SET THEORY

1

A set is an unordered collection of objects referred to as elements.

A set is said to contain its elements.

Different ways of describing a set.

1 – Explicitly: listing the elements of a set

- {1, 2, 3} is the set containing "1" and "2" and "3." list the members between braces.
- $\{1, 1, 2, 3, 3\} = \{1, 2, 3\}$ since repetition is irrelevant.
- $\{1, 2, 3\} = \{3, 2, 1\}$ since sets are unordered.
- {1,2,3, ..., 99} is the set of positive integers less than 100; use ellipses when the general pattern of the elements is obvious.
- {1, 2, 3, ...} is a way we denote an infinite set (in this case, the natural numbers).
- $\emptyset = \{\}$ is the empty set, or the set containing no elements.

Note: $\emptyset \neq \{\emptyset\}$

- 2 Implicitly: by using a set builder notations, stating the property or properties of the elements of the set.
- $S = \{m| \ 2 \le m \le 100, m \text{ is integer}\}$

```
S is
the set of
all m
such that
m is between 2 and 100
and
m is integer.
```

Set Theory - Ways to define sets

: and | are read "such that" or "where"

Explicitly: {John, Paul, George, Ringo}

Implicitly: {1,2,3,...}, or {2,3,5,7,11,13,17,...}

Set builder: { x : x is prime }, { x | x is odd }. In general { x : P(x) is true }, where P(x) is some description of the set.

Let D(x,y) denote "x is divisible by y." Give another name for

 $\{ x : \forall y ((y > 1) \land (y < x)) \rightarrow \neg D(x,y) \}.$ Primes

Can we use **any** predicate P to define a set $S = \{x : P(x)\}$?

"the set of all sets that do not contain themselves as members" **Set Theory - Russell's Paradox**

Who shaves the barber?

Set Theory - Russell's Paradox

There is a town with a barber who shaves all the people (and only the people) who don't shave themselves.

Does the barber shave himself?

Who shaves the barber?

6

If the barber does not shave himself, he must abide by the rule and shave himself. If he does shave himself, according to the rule he will not shave himself.

 $(\exists x) (barber(x) \land (\forall y)(\neg shaves(y, y) \leftrightarrow shaves(x, y))$

This sentence is unsatisfiable (a contradiction) because of the universal quantifier. The universal quantifier y will include every single element in the domain, including our infamous barber x. So when the value x is assigned to y, the sentence can be rewritten to:

 $\{\neg shaves(x, x) \leftrightarrow shaves(x, x)\} \equiv \\ \{(shaves(x, x) \lor shaves(x, x)) \land (\neg shaves(x, x) \lor \neg shaves(x, x))\} \equiv \\ \{shaves(x, x) \land (\neg shaves(x, x))\}$ Contradiction!

Important Sets

 $N = \{0, 1, 2, 3, ...\}$, the set of **natural numbers**, non negative integers, (occasionally IN)

 $\mathbf{Z} = \{ \dots, -2, -1, 0, 1, 2, 3, \dots \}$, the set of **integers**

 $\mathbf{Z}^{+} = \{1, 2, 3, ...\}$ set of **positive integers**

 $\mathbf{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, and q \neq 0\}$, set of **rational numbers**

R, the set of real numbers

Note: Real number are the numbers that can be represented by an infinite decimal representation, such as 3.4871773339... The real numbers include both **rational**, and **irrational** numbers such as π and the $\sqrt{2}$ and can be represented as points along an infinitely long number line.

 $x \in S$ means "x is an element of set S." $x \notin S$ means "x is not an element of set S."

 $A \subseteq B$ means "A is a subset of B."

```
or, "B contains A."
or, "every element of A is also in B."
or, \forall x ((x \in A) \rightarrow (x \in B)).
```


 $A \subseteq B$ means "A is a subset of B." A \supseteq B means "A is a superset of B."

A = B if and only if A and B have exactly the same elements.

iff, $A \subseteq B$ and $B \subseteq A$ iff, $A \subseteq B$ and $A \supseteq B$ iff, $\forall x ((x \in A) \leftrightarrow (x \in B)).$

So to show equality of sets A and B, show:

- $A \subseteq B$
- $B \subseteq A$

 $A \subset B$ means "A is a proper subset of B."

- $A \subseteq B$, and $A \neq B$.
- $\quad \forall x \ ((x \in A) \rightarrow (x \in B)) \land \neg \forall x \ ((x \in B) \rightarrow (x \in A))$
- $\quad \forall x \ ((x \in A) \rightarrow (x \in B)) \land \exists x \neg (\neg (x \in B) \ v \ (x \in A))$
- $\quad \forall x \; ((x \in A) \rightarrow (x \in B)) \land \exists x \; ((x \in B) \land \neg (x \in A))$
- $\quad \forall x \; ((x \in A) \rightarrow (x \in B)) \land \exists x \; ((x \in B) \land (x \notin A))$

Quick examples: $\{1,2,3\} \subseteq \{1,2,3,4,5\}$ $\{1,2,3\} \subset \{1,2,3,4,5\}$

Is $\emptyset \subseteq \{1,2,3\}$? Yes! $\forall x (x \in \emptyset) \rightarrow (x \in \{1,2,3\})$ holds (for all over empty domain)

Is $\emptyset \in \{1,2,3\}$? No!

Is $\emptyset \subseteq \{\emptyset, 1, 2, 3\}$? Yes!

Is $\emptyset \in \{\emptyset, 1, 2, 3\}$? Yes!

Set Theory - Cardinality

If S is finite, then the *cardinality* of S, ISI, is the number of distinct elements in S.

If $S = \{1,2,3\}$, |S| = 3. If $S = \{3,3,3,3,3\}$, |S| = 1. If $S = \emptyset$, |S| = 0. If $S = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$, |S| = 3.

If $S = \{0, 1, 2, 3, ...\}$, |S| is infinite.

Set Theory - Power sets Multisets

If S is a set, then the *power set* of S is $2^{S} = \{x : x \subseteq S\}$. aka P(S) If S = {a}, $2^{S} = \{\emptyset, \{a\}\}$. We say, "P(S) is the set of all subsets of S." If S = $\{\emptyset, \{2^{S} = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$. If S = $\{\emptyset, \{2^{S} = \{\emptyset\}\}$. If S = $\{\emptyset, \{\emptyset\}\}$, $2^{S} = \{\emptyset\}$. If S = $\{\emptyset, \{\emptyset\}\}$, $2^{S} = \{\emptyset, \{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}$.

Fact: if S is finite, $|2^{S}| = 2^{|S|}$. (if |S| = n, $|2^{S}| = 2^{n}$)

Set Theory – Ordered Tuples Cartesian Product

When order matters, we use ordered n-tuples

The *Cartesian Product* of two sets A and B is: A x B = $\{ \langle a, b \rangle : a \in A \land b \in B \}$

If A = {Charlie, Lucy, Linus}, and B = {Brown, VanPelt}, then

A x B = {<Charlie, Brown>, <Lucy, Brown>, <Linus, Brown>, <Charlie, VanPelt>, <Lucy, VanPelt>, <Linus, VanPelt>} We'll use these special sets soon!

a)

d)

AxB

b) |A|+|B|

|A||B|

c) |A+B|

 $A_1 \times A_2 \times \dots \times A_n = \{ \langle a_1, a_2, \dots, a_n \rangle : a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n \}$

A,B finite \rightarrow |AxB| = ?

Size?

 n^{n} if $(\forall i) |A_{i}| = n$

The union of two sets A and B is:

 $A \cup B = \{ x : x \in A \ v \ x \in B \}$

If A = {Charlie, Lucy, Linus}, and B = {Lucy, Desi}, then

 $A \cup B = \{$ Charlie, Lucy, Linus, Desi $\}$

The *intersection* of two sets A and B is: $A \cap B = \{ x : x \in A \land x \in B \}$ If A = {Charlie, Lucy, Linus}, and B = {Lucy, Desi}, then

 $A \cap B = \{Lucy\}$

The *intersection* of two sets A and B is: $A \cap B = \{ x : x \in A \land x \in B \}$ If A = {x : x is a US president}, and B = {x : x is deceased}, then

 $A \cap B = \{x : x \text{ is a deceased US president}\}$

The *intersection* of two sets A and B is: $A \cap B = \{ x : x \in A \land x \in B \}$

If $A = \{x : x \text{ is a US president}\}$, and $B = \{x : x \text{ is in this room}\}$, then

 $A \cap B = \{x : x \text{ is a US president in this room}\} = \emptyset$

Sets whose intersection is empty are called *disjoint* sets

The *complement* of a set A is:

$$A = \{ x : x \notin A \}$$

If $A = \{x : x \text{ is bored}\}$, then

 $\overline{A} = \{x : x \text{ is not bored}\}$

I.e., $\overline{A} = U - A$, where U is the universal set. "A set fixed within the framework of a theory and consisting of all objects considered in the theory."

The set difference, A - B, is:

$$A - B = \{ x : x \in A \land x \notin B \}$$
$$A - B = A \cap \overline{B}$$

The symmetric difference, $A \oplus B$, is: $A \oplus B = \{ x : (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$ $= (A - B) \cup (B - A)$

Theorem: $A \oplus B = (A - B) \cup (B - A)$

٠

Proof:
$$A \oplus B = \{ x : (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$$

= $\{ x : (x \in A - B) \lor (x \in B - A) \}$
= $\{ x : x \in ((A - B) \cup (B - A)) \}$
= $(A - B) \cup (B - A)$

Directly from defns. Semantically clear.

Set Theory - Identities

Identity	$A \cap U = A$	
	$A \cup \emptyset = A$	
Domination		
Donnia non	$A \cup U = U$	
	$A \cap \emptyset = A$	
Idempotent		
	$A \cup A = A$	
	$A \cap A = A$	

Set Theory – Identities, cont.

Complement Laws

$$A \cup \overline{A} = U$$

$$A \cap \overline{A} = \emptyset$$

Double complement

$$\overline{\overline{A}} = A$$

Set Theory - Identities, cont.

Commutativity	AUB = BUA
	$A \cap B = B \cap A$
Associativity	
	$(A \cup B) \cup C = A \cup (B \cup C)$
Distributivity	$(A \cap B) \cap C = A \cap (B \cap C)$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

DeMorgan's I

$$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$$

DeMorgan's II

$$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$$

Proof by "diagram" (useful!), but we aim for a more formal proof.

Proving identities

Prove that
$$(\overline{A \cup B}) = \overline{A \cap B}$$

1. (\subseteq) $(x \in \overline{A \cup B})$
 $\Rightarrow (x \notin (A \cup B))$
 $\Rightarrow (x \notin A \text{ and } x \notin B)$
 $\Rightarrow (x \in \overline{A \cap B})$
2. (\supseteq) $(x \in (\overline{A \cap B}))$
 $\Rightarrow (x \notin A \text{ and } x \notin B)$
 $\Rightarrow (x \notin A \text{ U } B)$

(De Morgan)

Alt. proof

Prove that $(\overline{A \cup B}) = \overline{A} \cap \overline{B}$ using a membership table. 0: x is not in the specified set 1: otherwise

A	В	A	В	$A \cap B$	AUB	AUB	
1	1	0	0	0	1	0	
1	0	0	1	0	1	0	-
0	1	1	0	0	1	0	
0	0	1	1	1	0	1	Haven't we seen this before?

General connection via Boolean algebras

Proof using logically equivalent set definitions.

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

$$\overline{(A \cup B)} = \{x : \neg(x \in A \lor x \in B)\}$$
$$= \{x : \neg(x \in A) \land \neg(x \in B)\}$$
$$= \{x : (x \in \overline{A}) \land (x \in \overline{B})\}$$
$$= \overline{A} \cap \overline{B}$$

Example

 $X \cap (Y - Z) = (X \cap Y) - (X \cap Z)$. True or False? Prove your response.

$$(X \cap Y)$$
 - $(X \cap Z)$ = $(X \cap Y) \cap (X \cap Z)'$

= (X \cap Y) \cap (X' U Z')

= (X
$$\cap$$
 Y \cap X') U (X \cap Y \cap Z')

= \varnothing U (X \cap Y \cap Z')

= (X \cap Y \cap Z')

= X ∩ (Y - Z)

Note: $(X \cap Z) = (X \cap Z)'$ (just different notation)

What kind of law?

Distributive law

© The McGraw-Hill Companies, Inc. all rights reserved.

Identity	Name		
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws		
$\begin{aligned} A \cup U &= U\\ A \cap \emptyset &= \emptyset \end{aligned}$	Domination laws		
$A \cup A = A$ $A \cap A = A$	Idempotent laws		
$\overline{(\overline{A})} = A$	Complementation law		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws		
$\overline{\overline{A \cup B}} = \overline{\overline{A} \cap \overline{B}}$ $\overline{\overline{A \cap B}} = \overline{\overline{A} \cup \overline{B}}$	De Morgan's laws		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws		

Example

Pv that if $(A - B) \cup (B - A) = (A \cup B)$ then $\underline{A \cap B} = \emptyset$

Suppose to the contrary, that $A \cap B \neq \emptyset$, and that $x \in A \cap B$.

Then x cannot be in A-B and x cannot be in B-A.

Then x is not in $(A - B) \cup (B - A)$.

Do you see the contradiction yet?

But x is in A U B since $(A \cap B) \subseteq (A \cup B)$. Thus, $(A - B) \cup (B - A) \neq (A \cup B)$. Contradiction.

Thus, $A \cap B = \emptyset$.

Trying to prove p --> q
Assume p and not q, and find a contradiction.
Our contradiction was that sets weren't equal.

a) A = Bb) $A \cap B = \emptyset$ c) $A-B = B-A = \emptyset$

Set Theory - Generalized Union/Intersection

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

Set Theory - Generalized Union/Intersection

Ex. Suppose that:

$$A_i = \{1, 2, 3, \dots, i\} \ i = 1, 2, 3, \dots$$

$$\bigcup_{i=1}^{\infty} A_i = ? \qquad \qquad \bigcup_{i=1}^{\infty} A_i = Z^+$$

$$\bigcap_{i=1}^{\infty} A_i = ? \qquad \bigcap_{i=1}^{\infty} A_i = \{1\}$$

Example:

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

Ex. Let U = N, and define: i=1,2,...,N $A_i = \{x : \exists k > 1, x = ki, k \in \mathbb{N}\}$ $A_1 = \{2, 3, 4, ...\}$ $\bigcup A_i = ?$ primes Primes $A_2 = \{4, 6, 8, ...\}$ a) Composites b) i=2 $A_3 = \{6, 9, 12, ...\}$ Ø d I have no clue. e) Note: i starts at 2

Union is all the composite numbers.

Set Theory - Inclusion/Exclusion

Example: There are 217 cs majors. 157 are taking CS23021. 145 are taking cs23022. 98 are taking both.

How many are taking neither?

217 - (157 + 145 - 98) = 13

Generalized Inclusion/Exclusion

Suppose we have:

What about 4 sets?

And I want to know IA U B U CI

 $|A \cup B \cup C| = |A| + |B| + |C|$

- $|A \cap B|$ - $|A \cap C|$ - $|B \cap C|$

+ $|A \cap B \cap C|$

Generalized Inclusion/Exclusion

For sets
$$A_1, A_2, ..., A_n$$
 we have:
 $\left| \bigcup_{i=1}^n A_i \right| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + ... + (-1)^{(n-1)} \left| \bigcap_{i=1}^n A_i \right|$

Set Theory - Sets as bit strings

Let U = { $x_1, x_2, ..., x_n$ }, and let A \subseteq U.

Then the *characteristic vector* of A is the n-vector whose elements, x_i , are 1 if $x_i \in A$, and 0 otherwise.

Ex. If U = {
$$x_1$$
, x_2 , x_3 , x_4 , x_5 , x_6 }, and
A = { x_1 , x_3 , x_5 , x_6 }, then the
characteristic vector of A is

Sets as bit strings

Ex. If U = {
$$x_1, x_2, x_3, x_4, x_5, x_6$$
},
A = { x_1, x_3, x_5, x_6 }, and
B = { x_2, x_3, x_6 },

Then we have a quick way of finding the characteristic vectors of $A \cup B$ and $A \cap B$.

41