• Lattice

A lattice is a poset (L, \leq) in which every subset $\{a, b\}$ consisting of two elements has a least upper bound and a greatest lower bound. we denote

LUB($\{a, b\}$) by aV b (the join of a and b) GLB($\{a, b\}$) by a \land b (the meet of a and b)

• Example 1

Let S be a set and let L=P(S). As we have seen, \subseteq , containment, is a partial order on L. Let A and B belong to the poset (L, \subseteq). Then

av b = A U B & & $a \land b = A \cap B$

Why?

Assuming C is a upper bound of $\{a, b\}$, then $A \subseteq C$ and $B \subseteq C$ thus $A \cup B \subseteq C$ Assuming C is a lower bound of $\{a, b\}$, then $C \subseteq A$ and $C \subseteq B$ thus $C \subseteq A \cap B$

• Example 2

Consider the poset (Z+, \leq), where for a and b in Z+, a \leq b if and only if a | b , then

aVb = LCM(a,b)

 $a \wedge b = GCD(a,b)$

LCM: least common multiple GCD: greatest common divisor

• Example 3

Let n be a positive integer and D_n be the set of all positive divisors of n. Then D_n is a lattice under the relation of divisibility. For instance,

• Example 4

Which of the Hasse diagrams represent lattices?

- Example 6
 - Let S be a set and L =P(S). Then (L, \subseteq) is a lattice, and its dual lattice is (L, \supseteq) , where " \subseteq " is "contained in", and " \supseteq " is "contains". Then, in the poset (L, \supseteq)

join:
$$AVB=A\cap B$$
,
meet: $AAB=AUB$.

• Theorem 1

If (L_1, \leq) and (L_2, \leq) are lattices, then (L, \leq) is a lattices, where $L = L_1 \times L_2$, and the partial order \leq of L is the product partial order.

Proof: we denote

the join and meet in is L_1 by \vee_1 and \wedge_1 the join and meet in is L_2 by \vee_2 and \wedge_2 We know that L is a poset (Theorem 1 in p.219) for (a_1,b_1) and (a_2,b_2) in L. then $(a_1,b_1) \vee (a_2,b_2) = (a_1 \vee_1 a_2, b_1 \vee_2 b_2)$ in L $(a_1,b_1) \wedge (a_2,b_2) = (a_1 \wedge_1 a_2, b_1 \wedge_2 b_2)$ in L

• Example 7

• Sublattice

Let (L, \leq) be a lattice. A nonempty subset S of L is called a sublattice of L if a V b in S and a \land b in S whenever a and b in S

- For instance
- Example 3 is one of sublattices of Example 2

• Example 9

- Isomorphic Lattices If f: $L_1 \rightarrow L_2$ is an isomorphism form the poset (L_1, \leq_1)
 - to the poset (L_2, \leq_2) , then L_1 is a lattice if and only if
 - L_2 is a lattice. In fact, if a and b are elements of L_1 , then

 $f(a \lor b) = f(a) \lor f(b) \& f(a \land b) = f(a) \land f(b).$

If two lattices are isomorphic, as posets, we say they are isomorphic lattices.

Example 10 (P.225 Ex.17) Let A={1,2,3,6} and let ≤ be the relation |.
Let A'= {Φ, {a}, {b}, {a, b}} and let ≤' be set containment, ⊆.
If f(1)= Φ, f(2)={a}, f(3)={b}, f(6)={a, b}, then f is an isomorphism. They have the same Hasse diagrams.

- a V b (LUB{a, b})
 - 1. $a \le aVb$ and $b \le aVb$; aVb is an upper bound of a and b
 - 2. If $a \le c$ and $b \le c$, then $a \lor b \le c$; $a \lor b$ is the least upper bound of a and b
- $a \wedge b (GLB\{a, b\})$
 - 3. $a \land b \le a$ and $a \land b \le b$; $a \land b$ is a lower bound of a and b
 - 4. If $c \le a$ and $c \le b$, then $c \le a \land b$; $a \land b$ is the greatest lower bound of a and b

• Theorem 2

Let L be a lattice. Then for every a and b in L

(a) a V b =b if and only if $a \le b$

(b) a \wedge b =a if and only if a \leq b

(c) a \land b =a if and only if aV b =b

Proof:

(a) if $a \lor b = b$, since $a \le a \lor b$, thus $a \le b$

if $a \le b$, since $b \le b$, thus b is a upper bound of a and b, by definition of least upper bound we have $a \lor b \le b$. since $a \lor b$ is an upper bound of a and b, $b \le a \lor b$, so $a \lor b = b$

(b) Similar to (a); (c) the proof follows from (a) & (b)

• Example 12

Let L be a linearly ordered set. If a and b in L, then either $a \le b$ or $b \le a$. It follows form Theorem 2 that L is a lattice, since every pair of elements has a least upper bound and a greatest lower bound.

- Theorem 3
 Let L be a lattice. Then
 1. Idempotent properties: a∨a =a; a∧a =a
- **2. Commutative properties:** $a \lor b = b \lor a$; $a \land b = b \land a$
- **3. Associative properties:** (a) $(a \lor b) \lor c = a \lor (b \lor c)$ (b) $(a \land b) \land c = a \land (b \land c)$

4. Absorption properties: (a) a ∨ (a ∧b) =a
(b) a ∧ (a ∨ b) =a

Proof: 3. (a) (aVb)Vc=aV(bVc) $a \le aV(bVc)$ & $bVc \le aV(bVc)$ $b \le bVc$ & $c \le bVc$ (definition of LUB) $b \le bVc$ & $c \le bVc$ & $bVc \le aV(bVc) \rightarrow$ $b \le aV(bVc) \& c \le aV(bVc)$ (transitivity) $a \le aV(bVc) \& b \le aV(bVc) \Rightarrow aV(bVc)$ is a upper of a and b then we have $a \lor b \le a \lor (b \lor c)$ (why?) $aVb \le aV(bVc) \& c \le aV(bVc)$ aV(bVc) is a upper of aVb and c then we have $(a \lor b) \lor c \le a \lor (b \lor c)$ Similarly, $aV(bVc) \le (aVb)Vc$ Therefore $(a \lor b) \lor c = a \lor (b \lor c)$ (why?)

•
$$(a \lor b) \lor c = a \lor (b \lor c) = a \lor b \lor c$$

•
$$(a \land b) \land c = a \land (b \land c) = a \land b \land c$$

• LUB(
$$\{a_1, a_2, \dots, a_n\}$$
) = $a_1 \lor a_2 \lor \dots \lor a_n$

• GLB(
$$\{a_1, a_2, \dots, a_n\}$$
) = $a_1 \land a_2 \land \dots \land a_n$

- Theorem 4
 - Let L be a lattice. Then, for every a, b and c in L 1. If $a \le b$, then

(a) a V c \leq b Vc

(b) a $\wedge c \leq b \wedge c$

- 2. $a \le c$ and $b \le c$ if and only if $a \lor b \le c$
- 3. $c \le a$ and $c \le b$ if and only if $c \le a \land b$
- 4. If a \leq b and c \leq d, then

(a) $aVc \le bVd$ (b) $a \land c \le b \land d$

• Proof

1. (a) If $a \le b$, then $a \lor c \le b \lor c$ $c \le b \lor c$; $b \le b \lor c$ (definition of LUB) $a \le b$; $b \le b \lor c \Rightarrow a \le b \lor c$ (transitivity) therefore,

b Vc is a upper bound of a and c, which means a V c \leq b Vc (why?)

The proofs for others left as exercises.

• Bounded

A lattice L is said to be bounded if it has a greatest element I and a least element 0

For instance:

Example 15: The lattice P(S) of all subsets of a set S, with the relation containment is bounded. The greatest element is S and the least element is empty set.

Example 13: The lattice Z⁺ under the partial order of divisibility is not bounded, since it has a least element 1, but no greatest element.

• If L is a bounded lattice, then for all a in A

$$0 \le a \le I$$

a \neq 0 = a, a \neq I = I
a \neq 0 = 0, a \neq I = a

Note: I (0) and a are comparable, for all a in A.

• Theorem 5

Let $L = \{a_1, a_2, \dots, a_n\}$ be a finite lattice. Then L is bounded.

Proof:

The greatest element of L is $a_1 \vee a_2 \vee \ldots \vee a_n$, and the least element of L is $a_1 \wedge a_2 \wedge \ldots \wedge a_n$

• Distributive

A lattice L is called distributive if for any elements a, b and c in L we have the following distributive properties: 1. $a \land (b \lor c) = (a \land b) \lor (a \land c)$ 2. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

If L is not distributive, we say that L is nondistributive.

Note: the distributive property holds when

- a. any two of the elements a, b and c are equal or
- b. when any one of the elements is 0 or I.

• Example 16

For a set S, the lattice P(S) is distributive, since union and intersection each satisfy the distributive property.

• Example 17

The lattice whose Hasse diagram shown as follows is distributive.

• Example 18

Show that the lattices as follows are nondistributive.

 $a \land (b \lor c) = a \land I = a$ $(a \land b) \lor (a \land c) = b \lor 0 = b$

• Theorem 6

A lattice L is nondistributive if and only if it contains a sublattice that is isomorphic to one of the lattices whose Hasse diagrams are as show.

• Complement

Let L be bounded lattice with greatest element I and least element 0, and let a in L. An element a' in L is called a complement of a if

a \vee a' = I and a \wedge a' =0

Note that 0'=I and I'=0

• Example 19

The lattice L=P(S) is such that every element has a complement, since if A in L, then its set complement \overline{A} has the properties A V \overline{A} S and A $\wedge A$ = $\overline{\Phi}$. That is, the set complement is also the complement in L.

• Example 20

• Example 21

 D_{30}

• Theorem 7

Let L be a bounded distributive lattice. If a complement exists, it is unique.

Proof: Let a' and a'' be complements of the element a in L, then

$$a \lor a' = I, a \lor a'' = I; a \land a' = 0, a \land a'' = 0$$

using the distributive laws, we obtain

$$a'=a' \lor 0 = a' \lor (a \land a'') = (a' \lor a) \land (a' \lor a'')$$

= I \land (a' \lor a'') = a' \lor a''

Also

$$a''=a'' \lor 0 = a'' \lor (a \land a') = (a'' \lor a) \land (a'' \lor a')$$

= I \land (a' \vartsigned a'') = a' \vartsigned a''

Hence a'=a''

• Complemented

A lattice L is called complemented if it is bounded and if every element in L has a complement.

• Example 22

The lattice L=P(S) is complemented. Observe that in this case each element of L has a unique complement, which can be seen directly or is implied by Theorem 7.

• Theorem 1

If $S_1 = \{x_1, x_2, ..., x_n\}$ and $S_2 = \{y_1, y_2, ..., y_n\}$ are any two finite sets with n elements, then the lattices $(P(S_1), \subseteq)$ and $(P(S_2), \subseteq)$ are isomorphic. Consequently, the Hasse diagrams of these lattices may be drawn identically.

Arrange the elements in S1 and S2

S₁:
$$x_1 x_2 x_3 \dots x_n$$

 $\downarrow \downarrow \downarrow \downarrow \downarrow$
S₂: $y_1 y_2 y_3 \dots y_n$

A

$$S_1: x_1 x_2 x_3 \dots x_n$$

f(A)
 $S_2: y_1 y_2 y_3 \dots y_n$

• Example 1:

S={a, b, c} and T={2,3,5}. Consider the Hasse diagrams of the two lattices (P(S), \subseteq) and (P(T), \subseteq).

Note : the lattice depends only on the number of elements in set, not on the elements.

• Label the subsets

Let a set $S = \{a_1, a_2, ..., a_n\}$, then P(S) has 2^n subsets. We label subsets by sequences of 0's and 1's of length n. For instance,

 $\{a_{1},a_{2}\} \rightarrow 1\ 1\ 0\ 0\ \dots 0 \\ \{a_{1},a_{n}\} \rightarrow 1\ 0\ 0\ 0\ \dots 1 \\ \phi \rightarrow 0\ 0\ 0\ 0\ \dots 0 \\ \{a_{1},a_{2},\dots,a_{n}\} \rightarrow 1\ 1\ 1\ 1\ \dots 1$

. . .

• Lattice B_n

If the Hasse diagram of the lattice corresponding to a set with n elements is labeled by sequences of 0's and 1's of length n, the resulting lattice is named Bn. The properties of the partial order on B_n can be described directly as follows. If $x=a_1a_2...a_n$ and $y=b_1b_2...b_n$ are two element of B_n , then

1.
$$x \le y$$
 iff $a_k \le b_k$ (as numbers 0 or 1) for $k=1,2,...,n$
2. $x \land y=c_1c_2...c_n$, where $c_k=\min\{a_k,b_k\}$
3. $x \lor y=c_1c_2...c_n$, where $c_k=\max\{a_k,b_k\}$
4. x has a complement $x'=z_1z_2...z_n$, where $z_k=1$ if $x_k=0$ and $z_k=0$ if $x_k=1$

• Boolean algebra

A finite lattice is called a Boolean algebra if it is isomorphic with Bn for some nonnegative integer n. 111

• (P(S), ⊆)

Each x and y in B_n correspond to subsets A and B of S. Then $x \le y, x \land y, x \lor y$ and x' correspond to $A \subseteq B, A \cap B, A \cup B$ and A. Therefore,

 $(P(S), \subseteq)$ is isomorphic with Bn, where n=|S|

• Example 3

Consider the lattice D_6 consisting of all positive integer divisors of 6 under the partial order of divisibility.

• Example 4

Consider the lattices D_{20} and D_{30} of all positive integer divisors of 20 and 30, respectively.

D₂₀ is not a Boolean algebra (why? 6 is not 2ⁿ)

 D_{30} is a Boolean algebra, $D_{30} \rightarrow B_3$

• Theorem 2

Let $n=p_1p_2...p_k$, where the p_i are **distinct** primes. The D_n is a Boolean algebra.

Proof:

Let $S = \{p_1, p_2, \dots, p_k\}$. If $T \subseteq S$ and a_T is the product of the primes in T, then $a_T \mid n$. Any divisor of n must be of the form a_T for some subset T of S (let $a_{\phi} = 1$).

If V and T are subsets of S, V \subseteq T if and only if $a_V | a_T$

$$a_{V \cap T} = a_V \wedge a_T = GCD(a_V, a_T) \&$$

 $a_{V \cup T} = a_V \vee a_T = LCM(a_V, a_T)$

Thus, the function f: $P(S) \rightarrow D_n$ given by $f(T)=a_T$ is a isomorphism form P(S) to D_n . Since P(S) is a Boolean algebra, so is D_n .

• Example

Let $S=\{2,3,5\}$, show the Hasse diagrams of $(P(S), \subseteq)$ and D_{30} as follows.

• Example 5

Since $210=2 \times 3 \times 5 \times 7$, $66=2 \times 3 \times 11$ and $646=2 \times 17 \times 19$, then D₂₁₀, D₆₆ D₆₄₆ are all Boolean algebras.

• Example 9

Since $40=2^3 \times 5$, and $75=3 \times 5^2$, neither D_{40} and D_{75} are Boolean algebras.

Note: If n is positive integer and $p^2 | n$, where p is a prime number, then Dn is not a Boolean algebra.

Theorem 3 (Substitution rule for Boolean algebra)
 Any formula involving U or ∩ that holds for arbitrary subsets of a set S will continue to hold for arbitrary elements of a Boolean algebra L if is ∧ substituted for ∩ and ∨ for U.

Example 6 If L is any Boolean algebra and x,y and z are in L, then the following three properties hold.

1. (x')'=x 2. $(x \land y)' = x' \lor y'$ 3. $(x \lor y)' = x' \land y'$ This is true by theorem 3,

1. (A)=A 2. $(A\cap B)=A \cup B$ 3. $(A \cup B) = A \cap B$ hold for arbitrary subsets A and B of a set S.

More properties can be found in p. 247, 1~12

f

С

• Example 7

d

а

е

b

Show the lattice whose Hasse diagram shown below is not a Boolean algebra.

However, based on the 11.

Every element x has a unique complement x' Every element A has a unique complement \overline{x}

Theorem 3 (e.g. properties 1~14) is usually used to show that a lattice L is not a Boolean algebra.

Denote the Boolean algebra B_1 simply as B. Thus B contains only the two elements 0 and 1. It is a fact that any of the Boolean algebras B_n can be described in terms of B. The following theorem gives this description.

• Theorem 4

For any n>=1, B_n is the product $B \times B \times ... \times B$ of B, n factors, where $B \times B \times ... \times B$ is given the product partial order.