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Functions  
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Functions 

Suppose we have:  

How do you  describe the yellow function? 

What’s a function ? f(x) = -(1/2)x – 1/2 

x 

f(x) 



   

Functions 

More generally:  

Definition: 

Given A and B, nonempty sets, a function f from A to B is an assignment  

of exactly one element of B to each element of A.  We write f(a)=b if b is  

the element of B assigned by function f to the element a of A. 

If f is a function from A to B, we write f : AB. 

Note: Functions are also called mappings or transformations. 

B 



5 

 Functions 

A = {Michael, Toby , John , Chris , Brad } 
B = { Kathy,  Carla,  Mary} 
 
Let f: A  B be defined as f(a) = mother(a). 

Michael 
Toby 
John 
Chris 
Brad 

Kathy 

Carol 

Mary 

A 
B 
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Functions 

More generally:  

   f: RR, f(x) = -(1/2)x – 1/2 

domain co-domain 

A - Domain of f B- Co-Domain of f 

B 
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Functions 

More formally: a function f : A  B is a subset of AxB where 
 a  A, ! b  B and <a,b>  f. 

A 

B 

A 

B 
a point! 

a collection of 
points! 

Why not? 



   

Functions - image & preimage 

For any set S  A, image(S) = {b : a  S, f(a) = b} 

 

So, image({Michael, Toby}) = {Kathy} image(A) = B - {Carol} 

image(S)   

image(John) = {Kathy} pre-image(Kathy) = {John, Toby, Michael} 

range of f   
image(A) 

Michael 
Toby 
John 
Chris 
Brad 

Kathy 

Carol 

Mary 

A 
B 
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Functions - injection 

A function f: A  B is one-to-one (injective, an injection) if 
a,b,c, (f(a) = b  f(c) = b)  a = c 

Not one-to-one 

Every b  B has 
at most 1 
preimage. 

Michael 
Toby 
John 
Chris 
Brad 

Kathy 

Carol 

Mary 
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 Functions - surjection 

A function f: A  B is onto (surjective, a surjection) if b  
B, a  A f(a) = b 

Not onto 

Every b  B has 
at least 1 
preimage. 

Michael 
Toby 
John 
Chris 
Brad 

Kathy 

Carol 

Mary 
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Functions – one-to-one-correspondence 

or bijection 

A function f: A  B is bijective if it is one-to-one and onto. 

Anna 
Mark 
John 
Paul 

Sarah 

Carol  

Jo 

Martha 

Dawn 

Eve 

Every b  B has 
exactly 1 
preimage. 

An important 
implication of this 

characteristic: 
The preimage (f-1) 

is a function! 
They are  
invertible. 

Anna 
Mark 
John  

Paul 

 Sarah 

Carol 
Jo   
Martha 
Dawn 

Eve 
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Functions: inverse function 

Definition: 

 

Given f, a one-to-one correspondence from set A to set B, the inverse  

function  of f is the function that assigns to an element b belonging to B 

the unique element a in A such that f(a)=b. The inverse function is 

denoted f-1 . f-1 (b)=a, when f(a)=b. 

B 
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Functions - examples 

Suppose f: R+  R+, f(x) = x2. 
 
Is f one-to-one? 
Is f onto? 
Is f bijective? 

yes 

yes 
yes 

This function is invertible. 
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Functions - examples 

Suppose f: R  R+, f(x) = x2. 
 
Is f one-to-one? 
Is f onto? 
Is f bijective? 

no 
yes 

no 

This function is not invertible. 
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Functions - examples 

Suppose f: R  R, f(x) = x2. 
 
Is f one-to-one? 
Is f onto? 
Is f bijective? 

no 

no 

no 
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Functions - composition 

Let f: AB, and g: BC be functions.  Then the composition of 
f and g is: 

 
(f o g)(x) = f(g(x)) 
 

Note: (f o g) cannot be defined unless the range of g is a subset of the domain of f.  

“f composed with g” 
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Example: 

 

Let f(x) = 2 x +3; g(x) = 3 x + 2; 

 

(f o g) (x) = f(3x + 2) = 2 (3 x + 2 ) + 3 = 6 x + 7. 

 

(g o f ) (x) = g (2 x + 3) = 3 (2 x + 3) + 2 = 6 x + 11. 

 

 

As this example shows, (f o g) and (g o f) are not necessarily equal – i.e,  

the composition of functions is not commutative. 
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Note: 

 

(f -1 o f) (a) = f -1(f(a)) = f -1(b) = a. 

 

(f o f -1) (b) = f (f -1(b)) = f-(a) = b.  

 

Therefore (f-1o f ) = IA and (f o f-1) = IB where IA and  IB are the identity  

function on the sets A and B. (f -1) -1= f 
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Some important functions 

Absolute value:  

 Domain R; Co-Domain = {0}  R+ 

 

 |x| =  

 

 

  

 x  if x ≥0 

-x   if x < 0 

Ex: |-3| = 3; |3| = 3 

Floor function (or greatest integer function):  

 Domain = R; Co-Domain = Z 

 

 x  = largest integer not greater than x 

 

 Ex: 3.2 = 3; -2.5 =-3 

 



21 

Some important functions 

  Ceiling  function:  

 Domain = R;  

 Co-Domain = Z 

 

 x = smallest integer greater than x 

 

 Ex: 3.2 = 4; -2.5 =-2 

 



≤ 

≤ 

≤ 

≤ 

+ 

+ 

+ 

+ 

+ 

+ 
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Some important functions 

  Factorial function: Domain =   Range = N    Error on range 

 

 n! = n (n-1)(n-2) …, 3 x 2 x 1 

 Ex: 5! = 5 x 4 x 3 x 2 x 1 = 120 

 

Note: 0! = 1 by convention. 
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Some important functions 

  Mod (or remainder):  

 Domain = N x N+  = {(m,n)| m N, n  N+ } 

 Co-domain Range = N 

 

 m mod n = m - m/n n    

 

Ex:   8 mod 3 = 8 - 8/3 3 = 2 

      57 mod 12 = 9; 

 
Note: This function computes the remainder when m is divided by n. 

The name of this function is an abbreviation of m modulo n, where modulus means with  

respect to a modulus (size) of n, which is defined to be the remainder when m is divided 

by n. Note also that this function is an example in which the domain of the function is a  

2-tuple. 
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Some important functions: 

Exponential Function 

  

Exponential function:  

 Domain = R+ x R   = {(a,x)| a  R+, x  R } 

 Co-domain Range = R+ 

 f(x) = a x    

Note: a is a positive constant; x varies. 

  

Ex:  f(n) = a n = a x a …, x a (n times)  
   

How do we define f(x) if x is not a positive integer? 
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Some important functions: 

 Exponential function 

  

Exponential function:  

How do we define f(x) if x is not a positive integer? 

Important properties of exponential functions: 

 

(1) a (x+y) = ax ay; (2)  a 1 = a (3)  a 0 = 1 

 

 See: 

 

 
 

)(

...

;

;

12123

11112

timesnaaa

aaaaaaa

aaaaaa

n 
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We get: 

 

aathereforeaaaaaa

aathereforeaaaa

athereforeaaaaa

bbbbbb













2

1
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1

2

1

2

1

2

1

2

1

1

)(0

00011

)(

11

1

By similar arguments: 

 

 

mnmnn

m

mxxxmx

kk

aaathereforeatimesmaaa

aa

)()(,)()(

1

1







Note: This determines ax for all x rational. x is irrational by continuity (we’ll skip “details”). 
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Some important functions: 

Logarithm Function 

  
Logarithm base a:  

 Domain = R+ x R   = {(a,x)| a  R+, a>1, x  R } 

 Co-domain Range = R  

 y = log a (x)  ay = x    

   

Ex: log 2 (8) =3; log 2 (16) =3; 3 < log 2 (15) <4. 

Key properties of the log function (they follow from those for exponential): 

 

1. log a (1)=0 (because a0 =1) 

2. log a (a)=1 (because a1 =a) 

3. log a (xy) = log a (x) + log a (x) (similar arguments) 

4. log a (x
r) = r log a (x)  

5. log a (1/x) = - log a (x)   (note 1/x = x-1) 

6. log b (x) = log a (x) / log a (b)  
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Logarithm  Functions 

Examples: 

 

log 2 (1/4)= - log 2 (4)= - 2. 

log 2 (-4)  undefined  

log 2 (2
10 35 )= log 2 (2

10) + log 2 (3
5 )=10 log 2 (2) + 5log 2 (3 )=  

           = 10 + 5 log 2 (3 ) 
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Limit Properties of Log Function 

0
)log(

lim

)log(lim





x

x
x

x
x

As x gets large, log(x) grows without bound.  

But x grows MUCH faster than log(x)…more soon on growth rates. 
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Some important functions: 

Polynomials 

  
Polynomial function:  

 Domain =  usually R     

 Co-domain Range = usually R 

 

 Pn(x) = anx
n + an-1x

n-1 + … + a1x
1 + a0

 

 

n, a nonnegative integer is the degree of the polynomial; 

an 0 (so that the term anx
n actually appears) 

 

(an, an-1, …, a1, a0) are the coefficients of the polynomial. 

 

Ex:  

 y = P1(x) = a1x
1 + a0  linear function 

 y = P2(x) = a2x
2 + a1x

1 + a0  quadratic polynomial or function 
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Exponentials grow MUCH faster than polynomials: 

 

 

10lim 0 



bif

b

xaa
x

k

k

x



We’ll talk more about growth rates in the next module…. 



 

 

 

 

                         Sequences 
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Sequences 

Definition: 

A sequence {ai} is a function f: A  N  {0}  S, where we write 

ai to indicate f(i). We call ai term I of the sequence. 

 

Examples: 

 

Sequence {ai}, where ai = i   is just a0 = 0, a1 = 1, a2 = 2, … 

 

Sequence {ai}, where ai = i2  is just a0 = 0, a1 = 1, a2 = 4, … 

 

Sequences of the form a1, a2, …, an are often used in computer science.  

(always check whether sequence starts at a0 or a1) 

These finite sequences are also called strings. The length of a string is the number of 

terms in the string. The empty string, denoted by , is the string that has no terms. 
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Geometric and Arithmetic Progressions 

Definition: A geometric progression is a sequence of the form 

 ,,,,,, 32 n
arararara

The initial term a and the common ratio r are real numbers 

Definition: An arithmetic progression is a sequence of the form 

 ,,,3,2,, ndadadadaa 

The initial term a and the common difference  d are real numbers 

Note: An arithmetic progression is a discrete analogue of the linear function f(x) = dx + a 



Notice differences in growth rate. 
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Summation 

The symbol  (Greek letter sigma) is used to denote summation. 
 
 
 
 
 
 
 
 
 
The limit: 

a
i

i1

k

  a1  a2   a
k



a
i

i1



  lim
n

a
i

i1

n



i is the index of the summation, and the choice of letter i is arbitrary; 

 

the index of the summation runs through all integers, with its lower limit 1 

and ending upper limit k. 
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Summation 

The laws for arithmetic apply to summations 
 
 
 
 
 
 



ca
i
 b

i 
i1

k

  c a
i

i1

k

  b
i

i1

k



Use associativity to separate the b terms from the a terms. 
 
Use distributivity to factor the c’s. 
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Summations you should know… 

What is S = 1 + 2 + 3 + … + n? 
 
 
 
 
 

You get n copies of (n+1).  But we’ve over added by a factor of 2.  
So just divide by 2. 

 
 
 
 
 
 

S = 1 + 2 + … + n 

S = n + n-1 + … + 1 

2s = n+1 + n+1 + … + n+1 

Write the sum. 

Write it again. 

Add together. 



k

k1

n

 
n(n 1)
2

(little) Gauss in 4th grade.  

Why whole number? 
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What is S = 1 + 3 + 5 + … + (2n - 1)? 
 
 
 
 
 

Sum of first n odds. 



(2k 1)
k1

n

  2 k

k1

n

  1
k1

n





 2
n(n 1)
2







 n



 n2



What is S = 1 + 3 + 5 + … + (2n - 1)? 
 
 
 
 
 

Sum of first n odds. 



 n2



What is S = 1 + r + r2 + … + rn 
 
 
 
 
 

Geometric Series 



r
k

k 0

n

 1 r   rn



r r
k

k0

n

  r  r2   rn1

Multiply by r 

Subtract the  summations 



r
k

k0

n

  r r
k

k0

n

 1 rn1
factor 



(1 r) r
k

k0

n

 1 rn1 divide 



r
k

k 0

n

 
1 rn1

(1 r)
DONE! 



What about: 
 
 
 
 
 



r
k

k0



 1 r   rn 




n
lim

1 rn1

(1 r)

If r  1 this 
blows up. 

If r < 1 we can say something. 



r
k

k 0



 
n
lim r

k

k0

n






1

(1 r)
Try r = ½. 



Useful Summations 
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Infinite Cardinality 

How can we extend the notion of cardinality to infinite sets? 

 

Definition: Two sets A and B have the same cardinality if and only if 

there exists a bijection (or a one-to-one correspondence) between 

them, A ~ B. 

We split infinite sets into two groups: 

   

1. Sets  with the same cardinality as the set of natural numbers 

2. Sets with different cardinality as the set of natural numbers 
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Infinite Cardinality 

Definition: A set is countable if it is finite or has the same cardinality 

as the set of positive integers. 

 

Definition: A set is uncountable if it is  not countable. 

 

 

Definition: The cardinality of an infinite set S that is countable is denotes 

by 0א (where א is aleph, the first letter of the Hebrew alphabet). We 

write |S| = 0א and  say that S has cardinality “aleph null”. 
 

  

 

 

 

 

 

Note: Georg Cantor defined the notion of cardinality and was the first to realize that infinite sets can have  

different cardinalities. 0א is the cardinality of the natural numbers; the next larger cardinality is  

aleph-one 1א, then, 2א and so on. 
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Infinite Cardinality: 

Odd Positive Integers 

Example: The set of odd positive integers is a countable set. 

 

Let’s define the function  f, from Z+ to the set of odd positive numbers, 

  f(n) = 2 n -1  

 

We have to show that f is both one-to-one and onto.  

 

a) one-to-one 

Suppose f(n)= f(m)   2n-1 = 2m-1  n=m 

 

b) onto 

Suppose that t is an odd positive integer. Then t is 1 less than an even 

integer 2k, where k is a natural number. hence t=2k-1= f(k). 
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Infinite Cardinality: 

Odd Positive Integers 

2 
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Infinite Cardinality: 

Integers 

Example: The set of integers is a countable set. 

 

Lets consider the sequence of all integers, starting with 0: 0,1,-1,2,-

2,…. 
We can define this sequence as a function: 

 

 

oddNn
n

evenNnn

,
2

)1(

,
2





f(n) = 

Show at home that it’s one-to-one and onto 

2 0 1 -1 2 
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Infinite Cardinality: 

Rational Numbers 

Example: The set of positive rational numbers is a countable set. Hmm… 
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Infinite Cardinality: 

Rational Numbers 

Example: The set of positive rational numbers is a countable set 

 

Key aspect to list the rational numbers as a sequence – every positive number is the 

quotient p/q of two positive integers.  

Visualization of the proof. 

 
p+q=4 p+q=5 p+q=6 

Since all positive rational numbers 

are listed once, the set of positive 

rational numbers is countable. 
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Uncountable Sets: 

Cantor's diagonal argument 

 

The set  of all infinite sequences of zeros and ones is uncountable. 

 

Consider a sequence,  

 10,,,,, 21  iin aoranaaa 

For example: 

 

So in general we have: 

 

i.e., sn,m is the mth element of the nth sequence on the list.  
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It is possible to build a sequence, say s0, in such a way that its first  element is  

different from the first element of the first sequence in the list,  its second element is  

different from the second element of the second  sequence in the list, and, in general,  

its nth element is different from the nth element of the nth sequence in the list. In other  

words, s0,m will be 0 if sm,m is 1, and s0,m will be 1 if sm,m is 0.  

Uncountable Sets: 

Cantor's diagonal argument 
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The  sequence s0 is distinct from all the sequences in the list. Why? 

Let’s say that s0 is identical to the 100th sequence, therefore, s0,100=s100,100. 

In general, if it appeared as the nth sequence on the list, we would have s0,n = sn,n, 

which, due to the construction of s0, is impossible.  

Note: the diagonal elements are highlighted, 

showing why this is called the diagonal argument 

Uncountable Sets: 

Cantor's diagonal argument 
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From this it follows that the set T, consisting of all infinite sequences of  

zeros and ones, cannot be put into a list s1, s2, s3, ... Otherwise, it would  

be possible by the above process to construct a sequence s0 which would  

both be in T (because it is a sequence of 0's and 1's which is by the  

definition of T in T) and at the same time not in T (because we can  

deliberately construct it not to be in the list). T, containing all such  

sequences, must contain s0, which is just such a sequence. But since s0  

does not appear anywhere on the list, T cannot contain s0. 

Therefore T cannot be placed in one-to-one correspondence with the  

natural numbers. In other words, the set of infinite binary strings is 

uncountable. 

Uncountable Sets: 

Cantor's diagonal argument 
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Real Numbers 

Example; The set of real numbers is an uncountable set. 

 

 

Let’s assume that the set of real numbers is countable. 
 

 

Therefore any subset of it is also countable, in particular the interval 

[0,1].  

 

 

 

How many real numbers are in interval [0, 1]? 
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Real Numbers 

How many real numbers are in interval [0, 1]? 

 

 
 
 
 
 
 

0.4 3 2 9 0 1 3 2 9 8 4 2 0 3 9 … 
0.8 2 5 9 9 1 3 2 7 2 5 8 9 2 5 … 
0.9 2 5 3 9 1 5 9 7 4 5 0 6 2 1 … 

… 

“Countably many!  There’s part of 
the list!” 

“Are you sure they’re all there?” 

0.5 3 6 … 
So we say the reals are 

“uncountable.” 

Counterexample:  
Use diagonalization  

to create a new number 
that differs in the ith  

position of the  
ith number 

by 1. 


