Probability

1 Introduction to Discrete Probability

- Finite Probability
- Probability of Combination of Events
- Probabilistic Reasoning - Car \& Goats

Terminology

Experiment

- A repeatable procedure that yields one of a given set
- Rolling a die, for example

Sample space

- The set of possible outcomes
- For a die, that would be values 1 to 6

Event

- A subset of the sample experiment
- If you rolled a 4 on the die, the event is the 4

Probability

Experiment: We roll a single die, what are the possible outcomes?

$$
\{1,2,3,4,5,6\}
$$

The set of possible outcomes is called the sample space.

We roll a pair of dice, what is the sample space?

Depends on what we're going to ask.
Often convenient to choose a sample space of equally likely outcomes.
$\{(1,1),(1,2),(1,3), \ldots,(2,1), \ldots,(6,6)\}$

Probability definition: Equally Likely Outcomes

The probability of an event occurring (assuming equally likely outcomes) is:

$$
p(E)=\frac{|E|}{|S|}
$$

- Where E an event corresponds to a subset of outcomes. Note: $\mathrm{E} \subseteq \mathrm{S}$.
- Where S is a finite sample space of equally likely outcomes
- Note that $0 \leq|\mathrm{E}| \leq|\mathrm{S}|$
- Thus, the probability will always between 0 and 1
- An event that will never happen has probability 0
- An event that will always happen has probability 1

Probability is always a value between 0 and 1

Something with a probability of 0 will never occur Something with a probability of 1 will always occur You cannot have a probability outside this range!
Note that when somebody says it has a " 100% probability"

- That means it has a probability of 1

Dice probability

What is the probability of getting a 7 by rolling two dice?

- There are six combinations that can yield 7: $(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$
- Thus, $|E|=6,|S|=36, P(E)=6 / 36=1 / 6$

Probability

Which is more likely:

Rolling an 8 when 2 dice are rolled?
Rolling an 8 when 3 dice are rolled?
No clue.

Probability

What is the probability of a totan vo \cup wnun \angle wce are rolled?

What is the size of the sample space?

How many rolls satisfy our property of interest?

So the probability is $5 / 36 \approx 0.139$.

Probability

What is the probability of a totan vo \cup wnun \lrcorner uce are rolled?

What is the size of the sample space?
216

How many rolls satisfy our condition of interest?
$C(7,2)$

So the probability is $21 / 216 \approx 0.097$.

Poker probability: royal flush

What is the chance of getting a royal flush?

- That's the cards 10, J, Q, K, and A of the same suit

There are only 4 possible royal flushes.

Possibilities for 5 cards: $\mathrm{C}(52,5)=2,598,960$

Probability $=4 / 2,598,960=0.0000015$

- Or about 1 in 650,000

Poker hand odds

The possible poker hands are (in increasing order):

- Nothing
- One pair
- Two pair
- Three of a kind
- Straight
- Flush
- Full house
- Four of a kind
- Straight flush
- Royal flush

1,302,540
0.5012

1,098,240 0.4226
123,552 0.0475
54,912 0.0211
10,200 0.00392
5,108 0.00197
3,744
0.00144

624
36
4
0.000240
0.0000139
0.00000154

Event Probabilities

Let E be an event in a sample space S. The probability of the complement of E is:

$$
p(\bar{E})=1-p(E)
$$

Recall the probability for getting a royal flush is 0.0000015

- The probability of not getting a royal flush is $1-0.0000015$ or 0.9999985
Recall the probability for getting a four of a kind is 0.00024
- The probability of not getting a four of a kind is

1- 0.00024 or 0.99976

Probability of the union of two events

Let E_{1} and E_{2} be events in sample space S

Then $p\left(E_{1} \mathrm{U} E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$

Consider a Venn diagram dart-board

Probability of the union of two events

$$
p(E 1 \cup E 2)
$$

Probability of the union of two events

If you choose a number between 1 and 100, what is the probability that it is divisible by 2 or 5 or both?
Let n be the number chosen

- $p(2 \operatorname{div} n)=50 / 100$ (all the even numbers)
- $p(5 \operatorname{div} n)=20 / 100$
- $p(2 \operatorname{div} n)$ and $p(5 \operatorname{div} n)=p(10 \operatorname{div} n)=10 / 100$
$-p(2 \operatorname{div} n)$ or $p(5 \operatorname{div} n)=p(2 \operatorname{div} n)+p(5 \operatorname{div} n)-p(10 \operatorname{div} n)$

$$
\begin{aligned}
& =50 / 100+20 / 100-10 / 100 \\
& =3 / 5
\end{aligned}
$$

Probability Monte Hall Puzzle

Choose a door to win a prize!

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 3, and the host, who knows what's behind the doors, opens another door, say No. 1, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice? If so, why? If not, why not?

6.2 Probability Theory Topics

- Assigning Probabilities: Uniform Distribution
- Combination of Events - - covered in 6.1
- Conditional Probability
- Independence
- Bernoulli Trials and the Binomial Distribution
- Random Variables - Added
- The Birthday Problem - Added
- Monte Carlo Algorithms - NOT ADDED
- The Probabilistic Method: NOT ADDED - Use in creating non-constructive existence proofs

Probability: General notion

(non necessarily equally likely outcomes)

Define a probability measure on a set S to be a real-valued function, Pr , with domain 2^{S} so that:

> For any subset A in $2^{S}, 0 \leq \operatorname{Pr}(A) \leq 1$
> $\operatorname{Pr}(\varnothing)=0, \operatorname{Pr}(S)=1$

If subsets A and B are disjoint, then

$$
\operatorname{Pr}(\mathrm{A} U \mathrm{~B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})
$$

$\operatorname{Pr}(\mathrm{A})$ is "the probability of event A."
A sample space, together with a probability measure, is called a probability space.
$S=\{1,2,3,4,5,6\}$
For $A \subseteq S, \operatorname{Pr}(A)=|A| /|S|$
(equally likely outcomes)
Ex. "Prob of an odd \#"
$A=\{1,3,5\}, \operatorname{Pr}(A)=3 / 6$

Aside: book first defines Pr per outcome.

Definition:

Suppose S is a set with n elements. The uniform distribution assigns the probability $1 / n$ to each element of S.

The experiment of selecting an element from a sample space with a uniform a distribution is called selecting an element of S at random.

When events are equally likely and there a finite number of possible outcomes, the second definition of probability coincides with the first definition of probability.

Alternative definition:

The probability of the event E is the sum of the probabilities of the outcomes in E. Thus

$$
p(E)=\sum_{s \in E} p(s)
$$

Note that when E is an infinite set, $\sum_{s \in E} p(s)$ is a convergent infinite series

Probability

As before:

If A is a subset of S , let $\sim \mathrm{A}$ be the complement of A wrt S .
Then $\operatorname{Pr}(\sim \mathrm{A})=1-\operatorname{Pr}(\mathrm{A})$

If A and B are subsets of S, then
Inclusion-Exclusion

$$
\operatorname{Pr}(\mathrm{A} U \mathrm{~B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A} \cap \mathrm{~B})
$$

Conditional Probability

Let E and F be events with $\operatorname{Pr}(\mathrm{F})>0$. The conditional probability of E given F, denoted by $\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})$ is defined to be:

$$
\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=\operatorname{Pr}(\mathrm{E} \cap \mathrm{~F}) / \operatorname{Pr}(\mathrm{F}) .
$$

Example: Conditional Probability

A bit string of length 4 is generated at random so that each of the 16 bit possible strings is equally likely. What is the probability that it contains at least two consecutive 0 s , given that its first bit is a $\boldsymbol{0}$?

So, to calculate:

$$
\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=\operatorname{Pr}(\mathrm{E} \cap \mathrm{~F}) / \operatorname{Pr}(\mathrm{F})
$$

where
F is the event that "first bit is 0 ", and
E the event that "string contains at least two consecutive 0 s ".

What is "the experiment"?
The random generation of a 4 bit string.
What is the "sample space"?
The set of all all possible outcomes, i.e., 16 possible strings. (equally likely)

A bit string of length 4 is generated at random so that each of the 16 bit strings is equally likely. What is the probability that it contains at least two consecutive 0 s , given that its first bit is a 0

So, to calcuate:

$$
\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=\operatorname{Pr}(\mathrm{E} \cap \mathrm{~F}) / \operatorname{Pr}(\mathrm{F}) .
$$

where F is the event that first bit is 0 and E the event that string contains at least two consecutive 0's.

$$
\operatorname{Pr}(\mathrm{F})=? \quad 1 / 2
$$

$\operatorname{Pr}(\mathrm{E} \cap \mathrm{F})$? 00000001001000110100 (note: $1^{\text {st }}$ bit fixed to 0)

$$
\begin{array}{lll}
\operatorname{Pr}(\mathrm{E} \cap \mathrm{~F})=5 / 16 & \operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=5 / 8 & \text { Why does it go up? } \\
& \text { Hmm. Does it? }
\end{array}
$$

$$
1000 \quad 1001110 \quad 10 \times 1 \quad 1100
$$

So, $P(E)=8 / 16=1 / 2$

A bit string of length 4 is generated at random so that each of the 16 bit strings is equally likely. What is the probability that the first bit is a 0 , given that it contains at least two consecutive 0 s?

So, to calculate:

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{F} \mid \mathrm{E}) & =\operatorname{Pr}(\mathrm{E} \cap \mathrm{~F}) / \operatorname{Pr}(\mathrm{E}) \\
& =(\operatorname{Pr}(\mathrm{E} \mid \mathrm{F}) * \operatorname{Pr}(\mathrm{~F})) / \operatorname{Pr}(\mathrm{E}) \quad \text { Bayes' rule }
\end{aligned}
$$

where F is the event that first bit is 0 and E the event that string contains at least two consecutive 0 's.

We had:

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{E} \cap \mathrm{~F})=5 / 16 \\
& \operatorname{Pr}(\mathrm{E} \mid \mathrm{F})=5 / 8 \\
& \operatorname{Pr}(\mathrm{~F})=1 / 2 \\
& \operatorname{Pr}(\mathrm{E})=1 / 2
\end{aligned}
$$

$$
\text { So, } \begin{aligned}
\mathrm{P}(\mathrm{~F} \mid \mathrm{E}) & =(5 / 16) /(1 / 2)=5 / 8 \\
& =((5 / 8) *(1 / 2)) /(1 / 2)
\end{aligned}
$$

So, all fits together.

Sample space	F	E	$\mathrm{E} \cap \mathrm{F})$		
0000	0000	0000	0000	0000	0000
0001	0001	0001	0001	0001	0001
0010	0010	0010	0010	0010	0010
0011	0011	0011	0011	0011	0011
0100	0100	0100	0100	0100	0100
0101	0101		$\operatorname{Pr}(\mathrm{E} \cap \mathrm{F})=5 / 16$	0101	0110
0110	0110			0111	
0111	0111	1000		$\mathrm{P}(\mathrm{E} \mid \mathrm{F})=5 / 8$	1000
1000					
1001	$\mathrm{P}(\mathrm{F})=1 / 2$	1001			
1010					1100
1011		1100		$\mathrm{P}(\mathrm{F} \mid \mathrm{E})=5 / 8$	
1100					

Independence

The events E and F are independent if and only if

$$
\operatorname{Pr}(\mathrm{E} \cap \mathrm{~F})=\operatorname{Pr}(\mathrm{E}) \times \operatorname{Pr}(\mathrm{F})
$$

Note that in general: $\operatorname{Pr}(\mathrm{E} \cap \mathrm{F})=\operatorname{Pr}(\mathrm{E}) \times \operatorname{Pr}(\mathrm{F} \mid \mathrm{E})$ (defn. cond. prob.)

So, independent iff

$$
\operatorname{Pr}(\mathrm{F} \mid \mathrm{E})=\operatorname{Pr}(\mathrm{F})
$$

(Also, $\operatorname{Pr}(\mathrm{F} \mid \mathrm{E})=\operatorname{Pr}(\mathrm{E} \cap \mathrm{F}) / \mathrm{P}(\mathrm{E})=(\operatorname{Pr}(\mathrm{E}) \mathrm{x} \operatorname{Pr}(\mathrm{F})) / \mathrm{P}(\mathrm{E})=\operatorname{Pr}(\mathrm{F}))$

Example: P("Tails" | "It's raining outside") = P("Tails").

Independence

The events E and F are independent if and only if

$$
\operatorname{Pr}(\mathrm{E} \cap \mathrm{~F})=\operatorname{Pr}(\mathrm{E}) \times \operatorname{Pr}(\mathrm{F}) .
$$

Let E be the event that a family of n children has children of both sexes.
Lef F be the event that a family of n children has at most one boy.

Are E and F independent if

$$
\mathrm{n}=2 ? \quad \text { No } \quad \text { Hmm. Why? }
$$

$\mathrm{S}=\{(\mathrm{b}, \mathrm{b}),(\mathrm{b}, \mathrm{g}),(\mathrm{g}, \mathrm{b}),(\mathrm{g}, \mathrm{g})\}, \mathrm{E}=\{(\mathrm{b}, \mathrm{g}),(\mathrm{g}, \mathrm{b})\}$, and $\mathrm{F}=\{(\mathrm{b}, \mathrm{g}),(\mathrm{g}, \mathrm{b}),(\mathrm{g}, \mathrm{g})\}$
So $\operatorname{Pr}(\mathrm{E} \cap \mathrm{F})=1 / 2$ and $\operatorname{Pr}(\mathrm{E}) \times \operatorname{Pr}(\mathrm{F})=1 / 2 \times 3 / 4=3 / 8$

Independence

The events E and F are independent if and only if $\operatorname{Pr}(\mathrm{E} \cap \mathrm{F})=\operatorname{Pr}(\mathrm{E}) \times \operatorname{Pr}(\mathrm{F})$.

Let E be the event that a family of n children has children of both sexes.
Let F be the event that a family of n children has at most one boy. Are E and F independent if

$$
n=3 ? \quad \text { Yes !! }
$$

Independence

The events E and F are independent if and only if $\operatorname{Pr}(E \cap F)=\operatorname{Pr}(E) \times \operatorname{Pr}(F)$.

Let E be the event that a family of n children has children of both sexes.
Lef F be the event that a family of n children has at most one boy.
Are E and F independent if
So, dependence / independence really depends on detailed structure of the underlying probability space and events in question!! (often the only way is to "calculate" the probabilities to determine dependence / independence.

$$
n=4 ?
$$

Bernoulli Trials

A Bernoulli trial is an experiment, like flipping a coin, where there are two possible outcomes. The probabilities of the two outcomes could be different.

Bernoulli Trials

A coin is tossed 8 times.
What is the probability of exactly 3 heads in the 8 tosses?

THHTTHTT is a tossing sequence...
$C(8,3)$
How many ways of choosing 3 positions for the heads?
What is the probability of a particular sequence?

In general: The probability of exactly k successes in n independent Bernoulli trials with probability of success p, is

$$
C(n, k) p^{k}(1-p)^{n-k}
$$

Bernoulli Trials and Binomial Distribution

Bernoulli Formula: Consider an experiment which repeats a Bernoulli trial n times. Suppose each Bernoulli trial has possible outcomes A, B with respective probabilities p and $1-p$. The probability that A occurs exactly k times in n trials is

$$
C(n, k) p^{k} \cdot(1-p)^{n-k}
$$

Binomial Distribution: denoted by $b(k ; n ; p)$ - this function gives the probability of k successes in n independent Bernoulli trials with probability of success p and probability of failure $q=1-p$

$$
b(k ; n ; p)=C(n, k) p^{k} \cdot(1-p)^{n-k}
$$

Bernoulli Trials

Consider flipping a fair coin n times.

$$
\begin{aligned}
& A=\text { coin comes up "heads" } \\
& B=\text { coin comes up "tails" } \\
& p=1-p=1 / 2
\end{aligned}
$$

Q:What is the probability of getting exactly 10 heads if you flip a coin 20 times?
Recall: $\quad P(A$ occurs k times out of n)

$$
=C(n, k) p^{k} \cdot(1-p)^{n-k}
$$

Bernoulli Trials: flipping fair coin

A: $(1 / 2)^{10} \cdot(1 / 2)^{10} \cdot C(20,10)$
$=184756 / 2^{20}$
$=\quad 184756 / 1048576$
$=0.1762 \ldots$
Consider flipping a coin \mathbf{n} times.

What is the most likely number of heads occurrence?

$$
\mathrm{n} / 2
$$

What probability?

$$
C(n, n / 2) \cdot(1 / 2)^{n}
$$

What is the least likely number?
0 or n
What probability?
$(1 / 2)^{\mathrm{n}} \quad(\mathrm{e} . \mathrm{g}$. for $\mathrm{n}=100 \ldots$ it's "never")

Suppose a 0 bit is generated with probability 0.9 and a 1 bit is generated with probability 0.1 ., and that bits are generated independently. What is the probability that exactly eight 0 bits out of ten bits are generated?
$\mathrm{b}(8 ; 10 ; 0.9)=\mathrm{C}(10,8)(0.9)^{8}(0.1)^{2}=0.1937102445$

Random Variables \& Distributions Also Birthday Problem

Added from Probability Part (b)

Random Variables

For a given sample space S , a random variable (r.v.) is any real valued function on S , i.e., a random variable is a function that assigns a real number to each possible outcome

Suppose our experiment is a roll of 2 dice. S is set of pairs.
Example random variables:
$\mathrm{X}=$ sum of two dice.
$X((2,3))=5$
$\mathrm{Y}=$ difference between two dice.
$\mathrm{Y}((2,3))=1$
$\mathrm{Z}=$ max of two dice.
$Z((2,3))=3$

Random variable

Suppose a coin is flipped three times. Let $X(t)$ be the random variable that equals the number of heads that appear when t is the outcome.
$\mathrm{X}(\mathrm{HHH})=3$
$X(\mathrm{HHT})=\mathrm{X}(\mathrm{HTH})=\mathrm{X}(\mathrm{THH})=2$
$X(\mathrm{TTH})=\mathrm{X}(\mathrm{THT})=\mathrm{X}(\mathrm{HTT})=1$
$X($ TTT $)=0$
Note: we generally drop the argument! We'll just say the "random variable \mathbf{X} ".

And write e.g. $\mathbf{P}(\mathbf{X}=2)$ for "the probability that the random variable $X(t)$ takes on the value 2".

Or $\mathbf{P}(\mathbf{X}=\mathrm{x})$ for "the probability that the random variable $\mathbf{X}(\mathrm{t})$ takes on the value x."

Distribution of Random Variable

Definition:

The distribution of a random variable X on a sample space S is the set of pairs ($\mathrm{r}, \mathrm{p}(\mathrm{X}=\mathrm{r})$) for all $\mathrm{r} \in \mathrm{X}(\mathrm{S})$, where $\mathrm{p}(\mathrm{X}=\mathrm{r})$ is the probability that X takes the value r.

A distribution is usually described specifying $p(X=r)$ for each $r \in X(S)$.

A probability distribution on a r.v. X is just an allocation of the total probability mass, 1 , over the possible values of X.

The Birthday Paradox

Birthdays

How many people have to be in a room to assure that the probability that at least two of them have the same birthday is greater than $1 / 2$?

Let p_{n} be the probability that no people share a birthday among n people in a room.

For L options
Then $1-p_{n}$ is the probability that 2 or more share a birthday. answer is in the order
of $\operatorname{sqrt}(\mathrm{L})$?
We want the smallest n so that $1-\mathrm{p}_{\mathrm{n}}>1 / 2$.
Informally, why??
Hmm. Why does such an n exist? Upper-bound?

Birthdays

Assumption:

Birthdays of the people are independent.
Each birthday is equally likely and that there are 366 days/year

Let p_{n} be the probability that no-one shares a birthday among n people in a room.

What is p_{n} ? ("brute force" is fine)

Assume that people come in certain order; the probability that the second person has a birthday different than the first is $365 / 366$; the probability that the third person has a different birthday form the two previous ones is $364 / 366$.. For the jth person we have $(366-(\mathrm{j}-1)) / 366$.

So, $\quad p_{n}=\frac{365}{366} \frac{364}{366} \frac{363}{366} \cdots \frac{367-n}{366}$

$$
1-p_{n}=1-\frac{365}{366} \frac{364}{366} \frac{363}{366} \cdots \frac{367-n}{366}
$$

After several tries, when $\mathrm{n}=221=\mathrm{p}_{\mathrm{n}}=0.475$.
$\mathrm{n}=231-\mathrm{p}_{\mathrm{n}}=0.506$

Relevant to "hashing". Why?

From Birthday Problem to Hashing Functions

Probability of a Collision in Hashing Functions

A hashing function $\mathrm{h}(\mathrm{k})$ is a mapping of the keys (or records, e.g., SSN, around
300×10^{6} in the US) to a much smaller storage location. A good hashing fucntio
yields few collisions. What is the probability that no two keys are mapped
to the same location by a hashing function?
Assume m is the number available storage
locations, so the probability
of mapping a key to a location is $1 / \mathrm{m}$.
Assuming the keys are $k 1, k 2, k n$, the probability of mapping the jth record to a
free location is after the first $(\mathrm{j}-1)$ records is ($\mathrm{m}-(\mathrm{j}-$ 1)) $/ \mathrm{m}$.

$$
\begin{aligned}
& p_{n}=\frac{m-1}{m} \frac{m-2}{m} \cdots \frac{m-n+1}{m} \\
& 1-p_{n}=1-\frac{m-1}{m} \frac{m-2}{m} \cdots \frac{m-n+1}{m}
\end{aligned}
$$

Given a certain m, find the smallest n Such that the probability of a collision is greater than a particular threshold p .

It can be shown that for $\mathrm{p}>1 / 2$,
$\mathrm{n} \approx 1.177 \sqrt{m}$

$$
\mathrm{m}=10,000, \text { gives } \mathrm{n}=117 . \text { Not that many! }
$$

END OF SLIDES

END OF DISCRETE PROBABILITY SLIDES FOR SECTIONS 6.1-6.2

Remaining topics in Probability Chapter Sections 6.3-6.4

- Some of these are covered in later slide sets by Selman
- Next slides indicate where some of the remaining topics are covered in Selman's slide sets Part (b) - Part (e)

Section 6.3: Bayes' Theorem

Topics covered in slides in Selman's Part (b) Slides

- Bayes' Theorem and the Generalized Bayes Theorem
- Bayesian Spam Filters

Section 6.4: Expected Value and Variance

Partially covered in slides for Part \mathbf{c} and Part d

- Expected Values
- Linearity of Expectation
- Average-Case Computational Complexity
- The Geometric Distribution
- Independent Random Variables
- Variance
- Chebyshev's Inequality

