A \cap(B \cap C)
\end{aligned}
$$

$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

DeMorgan's I

$\overline{(A \cup B)}=\bar{A} \cap \bar{B}$

DeMorgan's II

$$
\overline{(A \cap B)}=\bar{A} \cup \bar{B}
$$

Proving identities

Prove that $\quad(A \cup B)=\bar{A} \cap \bar{B}$
(De Morgan)

1. $(\subseteq)(x \in \overline{A U B)}$
$\Rightarrow(x \notin(\mathrm{~A} U B))$
$\Rightarrow(\mathrm{x} \notin \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B})$
$\Rightarrow(\mathrm{x} \in \overline{\mathrm{A}} \cap \overline{\mathrm{B}})$
2. (Э) $(x \in(\overline{\mathrm{~A}} \cap \overline{\mathrm{~B}}))$
$\Rightarrow(\mathrm{x} \notin \mathrm{A}$ and $\mathrm{x} \notin \mathrm{B})$
$\Rightarrow(\mathrm{x} \notin \mathrm{A} U \mathrm{~B})$
$\Rightarrow(\mathrm{x} \in \overline{\mathrm{AUB}})$

Alt. proof

Prove that $\overline{(A \cup B)}=\bar{A} \cap \bar{B}$ using a membership table. $0: x$ is not in the specified set
1: otherwise

A	B	\bar{A}	\bar{B}	$\bar{A} \cap \bar{B}$	$A \cup B$	$\overline{A \cup B}$
1	1	0	0	0	1	0
1	0	0	1	0	1	0
0	1	1	0	0	1	0
0	0	1	1	1	0	1

Haven't we seen this before?
General connection via Boolean algebras

Proof using logically equivalent set definitions.

$$
\overline{(A \cup B)}=\bar{A} \cap \bar{B}
$$

$\overline{(A \cup B)}=\{x: \neg(x \in A \vee x \in B)\}$

$$
\begin{aligned}
& =\{x: \neg(x \in A) \wedge \neg(x \in B)\} \\
& =\{x:(x \in \bar{A}) \wedge(x \in \bar{B})\} \\
& =\bar{A} \cap \bar{B}
\end{aligned}
$$

Example

$X \cap(Y-Z)=(X \cap Y)-(X \cap Z)$. True or False?
Prove your response.

$$
(X \cap Y)-(X \cap Z)=(X \cap Y) \cap(X \cap Z)^{\prime}
$$

What kind of law?

$$
=(X \cap Y) \cap\left(X^{\prime} \cup Z^{\prime}\right)
$$

$$
=\left(X \cap Y \cap X^{\prime}\right) \cup\left(X \cap Y \cap Z^{\prime}\right)
$$

$$
=\varnothing U\left(X \cap Y \cap Z^{\prime}\right)
$$

$$
=\left(X \cap Y \cap Z^{\prime}\right)
$$

$$
=X \cap(Y-Z)
$$

Note: $(\overline{\mathrm{X} \cap \mathrm{Z}})=(\mathrm{X} \cap \mathrm{Z})^{\prime}$ (just different notation)

TABLE 1 Set Identities.	
Identity	Name
$A \cup \varnothing=A$	Identity laws
$A \cap U=A$	Domination laws
$A \cup U=U$	
$A \cap \varnothing=\varnothing$	Idempotent laws
$A \cup A=A$	Complementation law
$A \cap A=A$	Commutative laws
$\overline{(\bar{A})}=A$	Associative laws
$A \cup B=B \cup A$	
$A \cap B=B \cap A$	Distributive laws
$A \cup(B \cup C)=(A \cup B) \cup C$	De Morgan's laws
$A \cap(B \cap C)=(A \cap B) \cap C$	Absorption laws
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	Complement laws
$\overline{A \cap B}=\bar{A} \cup \bar{B}$	
$A \cup(A \cap B)=A$	
$A \cap(A \cup B)=A$	
$A \cup \bar{A}=U$	
$A \cap \bar{A}=\varnothing$	

Example

Pv that if $(A-B) \cup(B-A)=(A \cup B)$ then $A \cap B=\varnothing$
Suppose to the contrary, that $A \cap B \neq \varnothing$, and that $x \in A \cap B$.
Then x cannot be in $A-B$ and x cannot be in $B-A$.
a) $A=B$
b) $A \cap B=\varnothing$
c) $A-B=B-A=\varnothing$

Then x is not in $(A-B) \cup(B-A)$.
Do you see the contradiction yet?

But x is in $A \cup B$ since $(A \cap B) \subseteq(A \cup B)$.
Thus, $(A-B) \cup(B-A) \neq(A \cup B)$.
Contradiction.
Thus, $A \cap B=\varnothing$.

Trying to prove p --> q
Assume p and not q, and find a contradiction.
Our contradiction was that sets weren't equal.

Set Theory - Generalized Union/Intersection

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n} \\
& \bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \ldots \cap A_{n}
\end{aligned}
$$

Set Theory - Generalized Union/Intersection

Ex. Suppose that:

$$
\begin{array}{ll}
A_{i}=\{1,2,3, \ldots, i\} & i=1,2,3, \ldots \\
\bigcup_{i=1}^{\infty} A_{i}=? & \bigcup_{i=1}^{\infty} A_{i}=Z^{+} \\
\bigcap_{i=1}^{\infty} A_{i}=? & \bigcap_{i=1}^{\infty} A_{i}=\{1\}
\end{array}
$$

Example:

$$
\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}
$$

Ex. Let $\mathrm{U}=\mathrm{N}$, and define:

$$
\begin{array}{rll}
& A_{i}=\{x: \exists k>1, x=k i, k \in \mathrm{~N}\} \quad \mathrm{i}=1,2, \ldots, \mathrm{~N} \\
\mathrm{~A}_{1}=\{2,3,4, \ldots\} \\
\mathrm{A}_{2}=\{4,6,8, \ldots\} \\
\mathrm{A}_{3}=\{6,9,12, \ldots\} & \bigcup_{i=2}^{\infty} A_{i}=? \quad \text { primes } & \text { a) Primes } \\
& & \text { b) Composites } \\
\text { c) } & \text { c) } \\
\text { d) } & \mathrm{N} \\
\text { e) I have no clue. }
\end{array}
$$

Union is all the composite numbers.

Set Theory - Inclusion/Exclusion

Example:
There are 217 cs majors.
157 are taking CS23021.
145 are taking cs23022.
98 are taking both.

How many are taking neither?

$$
217-(157+145-98)=13
$$

Generalized Inclusion/Exclusion

Suppose we have:

What about 4 sets?
And I want to know IA U B U Cl
$|\mathrm{A} U \mathrm{~B} \mathrm{U} \mathrm{Cl}=|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|$

$$
\begin{gathered}
-\mid \mathrm{A} \cap \mathrm{BI}-\mathrm{I} \mathrm{~A} \cap \mathrm{Cl}-\mathrm{IB} \cap \mathrm{Cl} \\
+\mid \mathrm{A} \cap \mathrm{~B} \cap \mathrm{Cl}
\end{gathered}
$$

Generalized Inclusion/Exclusion

For sets $A_{1}, A_{2}, \ldots . A_{n}$ we have:

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|+\ldots+(-1)^{(n-1)}\left|\bigcap_{i=1}^{n} A_{i}\right|
$$

Set Theory - Sets as bit strings

Let $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and let $A \subseteq U$.
Then the characteristic vector of A is the n-vector whose elements, x_{i}, are 1 if $x_{i} \in A$, and 0 otherwise.

Ex. If $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$, and $A=\left\{x_{1}, x_{3}, x_{5}, x_{6}\right\}$, then the characteristic vector of A is
(101011)

Sets as bit strings

Ex. If $\mathrm{U}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}\right\}$,

$$
A=\left\{x_{1}, x_{3}, x_{5}, x_{6}\right\}, \text { and }
$$

$B=\left\{x_{2}, x_{3}, x_{6}\right\}$,
Then we have a quick way of finding the characteristic vectors of $A \cup B$ and $\mathrm{A} \cap \mathrm{B}$.

	A	1	0	1	0	1	1
	B	0	1	1	0	0	1
Bit-wise OR	$A \cup B$	1	1	1	0	1	1
Bit-wise AND	$A \cap B$	0	0	1	0	0	1

