Lattices

- Lattice

A lattice is a poset (L, \leq) in which every subset $\{\mathrm{a}, \mathrm{b}\}$ consisting of two elements has a least upper bound and a greatest lower bound. we denote
$\operatorname{LUB}(\{a, b\})$ by $a \vee b$ (the join of a and b)
$\operatorname{GLB}(\{a, b\})$ by a $\wedge b$ (the meet of a and $b)$

Lattices

- Example 1

Let S be a set and let $\mathrm{L}=\mathrm{P}(\mathrm{S})$. As we have seen, \subseteq, containment, is a partial order on L. Let A and B belong to the poset (L, \subseteq). Then

$$
a \vee b=A \cup B \quad \& a \wedge b=A \cap B
$$

Why?
Assuming C is a upper bound of $\{\mathrm{a}, \mathrm{b}\}$, then

$$
\mathrm{A} \subseteq \mathrm{C} \text { and } \mathrm{B} \subseteq \mathrm{C} \text { thus } \mathrm{A} \mathrm{UB} \subseteq \mathrm{C}
$$

Assuming C is a lower bound of $\{a, b\}$, then $\mathrm{C} \subseteq \mathrm{A}$ and $\mathrm{C} \subseteq \mathrm{B}$ thus $\mathrm{C} \subseteq \mathrm{A} \cap \mathrm{B}$

Lattices

- Example 2

Consider the poset $(\mathrm{Z}+, \leq)$, where for a and b in $\mathrm{Z}+$, $\mathrm{a} \leq$ b if and only if $\mathrm{a} \mid \mathrm{b}$, then

$$
\begin{aligned}
& \mathrm{a} \vee \mathrm{~b}=\operatorname{LCM}(\mathrm{a}, \mathrm{~b}) \\
& \mathrm{a} \wedge \mathrm{~b}=\operatorname{GCD}(\mathrm{a}, \mathrm{~b})
\end{aligned}
$$

LCM: least common multiple
GCD: greatest common divisor

Lattices

- Example 3

Let n be a positive integer and D_{n} be the set of all positive divisors of n. Then D_{n} is a lattice under the relation of divisibility. For instance,
$\mathrm{D}_{20}=\{1,2,4,5,10,20\}$
$\mathrm{D}_{30}=\{1,2,3,5,6,10,15,20\}$

Lattices

- Example 4

Which of the Hasse diagrams represent lattices?

Lattices

- Example 6

Let S be a set and $\mathrm{L}=\mathrm{P}(\mathrm{S})$. Then (L, \subseteq) is a lattice, and its dual lattice is (L, \supseteq), where " \subseteq " is "contained in", and " \supseteq " is "contains". Then, in the poset (L, \supseteq)
join: $\quad \mathrm{A} V \mathrm{~B}=\mathrm{A} \cap \mathrm{B}$,
meet: $A \wedge B=A \cup B$.

Lattices

- Theorem 1

If $\left(\mathrm{L}_{1}, \leq\right)$ and $\left(\mathrm{L}_{2}, \leq\right)$ are lattices, then (L, \leq) is a lattices, where $\mathrm{L}=\mathrm{L}_{1} \times \mathrm{L}_{2}$, and the partial order \leq of L is the product partial order.
Proof: we denote
the join and meet in is L_{1} by V_{1} and Λ_{1}
the join and meet in is L_{2} by V_{2} and Λ_{2}
We know that L is a poset (Theorem 1 in p .219) for $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ in L. then

$$
\begin{aligned}
& \left(a_{1}, b_{1}\right) \vee\left(a_{2}, b_{2}\right)=\left(a_{1} \vee_{1} a_{2}, b_{1} \vee_{2} b_{2}\right) \text { in } L \\
& \left(a_{1}, b_{1}\right) \wedge\left(a_{2}, b_{2}\right)=\left(a_{1} \wedge_{1} a_{2}, b_{1} \wedge_{2} b_{2}\right) \text { in } L
\end{aligned}
$$

Lattices

- Example 7

Lattices

- Sublattice

Let (L, \leq) be a lattice. A nonempty subset S of L is called a sublattice of L if $a \vee b$ in S and $a \wedge b$ in S whenever a and b in S
For instance
Example 3 is one of sublattices of Example 2

Lattices

- Example 9

Lattices

- Isomorphic Lattices

If f: $L_{1} \rightarrow L_{2}$ is an isomorphism form the poset $\left(L_{1}, \leq_{1}\right)$ to the poset $\left(\mathrm{L}_{2}, \leq_{2}\right)$, then L_{1} is a lattice if and only if L_{2} is a lattice. In fact, if a and b are elements of L_{1}, then

$$
f(a \vee b)=f(a) \vee f(b) \& f(a \wedge b)=f(a) \wedge f(b)
$$

If two lattices are isomorphic, as posets, we say they are isomorphic lattices.

Lattices

- Example 10 (P. 225 Ex.17)

Let $\mathrm{A}=\{1,2,3,6\}$ and let \leq be the relation \mid.
Let $A^{\prime}=\{\phi,\{a\},\{b\},\{\mathrm{a}, \mathrm{b}\}\}$ and let $\leq \prime$ be set containment, \subseteq. If $f(1)=\phi, f(2)=\{a\}, f(3)=\{b\}, f(6)=\{a, b\}$, then f is an isomorphism. They have the same Hasse diagrams.

Lattices

- $a \vee b(\operatorname{LUB}\{a, b\})$

1. $\mathrm{a} \leq \mathrm{a} \vee \mathrm{b}$ and $\mathrm{b} \leq \mathrm{a} \mathrm{b}$; $\mathrm{a} \vee \mathrm{b}$ is an upper bound of a and b
2. If $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{c}$, then $\mathrm{a} \vee \mathrm{b} \leq \mathrm{c}$; aV b is the least upper bound of a and b

- $\mathrm{a} \wedge \mathrm{b}(\mathrm{GLB}\{\mathrm{a}, \mathrm{b}\})$

3. $\mathrm{a} \wedge \mathrm{b} \leq \mathrm{a}$ and $\mathrm{a} \wedge \mathrm{b} \leq \mathrm{b} ; \mathrm{a} \wedge \mathrm{b}$ is a lower bound of a and b
4. If $c \leq a$ and $c \leq b$, then $c \leq a \wedge b ; a \wedge b$ is the greatest lower bound of a and b

Lattices

- Theorem 2

Let L be a lattice. Then for every a and b in L
(a) $\mathrm{a} \vee \mathrm{b}=\mathrm{b}$ if and only if $\mathrm{a} \leq \mathrm{b}$
(b) a $\wedge b=a$ if and only if $a \leq b$
(c) $a \wedge b=a$ if and only if $a \vee b=b$

Proof:

(a) if $\mathrm{aVb}=\mathrm{b}$, since $\mathrm{a} \leq \mathrm{a} \vee \mathrm{b}$, thus $\mathrm{a} \leq \mathrm{b}$
if $a \leq b$, since $b \leq b$, thus b is a upper bound of a and b, by definition of least upper bound we have $\mathrm{a} \vee \mathrm{b} \leq \mathrm{b}$. since $\mathrm{a} \vee \mathrm{b}$ is an upper bound of a and $b, b \leq a \vee b$, so $a \vee b=b$
(b) Similar to (a); (c) the proof follows from (a) \& (b)

Lattices

- Example 12

Let L be a linearly ordered set. If a and b in L, then either $\mathrm{a} \leq \mathrm{b}$ or $\mathrm{b} \leq \mathrm{a}$. It follows form Theorem 2 that L is a lattice, since every pair of elements has a least upper bound and a greatest lower bound.

Lattices

- Theorem 3

Let L be a lattice. Then

1. Idempotent properties: $\quad \mathrm{a} \vee \mathrm{a}=\mathrm{a} ; \quad \mathrm{a} \wedge \mathrm{a}=\mathrm{a}$
2. Commutative properties: $a \vee b=b \vee a ; a \wedge b=b \wedge a$
3. Associative properties:
(a) $(\mathrm{a} \vee \mathrm{b}) \vee \mathrm{c}=\mathrm{a} \mathrm{V}(\mathrm{b} \vee \mathrm{c})$
(b) $(a \wedge b) \wedge c=a \wedge(b \wedge c)$
4. Absorption properties:
(a) $a \vee(a \wedge b)=a$
(b) $a \wedge(a \vee b)=a$

Lattices

Proof: 3. (a) (aVb) $\vee c=a \vee(b \vee c)$

$$
a \leq a \vee(b \vee c) \& \quad b \vee c \leq a \vee(b \vee c)
$$

$$
\mathrm{b} \leq \mathrm{b} \vee \mathrm{c} \quad \& \mathrm{c} \leq \mathrm{b} \vee \mathrm{c}
$$

(definition of LUB)
$b \leq b \vee c \quad \& \quad c \leq b \vee c \& \quad b \vee c \leq a V(b \vee c) \rightarrow$

$$
\mathrm{b} \leq \mathrm{a} \vee(\mathrm{~b} V \mathrm{c}) \& \mathrm{c} \leq \mathrm{a} \vee(\mathrm{~b} V \mathrm{c}) \quad \text { (transitivity) }
$$

$a \leq a \vee(b \vee c) \& b \leq a \vee(b \vee c) \rightarrow a \vee(b \vee c)$ is a upper of a and b then we have $a \vee b \leq a V(b \vee c) \quad$ (why?)
$\mathrm{a} \vee \mathrm{b} \leq \mathrm{a} \vee(\mathrm{b} V \mathrm{c}) \& \mathrm{c} \leq \mathrm{a} \vee(\mathrm{b} V \mathrm{c}) \rightarrow$
$a \vee(b \vee c)$ is a upper of $a \vee b$ and c
then we have $(\mathrm{aVb}) \vee \mathrm{c} \leq \mathrm{aV}(\mathrm{b} V \mathrm{c})$
Similarly, $\quad a \vee(b \vee c) \leq(a \vee b) \vee c$
Therefore $(\mathrm{aVb}) \mathrm{Vc}=\mathrm{aV}(\mathrm{bVc})$ (why?)

Lattices

- $(a \vee b) \vee c=a \vee(b \vee c)=a \vee b \vee c$
- $(a \wedge b) \wedge c=a \wedge(b \wedge c)=a \wedge b \wedge c$
- $\operatorname{LUB}\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=a_{1} \vee a_{2} \vee \ldots \vee a_{n}$
- $\operatorname{GLB}\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}$

Lattices

- Theorem 4

Let L be a lattice. Then, for every a, b and c in L 1. If $a \leq b$, then

$$
\begin{aligned}
& \text { (a) } a \vee c \leq b \vee c \\
& \text { (b) } a \wedge c \leq b \wedge c
\end{aligned}
$$

2. $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{c}$ if and only if $\mathrm{a} \vee \mathrm{b} \leq \mathrm{c}$
3. $c \leq a$ and $c \leq b$ if and only if $c \leq a \wedge b$
4. If $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{d}$, then

> (a) $a \vee c \leq b \vee d$
> (b) $a \wedge c \leq b \wedge d$

Lattices

- Proof

1. (a) If $a \leq b$, then $a \vee c \leq b \vee c$

$$
\begin{gathered}
c \leq b \vee c ; \quad b \leq b \vee c \quad \text { (definition of LUB) } \\
a \leq b ; \quad b \leq b \vee c \rightarrow a \leq b \vee c \text { (transitivity) }
\end{gathered}
$$

therefore,
$\mathrm{b} V \mathrm{c}$ is a upper bound of a and c , which means

$$
a \vee c \leq b \vee c \quad(w h y ?)
$$

The proofs for others left as exercises.

Lattices

- Bounded

A lattice L is said to be bounded if it has a greatest element I and a least element 0

For instance:
Example 15: The lattice $P(S)$ of all subsets of a set S, with the relation containment is bounded. The greatest element is S and the least element is empty set.

Example 13: The lattice Z^{+}under the partial order of divisibility is not bounded, since it has a least element 1, but no greatest element.

Lattices

- If L is a bounded lattice, then for all a in A

$$
\begin{gathered}
0 \leq \mathrm{a} \leq \mathrm{I} \\
\mathrm{a} \vee 0=\mathrm{a}, \quad \mathrm{a} \vee \mathrm{I}=\mathrm{I} \\
\mathrm{a} \wedge 0=0, \quad \mathrm{a} \wedge \mathrm{I}=\mathrm{a}
\end{gathered}
$$

Note: I (0) and a are comparable, for all a in A.

Lattices

- Theorem 5

Let $L=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite lattice. Then L is bounded. Proof:

The greatest element of L is $a_{1} \vee a_{2} \vee \ldots \vee a_{n}$, and the least element of L is $a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}$

Lattices

- Distributive

A lattice L is called distributive if for any elements a, b and c in L we have the following distributive properties:

$$
\begin{aligned}
& \text { 1. } \quad a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) \\
& \text { 2. } \quad a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

If L is not distributive, we say that L is nondistributive.

Note: the distributive property holds when
a. any two of the elements a, b and c are equal or
b. when any one of the elements is 0 or I.

Lattices

- Example 16

For a set S, the lattice $P(S)$ is distributive, since union and intersection each satisfy the distributive property.

- Example 17

The lattice whose Hasse diagram shown as follows is distributive.

Lattices

- Example 18

Show that the lattices as follows are nondistributive.

$a \wedge(b \vee c)=a \wedge I=a$
$(a \wedge b) \vee(a \wedge c)=b \vee 0=b$
$a \wedge(b \vee c)=a \wedge I=a$
$(a \wedge b) \vee(a \wedge c)=0 \vee 0=0$

Lattices

- Theorem 6

A lattice L is nondistributive if and only if it contains a sublattice that is isomorphic to one of the lattices whose Hasse diagrams are as show.

Lattices

- Complement

Let L be bounded lattice with greatest element I and least element 0 , and let a in L. An element a^{\prime} in L is called a complement of a if

$$
\mathrm{a} \vee \mathrm{a}^{\prime}=\mathrm{I} \text { and } \mathrm{a} \wedge \mathrm{a}^{\prime}=0
$$

Note that $0^{\prime}=I$ and $I^{\prime}=0$

Lattices

- Example 19

The lattice $\mathrm{L}=\mathrm{P}(\mathrm{S})$ is such that every element has a complement, since if A in L, then its set complement \bar{A} has the properties $A \vee A^{-}=S$ and $A \wedge A=\bar{\phi}$. That is, the set complement is also the complement in L .

- Example 20

Lattices

- Example 21

D_{20}

D_{30}

Lattices

- Theorem 7

Let L be a bounded distributive lattice. If a complement exists, it is unique.
Proof: Let a' and a" be complements of the element a in L, then

$$
a \vee a^{\prime}=I, \quad a \vee a^{\prime \prime}=I ; \quad a \wedge a^{\prime}=0, \quad a \wedge a^{\prime \prime}=0
$$

using the distributive laws, we obtain

$$
\begin{aligned}
a^{\prime}=a^{\prime} \vee 0 & =a^{\prime} \vee\left(a \wedge a^{\prime \prime}\right)=\left(a^{\prime} \vee a\right) \wedge\left(a^{\prime} \vee a^{\prime \prime}\right) \\
& =I \wedge\left(a^{\prime} \vee a^{\prime \prime}\right)=a^{\prime} \vee a^{\prime \prime}
\end{aligned}
$$

Also

$$
\begin{aligned}
a^{\prime \prime}=a^{\prime \prime} \vee 0 & =a " \vee\left(a \wedge a^{\prime}\right)=(a " \vee a) \wedge\left(a " \vee a^{\prime}\right) \\
& =I \wedge\left(a^{\prime} \vee a^{\prime \prime}\right)=a^{\prime} \vee a "
\end{aligned}
$$

Hence $a^{\prime}=a$ "

Lattices

- Complemented

A lattice L is called complemented if it is bounded and if every element in L has a complement.

Lattices

- Example 22

The lattice $\mathrm{L}=\mathrm{P}(\mathrm{S})$ is complemented. Observe that in this case each element of L has a unique complement, which can be seen directly or is implied by Theorem 7.

- Example 23

Finite Boolean Algebras

- Theorem 1

If $\mathrm{S}_{1}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ and $\mathrm{S}_{2}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$ are any two finite sets with n elements, then the lattices $\left(\mathrm{P}\left(\mathrm{S}_{1}\right), \subseteq\right)$ and $\left(\mathrm{P}\left(\mathrm{S}_{2}\right)\right.$, \subseteq) are isomorphic. Consequently, the Hasse diagrams of these lattices may be drawn identically.
Arrange the elements in S1 and S2

$$
\begin{aligned}
& \text { A } \\
& S_{1}: x_{1} \quad x_{2} \quad x_{3} \quad \ldots \quad x_{n} \\
& \text { f(A) } \\
& S_{2}: y_{1} y_{2} \quad y_{3} \quad \ldots y_{n}
\end{aligned}
$$

Finite Boolean Algebras

- Example 1:
$\mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{T}=\{2,3,5\}$. Consider the Hasse diagrams of the two lattices $(\mathrm{P}(\mathrm{S}), \subseteq)$ and $(\mathrm{P}(\mathrm{T}), \subseteq)$.

Note: the lattice depends only on the number of elements in set, not on the elements.

Finite Boolean Algebras

- Label the subsets

Let a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then $P(S)$ has 2^{n} subsets. We label subsets by sequences of 0 's and 1 's of length n.
For instance,

$$
\begin{array}{ll}
\left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\} & \rightarrow 1100 \ldots 0 \\
\left\{\mathrm{a}_{1}, \mathrm{a}_{\mathrm{n}}\right\} & \rightarrow 1000 \ldots 1 \\
\Phi & \rightarrow 0000 \ldots 0
\end{array}
$$

$\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right\} \rightarrow 1111 \ldots 1$

Finite Boolean Algebras

- Get the $\underset{\{2,3,5\}}{ }$ unique Hasse Diagram

Finite Boolean Algebras

- Lattice B_{n}

If the Hasse diagram of the lattice corresponding to a set with n elements is labeled by sequences of 0 's and 1 's of length n , the resulting lattice is named Bn . The properties of the partial order on B_{n} can be described directly as follows. If $x=a_{1} a_{2} \ldots a_{n}$ and $y=b_{1} b_{2} \ldots b_{n}$ are two element of B_{n}, then

1. $\mathrm{x} \leq \mathrm{y}$ iff $\mathrm{a}_{\mathrm{k}} \leq \mathrm{b}_{\mathrm{k}}$ (as numbers 0 or 1) for $\mathrm{k}=1,2, \ldots, \mathrm{n}$
2. $x \wedge y=c_{1} c_{2} \ldots c_{n}$, where $c_{k}=\min \left\{a_{k}, b_{k}\right\}$
3. $x \vee y=c_{1} c_{2} \ldots c_{n}$, where $c_{k}=\max \left\{a_{k}, b_{k}\right\}$
4. x has a complement $\mathrm{x}^{\prime}=\mathrm{z}_{1} \mathrm{z}_{2} \ldots \mathrm{z}_{\mathrm{n}}$, where $\mathrm{z}_{\mathrm{k}}=1$ if $\mathrm{x}_{\mathrm{k}}=0$ and $\mathrm{z}_{\mathrm{k}}=0$ if $\mathrm{x}_{\mathrm{k}}=1$

Finite Boolean Algebras

- Boolean algebra

A finite lattice is called a Boolean algebra if it is isomorphic with Bn for some nonnegative integer n . 111

Finite Boolean Algebras

- $(\mathrm{P}(\mathrm{S}), \subseteq)$

Each x and y in B_{n} correspond to subsets A and B of S. Then $x \leq y, x \wedge y, x \vee y$ and x correspond to $A \subseteq B, A \cap B, A U$ B and A . Therefore,
$(\mathrm{P}(\mathrm{S}), \subseteq)$ is isomorphic with Bn , where $\mathrm{n}=|\mathrm{S}|$

- Example 3

Consider the lattice D_{6} consisting of all positive integer divisors of 6 under the partial order of divisibility.

D_{6} is a Boolean algebras

Finite Boolean Algebras

- Example 4

Consider the lattices D_{20} and D_{30} of all positive integer divisors of 20 and 30 , respectively.

D_{20} is not a Boolean algebra (why? 6 is not 2^{n})
D_{30} is a Boolean algebra, $\mathrm{D}_{30} \rightarrow \mathrm{~B}_{3}$

Finite Boolean Algebras

- Theorem 2

Let $\mathrm{n}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{k}}$, where the p_{i} are distinct primes. The D_{n} is a Boolean algebra.
Proof:
Let $\mathrm{S}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{k}}\right\}$. If $\mathrm{T} \subseteq \mathrm{S}$ and a_{T} is the product of the primes in T , then $\mathrm{a}_{\mathrm{T}} \mid \mathrm{n}$. Any divisor of n must be of the form a_{T} for some subset T of S (let $\mathrm{a}_{\phi}=1$).
If V and T are subsets of $\mathrm{S}, \mathrm{V} \subseteq T$ if and only if $\mathrm{a}_{\mathrm{V}} \mid \mathrm{a}_{\mathrm{T}}$

$$
\mathrm{a}_{\mathrm{V} \cap \mathrm{~T}}=\mathrm{a}_{\mathrm{V}} \wedge \mathrm{a}_{\mathrm{T}}=\operatorname{GCD}\left(\mathrm{a}_{\mathrm{V}}, \mathrm{a}_{\mathrm{T}}\right) \quad \&
$$

$$
\mathrm{a}_{\mathrm{VUT}}=\mathrm{a}_{\mathrm{V}} \vee \mathrm{a}_{\mathrm{T}}=\operatorname{LCM}\left(\mathrm{a}_{\mathrm{V},}, \mathrm{a}_{\mathrm{T}}\right)
$$

Thus, the function $\mathrm{f}: \mathrm{P}(\mathrm{S}) \rightarrow \mathrm{D}_{\mathrm{n}}$ given by $\mathrm{f}(\mathrm{T})=\mathrm{a}_{\mathrm{T}}$ is a isomorphism form $P(S)$ to D_{n}. Since $P(S)$ is a Boolean algebra, so is D_{n}.

Finite Boolean Algebras

- Example

Let $S=\{2,3,5\}$, show the Hasse diagrams of $(\mathrm{P}(\mathrm{S}), \subseteq)$ and D_{30} as follows.

Finite Boolean Algebras

- Example 5

Since $210=2 \times 3 \times 5 \times 7,66=2 \times 3 \times 11$ and $646=2 \times 17 \times 19$, then D_{210}, $\mathrm{D}_{66} \mathrm{D}_{646}$ are all Boolean algebras.

- Example 9

Since $40=2^{3} \times 5$, and $75=3 \times 5^{2}$, neither D_{40} and D_{75} are Boolean algebras.
Note: If n is positive integer and $\mathrm{p}^{2} \mid \mathrm{n}$, where p is a prime number, then Dn is not a Boolean algebra.

Finite Boolean Algebras

- Theorem 3 (Substitution rule for Boolean algebra)

Any formula involving U or \cap that holds for arbitrary subsets of a set S will continue to hold for arbitrary elements of a Boolean algebra L if is \wedge substituted for \cap and \vee for U .

Example 6 If L is any Boolean algebra and x, y and z are in L, then the following three properties hold.

1. (x^{\prime}) $=\mathrm{x}$
2. $(\mathrm{x} \wedge \mathrm{y})^{\prime}=\mathrm{x}^{\prime} \vee \mathrm{y}^{\prime}$
3. ($\mathrm{x} \vee \mathrm{y})^{\prime}=\mathrm{x}^{\prime} \wedge \mathrm{y}^{\prime}$

This is true by theorem 3,

1. $(\mathrm{A})=\mathrm{A} \quad$ 2. $(\mathrm{A} \cap \mathrm{B})=\mathrm{A} U \mathrm{~B} \quad$ 3. $(\mathrm{A} U \mathrm{~B})=\mathrm{A} \cap \mathrm{B}$
hold for arbitrary subsets A and B of a set S.
More properties can be found in p. 247, 1 ~12

Finite Boolean Algebras

- Example 7

Show the lattice whose Hasse diagram shown below is not a Boolean algebra.

a and e are both complements of c However, based on the 11.

Every element x has a unique complement x ' Every element A has a unique complement \bar{x}

Theorem 3 (e.g. properties 1~14) is usually used to show that a lattice L is not a Boolean algebra.

Finite Boolean Algebras

Denote the Boolean algebra B_{1} simply as B . Thus B contains only the two elements 0 and 1 . It is a fact that any of the Boolean algebras B_{n} can be described in terms of B. The following theorem gives this description.

- Theorem 4

For any $\mathrm{n}>=1, \mathrm{~B}_{\mathrm{n}}$ is the product $\mathrm{B} \times \mathrm{B} \times \ldots \times \mathrm{B}$ of B, n factors, where $B \times B \times \ldots \times B$ is given the product partial order.

