Lattices

e L attice

A lattice 1s a poset (L, <) in which every subset {a, b}
consisting of two elements has a least upper bound and
a greatest lower bound. we denote

LUB({a, b}) by av b (the join of a and b)
GLB({a, b}) by a Ab (the meet of a and b)



Lattices

* Example 1

Let S be a set and let L=P(S). As we have seen, C,
containment, 1s a partial order on L. Let A and B belong to
the poset (L, ©). Then

avb=AUB & aAb=ANB
Why?
Assuming C 1s a upper bound of {a, b}, then
ACCand BSC thusAUBCC
Assuming C 1s a lower bound of {a, b}, then
CCAand CSB thusCSANB



Lattices

* Example 2

Consider the poset (Z+, <), where foraand b in Z+, a <
bifand onlyifa | b, then

avb = LCM(a,b)
aAb = GCD(a,b)

LCM: least common multiple
GCD: greatest common divisor



Lattices

* Example 3

Let n be a positive integer and D be the set of all
positive divisors of n. Then D, 1s a lattice under the
relation of divisibility. For instance,

D,= {1,2,4,5,10,20}  D,~= {1,2,3,5,6,10,15,20}
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Lattices

* Example 4

Which of the Hasse diagrams represent lattices?




Lattices

* Example 6

Let S be a set and L =P(S). Then (L, € ) is a lattice, and
its dual lattice is (L, 2), where “S” 1s “contained in”,
and “2” 1s “contains”. Then, in the poset (L, 2 )

join:.  AVB=ANB,
meet: AANB=AUB.



Lattices

e Theorem 1

If (L;,<)and (L,, <) are lattices, then (L, <) is a lattices,
where L= L, XL,, and the partial order < of L 1s the product
partial order.

Proof: we denote
the join and meet in 1s L,by Vv, and A,
the join and meet in is L,by V, and A,
We know that L 1s a poset (Theorem 1 1n p.219)
for (a,,b;) and (a,,b,) in L. then
(a,b;) V (a5,by) =(a; v, 35, bV, b,) In L
(a,by) A (ay,by) =(a; Ay @y, by Ayby ) InL
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Lattices

* Example 7




Lattices

e Sublattice

Let (L, <) be a lattice. A nonempty subset S of L 1s
called a sublatticeof LifavbmSandaAbinS

wheneveraand bin S

For instance
Example 3 is one of sublattices of Example 2



Lattices

* Example 9

0

a sublattice

a lattice, not a Sublattice
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Lattices

* Isomorphic Lattices

If f: L,=2L, is an isomorphism form the poset (L, <, )
to the poset (L,, <,), then L, 1s a lattice if and only if
L, 1s a lattice. In fact, if a and b are elements of L,, then

f(a V b)=f(a) V f(b) & f(a A b)=f(a) A f(b).

If two lattices are 1isomorphic, as posets, we say they are
1Isomorphic lattices.
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Lattices

* Example 10 (P.225 Ex.17)

Let A={1,2,3,6} and let < be the relation | .
Let A’= {}, {a}, {b}, {a, b}} and let <’ be set containment, <.

If f(1)= ¢, f(2)={a}, f(3)={b}, f(6)={a, b}, then fis an
isomorphism. They have the same Hasse diagrams.

° (a, b}

2 3 ::> {a} {b}
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Lattices

* aV b (LUB{a, b})
l.a<avb and b <avb; avb is an upper bound of a and b

2.l1fa<cand b<c,then avb <c; aV b is the least upper
bound of a and b

« aAb(GLB{a,b})
3.aAb<aandaAb<b;aAbisalowerboundofaandb

4. If caand c <b,then c<aAb;aAb isthe greatest lower
bound ofaand b
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Lattices

* Theorem 2
Let L be a lattice. Then for everyaand b in L
(a)avVb=bifandonlyifa< b
(b)aAnb=aifandonlyifa< b
(c)aAb=aifand only if av b =b

Proof:

(a) 1f avb =b, since a< aVvb, thusa <b

if a< b, since b< b, thus b 1s a upper bound of a and b, by
definition of least upper bound we have avb <b. since avb
1s an upper bound of a and b, b < avb, so avb =b

(b) Similar to (a); (c) the proof follows from (a) & (b)
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Lattices

* Example 12

Let L be a linearly ordered set. If a and b in L, then
either a <b or b <a. It follows form Theorem 2 that L 1s
a lattice, since every pair of elements has a least upper
bound and a greatest lower bound.
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Lattices

e Theorem 3
Let L be a lattice. Then
1. Idempotent properties: ava=a; ala =a

2. Commutative properties: aVb=bVva; aAb=DbAa

3. Associative properties: (a) (avb)vc=av(bvc)
(b) (aAb) Ac=aA(bAc)

4. Absorption properties: (a) aV (aAb)=a
(b) aA(avb)=a
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Lattices

Proof: 3. (a) (avb)vc=aVv(bvc)
a<aV(bvc) & bvc<av(bvce)
b<bvc & c<bVc (definition of LUB)
b<bvc & c<bvc & bvc<av(bvc)=>
b< aVv(bVc) & c <aV(bVc) (tranmsitivity)
a< aV(bvc) & b< av(bve) = av(bvc)is aupper ofaandb
then we have avb <av(bvc) (why?)
avb <av(bvc) & c <aVv(bvc) =
aV(bVc) 1s a upper of avb and ¢
then we have (avb)vc < aVv(bVvc)
Similarly, aV(bVc) < (avb)vc
Therefore (avb)vec = aVv(bvc) (why?)
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Lattices

(avb)vc=aVv(bvc)= aVvbVc

(aAb)Ac=aA(bAc)=aAbAc

LUB({a,,a,,...,a,})=a,Va,V...Va

n

GLB({a,,a,,...,a,})=a, Aa, A ... Aa

n
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Lattices

* Theorem 4

Let L be a lattice. Then, for every a,band cin L
1. If a<b, then

(a)avVc<bVc

(b)aAc<bAcC
2.a<candb<cifandonlyifavb<c
3.c<aandc<bifand onlyifc <a Ab
4. If a <b and c <d, then

(a) avc <bvd

(byaAc< bAd

19



Lattices

* Proof
l.(a)Ifa<b,thenaVc<bVc
c<bVc; b<bVc (definition of LUB)
a<b; b<bVc = a<b Vc (transitivity)
therefore,

b Vc 1s a upper bound of a and ¢ , which means
aVvVc<bVc (why?)

The proofs for others left as exercises.
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Lattices

 Bounded

A lattice L 1s said to be bounded 1f it has a greatest
element I and a least element 0

For instance:

Example 15: The lattice P(S) of all subsets of a set S, with
the relation containment 1s bounded. The greatest element 1s
S and the least element 1s empty set.

Example 13: The lattice Z" under the partial order of
divisibility 1s not bounded, since it has a least element 1, but
no greatest element.
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Lattices

 [f L is a bounded lattice, then for all a in A

0 <ac<l
aV(0=a, avIi=I
aN0=0, aANl=a

Note: 1(0) and a are comparable, for all a 1n A.
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Lattices

e Theorem 5

Let L={a,,a,,...,a,} be a finite lattice. Then L 1s
bounded.
Proof:

The greatest elementof L1sa, Va, V... Va, and the
least elementof Lisa; Aa, A ... Aa,
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Lattices

* Distributive
A lattice L 1s called distributive if for any elements a, b
and ¢ in L we have the following distributive properties:
1. aA(bvc)=(aAb)V(aAc)
2. av(bAc)=(aVb)A(aVc)
If L 1s not distributive, we say that L 1s nondistributive.

Note: the distributive property holds when
a. any two of the elements a, b and ¢ are equal or

b. when any one of the elements 1s O or I.
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Lattices

* Example 16

For a set S, the lattice P(S) 1s distributive, since union
and intersection each satisfy the distributive property.

* Example 17

The lattice whose Hasse diagram shown as follows 1s
distributive. |
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Lattices

* Example 18

Show that the lattices as follows are nondistributive.

0
0

aN(bvc)=aAl=a aN(bvc)=aAl=a
(aAnb)v(aAanc)=bvO0=Db (aAb)v(anc)=0v0=0
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Lattices

e Theorem 6

A lattice L 1s nondistributive 1f and only 1f it contains a
sublattice that 1s 1Isomorphic to one of the lattices whose
Hasse diagrams are as show.
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Lattices

* Complement

Let L be bounded lattice with greatest element I and
least element 0, and letain L. An element a’ in L 1s
called a complement of a 1f

aVa=landaAa =0
Note that 0’=I and I’=0
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Lattices

* Example 19

The lattice L=P(S) 1s such that every element has a
complement, since if A in L, then its set complement A

has the properties AV A= S and A A A=¢. That is, the
set complement 1s also the complement in L.

* Example 20
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Lattices

* Example 21

30

30
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Lattices

e Theorem 7

Let L be a bounded distributive lattice. If a complement exists, it is
unique.
Proof: Let a’ and a”” be complements of the element a in L, then
ava=I aVv a’=1; ana’=0, ana’=0
using the distributive laws, we obtain
a=a’v0=aV(aAa’)=(@VvVaA(ava”)
=IA(@’Vva’) =a’va”
Also
a’=a’VvV0=a"V(@aAa)=(@’VvVaA(@’Vva)
=IA(@’Vva’) =a’va”
Hence a’=a”
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Lattices

* Complemented

A lattice L 1s called complemented 1f 1t 1s
bounded and 1if every element in L has a
complement.

32



Lattices

* Example 22

The lattice L=P(S) is complemented. Observe that in
this case each element of L has a unique complement,
which can be seen directly or 1s implied by Theorem 7.

* Example 23

TN A
R/ o

0
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Finite Boolean Algebras

e Theorem 1

If S,={x,,x,,...,.X,} and S,={y,y,,...,y,} are any two finite
sets with n elements, then the lattices (P(S,), €) and (P(S,),
C) are 1somorphic. Consequently, the Hasse diagrams of
these lattices may be drawn identically.

Arrange the elements in S1 and S2

Syt X4 Xy X3 ... X, Syl Xq|Xy X5 ... X

1]

Syl Yi Yo Y3 oo Y Syl YqlYo Ya| .- Ya
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Finite Boolean Algebras

* Example 1:

S={a, b, ¢} and T={2,3,5}. Consider the Hasse diagrams of
the two lattices (P(S), €) and (P(T), ©).
{a,b,c} {2,3,5}

{c} {2} {5}
& &

Note : the lattice depends only on the number of elements in set,
not on the elements.

{a,b}b,c} {2,3}{3,5}
SORe)
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Finite Boolean Algebras

 [Label the subsets

Let a set S={a,a,,...,a,}, then P(S) has 2" subsets. We
label subsets by sequences of 0’s and 1°s of length n.

For 1nstance,

{aj,a,y 2> 1100...0

{fa,a,} =2 1000...1

¢ 2 0000...0
{a;,a5,...,.a 12> 1111...1
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Finite Boolean Algebras

* Get th?zgg}ique Hasse Diagram

{2,3 {3,5}

o P

¢
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Finite Boolean Algebras

* Lattice B,

If the Hasse diagram of the lattice corresponding to a set with
n elements 1s labeled by sequences of 0’s and 1’s of length n,
the resulting lattice 1s named Bn. The properties of the partial
order on B, can be described directly as follows. If x=a,a,...a_
and y=b,b,...b_ are two element of B_, then

1. x <yiff a, <b, (as numbers 0 or 1) for k=1,2,...,n

2. X A y=¢,C,...Cc_, where ¢,= min{a,,b, }

3. x V y=¢,C,...c,, where ¢c,= max{a,,b, }

4. x has a complement x’=z,z,...z,, where z,=1 1f x,=0 and

z,=0 1t x,=1

38



Finite Boolean Algebras

* Boolean algebra

A finite lattice 1s called a Boolean algebra 1f it 1s

1Isomorphic with Bn for some nonnegati\111e1 integer n.

IB,| =2n o R 110 ‘
o N DO




Finite Boolean Algebras

* (P(S), €
Each x and y in B, correspond to subsets A and B of S. Then

X<y,xAy,xVyandx’correspondtoAS B,ANB,AU
B and A. Therefore,

(P(S), ©) 1s 1somorphic with Bn, where n=|S|
* Example 3

Consider the lattice D, consisting of all positive integer

divisors of 6 under the partial order of divisibility.
6 11

D; is a Boolean algebras

10 01
2 3 =
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Finite Boolean Algebras

* Example 4

Consider the lattices D,, and D5, of all positive integer
divisors of 20 and 30, respectively.

20 30
D,, is not a Boolean algebra
4 10 6 15 (why? 6 is not 2")
2 5 2 5 D,, is a Boolean algebra,
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Finite Boolean Algebras

e Theorem 2

Let n=p,p,...p,, Wwhere the p. are distinct primes. The D_ 1s a
Boolean algebra.

Proof:

Let S={p,,p,, ..., prs- If T € S and a; 1s the product of the
primes in T, then a; | n. Any divisor of n must be of the form a;

for some subset T of S (let a,=1) .
If Vand T are subsets of S, V €T if and only if ay, | a;
ay 7= ay N ap=GCD(ayar) &
ayyr— ay Vap = LCM(ay,ar)
Thus, the function f: P(S) 2D, given by f(T)=a; is a isomorphism
form P(S) to D_. Since P(S) 1s a Boolean algebra, so 1s D, ..
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Finite Boolean Algebras

* Example

Let S={2,3,5}, show the Hasse diagrams of (P(S), €
and D, as follows.

2X3X5=30

{2,3,5}
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Finite Boolean Algebras

* Example 5

Since 210=2 X3 X5X7,66=2X3X11 and 646=2 X 17X 19, then D,,,,
D¢ D¢y are all Boolean algebras.

 Example 9

Since 40=23 X5, and 75=3 X 52, neither D,, and D, are Boolean
algebras.

Note: If n is positive integer and p? | n, where p is a prime number, then
Dn is not a Boolean algebra.
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Finite Boolean Algebras

* Theorem 3 (Substitution rule for Boolean algebra)

Any formula involving U or N that holds for arbitrary subsets of a
set S will continue to hold for arbitrary elements of a Boolean
algebra L 1f 1s A substituted for N and V for U.

Example 6 If L is any Boolean algebra and x,y and z are in L, then the
following three properties hold.

1. (X7)’=x 2. xXAy)=xX’Vy 3.(xXVy)=xAy’
This 1s true by theorem 3,

1. (A=A 2.(ANB)=AUB 3. AUB)=ANB
hold for arbitrary subsets A and B of a set S.

More properties can be found in p. 247, 1 ~12
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Finite Boolean Algebras

* Example 7

Show the lattice whose Hasse diagram shown below 1s

not a Boolean algebra.
|

a and e are both complements of c

f However, based on the 11.
Every element x has a unique complement x’
Every element A has a unique complement X

. Theorem 3 (e.g. properties 1~14) is usually used
C“,:'. to show that a lattice L is not a Boolean algebra.
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Finite Boolean Algebras

Denote the Boolean algebra B, simply as B. Thus B
contains only the two elements 0 and 1. It 1s a fact that any
of the Boolean algebras B, can be described in terms of B.
The following theorem gives this description.

e Theorem 4

For any n>=1, B, 1s the product BXBX ... XB of B, n

factors, where B X B X ... XB is given the product partial
order.
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