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What’s is Induction About? 

Many statements assert that a property is an universal true – i.e., all the 

elements of the universe exhibit that property; 

 

Examples: 

 

1. For every  positive integer n: n! ≤ nn 

 

2. For every set with n elements, the cardinality of its power set is 2n. 

 

Induction is one of the most important  techniques for proving statements 

about universal properties. 



We know that: 

 

1. We can reach the first rung of this ladder; 

2. If we can reach a particular rung of the ladder, 

then we can reach the next rung  of the ladder. 

 

Can we reach every step of  this infinite ladder? 

 

Yes, using Mathematical Induction which is  

a rule of inference that tells us: 

 

P(1) 

k (P(k)  P(k+1)) 

-------------------------- 

 n (P(n)  
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Principle of  

Mathematical Induction 

Hypothesis: P(n) is true for all   integers nb 

 

To prove that P(n) is true for all  integers nb (*), where P(n) is a 
propositional function, follow  the steps: 

 

Basic Step or Base Case: Verify that P(b) is true; 

 

Inductive Hypothesis: assume P(k) is true for some k  b; 

 

Inductive Step: Show that the conditional statement P(k) P(k+1) is true 
for all  integers k  b. This can be done by showing that under the 
inductive hypothesis that P(k) is true, P(k+1) must also be true. 

(*) quite often b=1, but b can be any integer number.   



5 

Writing a Proof by Induction 

1. State the hypothesis  very clearly: 

 P(n) is true for all   integers nb – state the property P in English 

2. Identify the the base case  

   P(b) holds because …  
3. Inductive Hypothesis 

  Assume P(k) 

4. Inductive Step - Assuming the inductive hypothesis P(k), prove that P(k+1) 

holds; i.e.,  

P(k)  P(k+1) 

  

Conclusion  

    By induction we have shown that P(k) holds for all k  b (b is what was 

used for the base case). 

 

 



6 

 Mathematical Induction 

Use induction to prove that the sum of the first n odd integers is n2. 

What’s the hypothesis? 

 

Prove a base case (n=1) 

  2 - Base case (n=1): the sum of the first 1 odd integer is 12.   

           Since 1 = 12   

Prove P(k)P(k+1) 

3 - Assume P(k): the sum of the first k odd ints is k2.  

 1 + 3 + … + (2k - 1) = k2 

4 – Inductive Step: show  that (k) P(k)  P(k+1), assuming P(k). 

How? 

Inductive 
hypothesis 

P(k+1)= 1 + 3 + … + (2k-1) + (2k+1) = k2 + (2k + 1) 

By inductive 
hypothesis 

= (k+1)2 

p(k) 
QED 

1 – Hypothesis:  P(n) – sum of first n odd integers =  n2. 
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 Mathematical Induction 

Use induction to prove that the 1 + 2 + 22 + … + 2n = 2n+1 - 1 for all 

non-negative integers n. 

 

1 – Hypothesis?  

 

Prove a base case (n=?) 

 2 - Base case?   

Prove P(k)P(k+1) 

3 – Inductive Hypothesis 

Assume P(k)   = 1 + 2 + 22 + … + 2k = 2 k+1 – 1 

   

Inductive 
hypothesis 

  n = 0  10 = 21-1. 

P(n) = 1 + 2 + 22 + … + 2n = 2 n+1 – 1 

for all non-negative integers n. 

not n=1! The base case  

can be negative, zero, 

or positive  
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 Mathematical Induction 

4 – Inductive Step: show  that (k) P(k)  P(k+1), assuming P(k). 

How? 

P(k+1)=   1 + 2 + 22 + … + 2k+ 2k+1 = (2k+1 – 1) +  2k+1  By inductive 
hypothesis 

p(k) 

QED 

= 2 2k+1 - 1 

P(k+1) =   2k+2 - 1 

=   2(k+1)+1 - 1 



 Mathematical Induction 

Prove that 11! + 22! + … + nn! = (n+1)! - 1,    positive integers 

2 - Base case (n=1): 11! = (1+1)! - 1? 

11! = 1 and 2! - 1 = 1 

3 - Assume P(k): 11! + 22! + … + kk! = (k+1)! - 1 

4 – Inductive Step - show  that (k) P(k)  P(k+1), assuming P(k). 

I.e, prove that 11! + … + kk! + (k+1)(k+1)! = (k+2)! – 1, assuming P(k) 

Inductive 
hypothesis 

11! + … + kk! + (k+1)(k+1)! =  (k+1)! - 1 + (k+1)(k+1)! 

= (1 + (k+1))(k+1)! - 1 

= (k+2)(k+1)! - 1 

= (k+2)! - 1 
QED 

1 – Hypothesis  P(n) = 11! + 22! + … + nn! = (n+1)! - 1,  positive integers 
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 Mathematical Induction 

1-Hypothesis: set with n elements has  2n subsets 

2- Base case (n=0): S=ø, P(S) = {ø} and |P(S)| = 1 = 20 

3- Inductive Hypothesis - P(k): given  |S| = k,  |P(S)| = 2k 

 

 

 

 

4- Inductive Step: (k) P(k)  P(k+1), assuming P(k). i.e, 

Prove that if |T| = k+1, then |P(T)| = 2k+1, given that P(k)=2k 

 

Inductive 
hypothesis 

Prove that a set with n elements has  2n subsets. 



Inductive Step: Prove that if |T| = k+1, then |P(T)| = 2k+1 assuming 

P(k) is true. 

T = S U {a} for some S  T with |S| = k, and a  T 

How to obtain the subsets of T?  

Because there are 2k subsets of S (inductive hypothesis), there are 2  2k subsets of T. 

For each subset  X of S there are exactly two subsets of T, namely X and X U {a} 

Generating subsets of a set T with k+1 elements 

from a set S with K elements 

QED 



Deficient Tiling 

A 2n x 2n sized grid is deficient if all but one cell is tiled. 

2n 

2n 
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Mathematical Induction - a cool example 

Hypothesis: 

 P(n) - We want to show that all 2n x 2n sized deficient grids can 

be tiled with right triominoes, which are pieces that cover 

three squares at a time, like this: 
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 Mathematical Induction - a cool example 

P(1) - Is it true for 21 x 21 grids? 

YES  

Base Case: 



15 

 Mathematical Induction - a cool example 

Inductive Hypothesis: 

We can tile a 2k x 2k deficient board using our designer tiles. 

 

Inductive Step:  

Use this to prove that we can tile a 2k+1 x 2k+1 deficient board 
using our designer tiles. 

 

 



2k 

2k 2k 

2k 

2k+1 

OK!! 
(by 
IH) 

? 

? 

? 



2k 

2k 2k 

2k 

2k+1 

OK!! 
(by 
IH) 

OK!! 
(by 
IH) 

OK!! 
(by 
IH) 

OK!! 
(by 
IH) 





So, we can tile a 2k x 2k deficient board using our designer tiles. 

What does this mean for 22k mod 3? = 1  (also do 

direct proof by induction) 
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Mathematical Induction - why does it work? 

Definition: 

A set S is “well-ordered” if every non-empty subset of S has a least 

element. 

 

Given (we take as an axiom): the set of natural numbers (N) is well-

ordered. 

 

Is the set of integers (Z) well ordered? 

No.   
{ x  Z : x < 0 } has no 

least element. 
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 Mathematical Induction - why does it work? 

Is the set of non-negative reals (R) well ordered? 

No.   
{ x  R : x > 1 } has no 

least element. 
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 Mathematical Induction - why does it work? 

Proof of Mathematical Induction: 

 

We prove that  

(P(0)  (k P(k)  P(k+1)))  (n P(n))  
Proof by 

contradiction. Assume 

P(0) 

k P(k)  P(k+1) 

n P(n) 
n P(n) 
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Mathematical Induction - why does it work? 

Assume 

P(0) 

n P(n)  P(n+1) 

n P(n) 
n P(n) 

Let S = { n : P(n) } Since N is well ordered, S has a least 

element.  Call it k. 

What do we know? 

P(k) is false because it’s in S. 
k  0 because P(0) is true. 

P(k-1) is true because P(k) is the least element in S. 

But by (2), P(k-1)  P(k). Contradicts P(k-1) 

true, P(k) false. 

 

Done. 
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Strong Induction 

1. State the hypothesis  very clearly: 

 P(n) is true for all   integers nb – state the property P is English 

2. Identify the the base case  

   P(b) holds because …  
3. Inductive Hypothesis 

  (P(b)  P(b+1)  …  P(k)  

4 . Inductive Step - Assuming P(k) is true for all positive integers not 

exceeding k (inductive hypothesis), prove that P(k+1) holds; i.e.,  

(P(b)  P(b+1)  …  P(k)  P(k+1) 

   



25 

   

Strong Mathematical Induction 

If 

P(0) and 

n0 (P(0)  P(1)  …  P(k))  P(k+1) 

Then 

n0 P(n) 

In our proofs, to show P(k+1), our inductive 

hypothesis assures that ALL of P(b), 

P(b+1), … P(k) are true, so we can use 
ANY of them to make the inference. 
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 Strong Induction vs. Induction 

Sometimes strong induction is easier to use. 

 

It can be shown that strong induction and induction are equivalent: 

 

 - any proof by induction is also a proof by strong induction (why?) 

 

 - any proof by strong induction can be converted into a proof by 

induction 

 

Strong induction also referred to as complete induction; in this context 

induction is referred to as incomplete induction. 



Strong Induction 

Show that if n is an integer greater than 1, then n can be written as the 

product of primes. 

 

1 - Hypothesis P(n) - n can be written as the product of primes. 

 

2 – Base case – P(2)  2 can be written a 2 (the product of itself) 

 

3 – Inductive Hypothesis  - P(j) is true for  2 ≤j ≤k, j integer. 
 

4 – Inductive step? 

  

 a) k+1 is prime – in this case it’s the product of itself; 
 b) k+1  is a composite number and it can be written as 
the product of two positive integers a and b, with 2 ≤a ≤ b ≤ k+1. 
By the inductive hypothesis, a and b can be written as the product 
of primes, and so does k+1 

QED 
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 Strong Mathematical Induction 

An example. 
 

Given n blue points and n orange points in a plane with no 3 collinear, 

prove there is a way to match them, blue to orange, so that none of 

the segments between the pairs intersect. 

 



Strong Mathematical Induction 

Base case (n=1):  
 

Assume any matching problem of size less than (k+1) can be solved. 
 

Show that we can match (k+1) pairs. 
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Strong Mathematical Induction 

Show that we can match (k+1) pairs. 

Suppose there is a line partitioning the group into a smaller one of j blues 

and j oranges, and another smaller one of (k+1)-j blues and (k+1)-j 

oranges. 

 

OK!! 
(by 
IH) 

OK!! 
(by 
IH) 
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Strong Mathematical Induction 

But, how do we know such a line always exists? 

 

Consider the convex hull of the points: 

 

If there is an alternating 

pair of colors on the 

hull, we’re done! 
 OK!! 

(by 
IH) 

OK!! 
(by 
IH) 
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Strong Mathematical Induction 

If there is no alternating pair, all points on hull are the same color.  

 
Notice that any sweep of the hull hits an orange point first and also last.  We 

sweep on some slope not given by a pair of points. 

 

OK!! 
(by 
IH) 

OK!! 
(by 
IH) 

Keep score of # of each 

color seen.  Orange 

gets the early lead, and 

then comes from 

behind to tie at the end. 

 

There must be a tie along 

the way 
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Strong Induction: 

Polygon Triangulation 

Theorem: A simple polygon with n sides, where n is an integer with n≥3, 
can be triangulated into (n-2) triangles. 

 

n=7 

5 triangles 

(2 different 

triangulations) 

How would we prove it? 



Hypothesis: 

T(n) – every polygon with n sides can be triangulated in n-2 triangles 

 

Basis Step: T(3), a polygon with three sides is a triangle; 

 

Inductive Hypothesis: T(j), i.e, all triangles with j sides can be triangulated 

in j-2 triangles, is true for all integers 3≤j ≤k. 
 

Inductive Step – assuming inductive hypothesis, show T(k+1), i.e., every 

single polygon of k+1 sides can be triangulated in k+1-2 = k-1 

triangles  



 

Inductive Step – assuming T(j), i.e, all triangles with j sides can be 

triangulated in j-2 triangles, is true for all integers 3≤j ≤k, show T(k+1), 
i.e., every single polygon of k+1 sides can be triangulated in k+1-2 = k-

1 triangles. 

 

• First, we split the polygon with (k+1) sides into two polygons:  

          Q with s sides and R with t sides.  

• #sides of  P = k+1 =  #sides of Q + #sides of R – 2 = s + t - 2 (we 

counted the new diagonal twice)  

• Also 3≤s ≤k and 3≤t ≤k     both Q and R have at least one fewer side 
than P, and therefore by IH we can triangulate Q into s-2 and R into t-2 

triangles respectively, and these triangulations with  

       s-2+t-2 = s+t-4= (k+1)-2 triangles constitute a valid triangulation for P. 

 

QED 



 

Subtlety: we assumed the following lemma (not so easy to prove! see 

Rosen): 

 

     Every simple polygon (i.e., one in which no non-consecutive sides 

intersect) has an interior diagonal. 



Winning Strategy: 

Strong Induction 

Example: 
 
Consider the game where there are 2 piles of n matches. 
Players take turns removing any number of matches they want from one of  
the two piles. The player who removes the last match wins the game.  
Show that the second player can always guarantee a win. 
 

Think about this for a moment: what strategy could the 

the second player use? 

Hint: it’s the “annoying” strategy.  



 

 

Hyp.: P(n) The second player always has a winning strategy for two piles of n matches. 

 
Basic step: P(1) when there are 2 piles with 1 match each the second player always wins. 

Inductive Hypothesis: P(1)  P(2)  …  P(k)  
 

Inductive Step:   (P(1)  P(2)  …  P(k)  P(k+1)  
Assume player 2 wins when there are    2 piles of k matches. 

Can player 2 win when there are  2 piles of k+1 matches? 

 

Suppose that the first player takes r matches (1≤r≤k), leaving k+1-r matches in the pile. 
By removing the same number of matches from the other pile, the second player 

creates the situation where both piles have the same number of matches (≤k), which 

we know, by the inductive hypothesis, there is a winning strategy for player two. 

 
QED Note this proof actually also provides the winning 

strategy for the 2nd player. (constructive) 



Postage: Induction 

Prove that every amount of postage of 12 cents or more can be formed 
using just 4-cent and 5-cent stamps. 

Hypothesis: Every amount of postage of 12 cents or more can be formed 
using just 4-cent or 5-cent stamps. 

Base case: P(12) postage of 12 cents can be formed using just 4-cent or 5-
cent stamps, 12=3(4). 

Inductive Hypothesis: P(k) postage of k cents can be formed using just 4-
cent or 5-cent stamps  

 

Inductive step: P(k) P(k+1), given P(k). 

Let’s assume P(k), k12. There are two cases:  

 a) at least one 4-cent stamp was used to form postage of k cents --- in 
that case with the extra cent we replace this stamp with a 5-cent stamp. 

 b) no extra 4-cent was used to form postage of k cents --- in that case 
we only used 5 cent stamps; given that k>=12, it has to be at least 15, in 
which case we need at least three 5-cent stamps. We can replace three 5 
cent stamps with four 4-cent stamps to form postage of k+1 cents. 

QED 



Postage:  

Strong Induction 

Prove that every amount of postage of 12 cents or more can be formed 

using just 4-cent and 5-cent stamps. 

Hypothesis: Every amount of postage of 12 cents or more can be formed 

using just 4-cent or 5-cent stamps  

Base case: P(12) 12=3(4); P(13) 13=2(4)+1(5); P(14) 14=1(4)+2(5) P(15) 

15=3(5), so 12n15, P(n). 

Inductive Hypothesis: P(j) postage, j, 12jk, k  15 cents can be formed 

using just 4-cent or 5-cent stamps 

 

Inductive step: Assuming   j 12jk P(j), k 15, we want to show P(k+1). 

      Note 12k3k, so P(k3), so add a 4-cent stamp to get postage for k+1. 

QED So, shortens/simplifies standard induction proof. 
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Recursive Definitions and  

Structural Induction 
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Recursive  or Inductive Definitions 

Sometimes it is difficult to  define an object explicitly. However, it may  

be easy to define the object in terms of itself. This process is called  

recursion. 

 

Recursion is useful to define sequences,  

functions, sets, and algorithms.  

 

When a sequence is defined recursively, 

by specifying how terms are formed from  

previous terms, we can use induction 

to prove results about the sequence. 
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Recursive or Inductive Function Definition  

Basis Step: Specify the value of the function for the base case. 

 

Recursive Step: Give a rule for finding the value of a function from its 

values at smaller integers greater than the base case. 
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Inductive Definitions 

We completely understand the function f(n) = n!   right? 

 

n! = 1 · 2 · 3 · … · (n-1) ·  n, n  1 

Inductive 
(Recursive) 
Definition 

But equivalently, we could define it like this: 

 

 

฀

n!
n  (n 1)!,  if n 1

1,                 if n 1





Recursive Case 

Base Case 
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Inductive Definitions 

The 2nd most common example: 

 

Fibonacci Numbers 

Recursive Case 

Base Cases 














1 if   )2()1(

1 if                                1

0 if                               0

)(

nnfnf

n

n

nf

Is there a non-recursive 
definition for the Fibonacci 

Numbers? 

฀

f (n) 
1

5

1 5

2










n


1 5

2










n











(Prove by induction.) 

All linear recursions have a closed form. 

Note why you need 

two base cases. 
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 Recursively Defined Sets: 

Inductive Definitions 

Examples so far have been inductively defined functions. 

Sets can be defined inductively, too. 

 

Recursive Case  

Base Case 

Give an inductive definition of T = {x: x is a positive integer divisible by  3} 

 

3  S 

x,y  S  x + y  S  

Exclusion Rule: No other numbers are in S. 

 

  How can we  prove 
it’s correct? 

Exclusion rule: 

The set contains nothing other than 

Those elements specified in the basic  

Step or generated by the recursive step.  



We want to show that the  definition of S: 

rule 1 - 3  S 

rule 2 - x,y  S  x + y  S  

  
 

Contains the same elements as the set:   T={x: x is a positive integer divisible by  3} 

 

To prove S = T, show 

T  S 

S  T 

 

Perhaps the “trickiest” aspect of this  
exercise is realizing that there is 

something to prove!  



First, we prove T  S. 

 

T = {x: x is a positive integer, multiple of 3}  

 

If x  T, then x = 3k for some integer k.  We show by induction on |k| that 3k  S.  

 

Hypothesis: P(n) – 3 n belongs to S, for all positive integers n. 

 

Base Case P(1) = 3  S since 3  S by rule 1. 

Inductive Step: Assume 3k,  S, show that 3(k+1),  S. 

 

Inductive Hypothesis:  3k  S  

 



Inductive Step:  

 

3k  S by inductive hypothesis.  

 
3  S by rule 1.  

 3k + 3 = 3(k+1)  S by rule 2.  

 



Next, we show that S  T.  

That is, if an number x is described by S, then it is a positive  multiple 

of 3. 

 

Observe that the exclusion rule, all numbers in S are created by a finite 

number of applications of rules 1 and 2. We use the number of rule 

applications as our induction counter. 

For example:  

3  S by 1 application of rule 1. 

9  S by 3 applications (rule 1 once and rule 2 twice). 

 

 

 



Base Case (k=1): If x  S by 1 rule application, then it must be rule 1 

and x = 3, which is clearly a multiple of 3.  

 

Inductive Hypothesis: Assume any number described by k or fewer applications 

of the rules in S is a multiple of 3 

Inductive Step:  Prove  that any number described by (k+1) applications of the 

rules is also a multiple of 3, assuming IH.  

 
Suppose the (k+1)st rule is applied (rule 2), and it results in value  

       x = a + b.  Then a and b are multiples of 3 by inductive hypothesis, 

and thus x is a multiple of 3. 

 QED 

Aside --- Message here: in a proof, follow a well-defined sequence of 

steps. This avoids subtle misstakes. 



52 

Structural Induction 

Basic Step: Show that the result holds for all elements 

specified in the basis step of the recursive definition to be 

in the set. 

Recursive step: Show that if the statement is true for each of 

the elements used to construct new elements in the 

recursive step of the definition, the result holds for these 

new elements. 



Validity of Structural Induction follows 

Mathematical Induction 

( for the nonnegative integers)  

  
P(n) the claim is true for all elements of the set that are generated by n or fewer 

applications of the rules in the recursive step of the recursive definition.  

 

So, we will do induction on the number of rules applications.  

 

We show that P(n) is true whenever n is a nonnegative integer.  

Basis case  - we show that P(0) is true (i.e., it’s true for the elements specified 
in the basis step of recursive definition). 

From  recursive  step, if we assume P(k), it follows that  P(k+1) is true. 

Therefore when we complete a structural induction proof we have shown that 

P(0) is true, and that P(k) P(k+1).  

So, by mathematical induction P(n) follows for all nonnegative numbers. 
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 Well-Formed Formulas 

T is a wff 

F is a wff 

p is a wff for any propositional variable p 

If p is a wff, then (p) is a wff 

If p and q are wffs, then (p  q) is a wff 

If p and q are wffs, then (p  q) is a wff 

 

For example, a statement like ((r)  (p  r)) can be proven to be a wff by arguing 

that (r) and (p  r) are wffs by induction and then applying rule 5. 

 

Basic Cases  

Recursive Step  

Note: we have three recursive/construction rules to create 

new elements. 



Structural induction --- illustrative example 

Show that every well-formed formula for compound propositions, contains an 

equal number of left and right parentheses. 

 

Basic Step  --- True since each formula T, F, and p contains no parentheses; 

Recursive Step: 

Assume p and q are well formed formulas with an equal number of left and right 

parentheses  (lp = rp; lq=rq) 

We need to show that (p), (p  q), and (p  q) contain an equal number of 

parentheses. Follows directly be considering each rule: Each rule adds a left 

and a right parenthesis. 

 

 
The key aspect of structural induction proofs  is to show  

that the base case satisfies the property that we want to prove 

 and the recursive steps/rules maintain it! 

Can reformulate into induction by doing induction on the 

# of rule applications. 
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Recursive Algorithms 
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A recursive algorithm is an algorithm that solves the problem by reducing 
it to an instance of the same problem with smaller input. 

 

Recursive Linear Search 

 

Procedure search( i, j, x: i, j, x integers,   1≤i ≤n, 1≤j ≤n) 
if ai = x then 

 location := i 

else if i=j then  

 location := 0 

else 

 search(i+1,j,x) 
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Recursive Binary Search 

Procedure binary search (i, j, x: i, j, x integers,   1≤i ≤n, 1≤j ≤n) 
m := (i+j)/2 
if x = am then 

 location := m 

else if (x < am and i < m) then  

 binary search( i, m-1,x) 

else if (x > am and j >  m) then  

 binary search(m+1,j,x) 

else location :=0 
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Towers of Hanoi (N=3) 



Towers of Hanoi 

There are three pegs. 

 

64 gold disks, with decreasing sizes, placed on the first peg. 

 

You need to move all of the disks from the first peg to the 
second peg. 

 

Larger disks cannot be placed on top of smaller disks. 

 

The third peg can be used to temporarily hold disks. 
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Tower of Hanoi 

The disks must be moved within one week.  Assume one disk can be 
moved in 1 second.  Is this possible? 

To create an algorithm to solve this problem, it is convenient to generalize 
the problem to the “N-disk” problem, where in our case N = 64. 
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Tower of Hanoi 

 

How to solve it? 

 

Think recursively!!!! 

 

Suppose you  could solve the problem for n-1 disks, i.e., you can move (n-

1) disks from one tower to another, without ever having a large disk on 

top of a smaller disk. How would you do it for n?  
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Solution: 

 

1. Move top (n-1) disks from tower 1 to tower 3 (you  can do this by 

assumption – just pretend the largest ring is not there at all). 

2. Move largest ring from tower 1 to tower 2. 

3. Move top (n-1) rings from tower 3 to tower 2 (again, you  can do this 

by assumption). 
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Recursive Solution 
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Recursive Solution 
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Recursive Solution 
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Recursive Solution 
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Towers of Hanoi 

Procedure TowerHanoi (n, a, b, c: n, x, y, z integers,   1≤a≤3, 1≤b≤3, 1≤c≤3 ) 
if n= 1 then 

 move(a,b) 

else 

begin 

 TowerHanoi(n-1, a, c, b) 

  move(a,b); 

      TowerHanoi (n-1,c,b,a); 

end 

{TowerHanoi is the procedure to move n disks from tower a to tower b using tower c 

as an intermediate tower; move is the procedure to move a disk from tower a to tower b) 
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Tower of Hanoi 
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Tower of Hanoi 
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Tower of Hanoi 
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Tower of Hanoi 
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Tower of Hanoi 
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Tower of Hanoi 
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Tower of Hanoi 
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Tower of Hanoi 
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Analysis of Towers of Hanoi  

Hypothesis ---   it takes 2n -1 moves to perform TowerHanoi(n,a,b,c) for 

all positive n. 

 

Proof: 

Basis: P(1) – we can do it using move(a,b) i.e., 21 -1 = 1 

Inductive Hypothesis: P(n) - it takes 2n -1 moves to perform 

TowerHanoi(n,a,b,c) 

Inductive Step: In order to perform TowerHanoi(n+1,a,b,c) 

we do: TowerHanoi(n,a,c,b), move(a,c), and TowerHanoi(n,c,b,a); 

Assuming the IH this all takes 2n -1 +1 + 2n -1 = 2  2n -1 = 2 (n+1) – 1 

 

 
QED 

N = 64 Note: (2^64) - 1 = 1.84467441 × 1019 
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Recursion and Iteration 

A recursive definition expresses the value of a function at a positive 

integer in terms of the values of the function at smaller  integers. 

 

 

But, instead of successively reducing the computation to the evaluation of 

the function at smaller integers,   we can start by considering the base 

cases and successively apply the recursive definition to find values of 

the function at successive larger integers.  
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Recursive Fibonacci 

procedure fibonacci (n: nonnegative integer) 

if n = 0 then fibonacci(0) :=0 

else if n =1 then fibonacci(1) := 1 

else fibonacci(n): = fibonacci(n-1) + fibonacci(n-2) 

What’s the “problem” 

 with this algorithm? 
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Iterative Fibonacci 

procedure iterativefibonacci(n: nonnegative integer) 

if n=0 then y:= 0 

else 

begin 

 x := 0 

 y := 1 

 for i := 1 to (n-1) 

 begin 

  z := x + y 

  x := y 

  y := z 

 end 

end 

{y is the nth Fibonacci number} 














1 if   )2()1(

1 if                                1

0 if                               0

)(

nnfnf

n

n

nf


