
• Lattice 

    A lattice is a poset (L, ≤) in which every subset {a, b} 

consisting of two elements has a least upper bound and 

a greatest lower bound.  we denote  

           LUB({a, b}) by a∨ b  (the join of a and b) 

           GLB({a, b}) by a ∧b  (the meet of a and b) 
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• Example 1 
    Let S be a set and let L=P(S). As we have seen, ⊆, 

containment, is a partial order on L. Let A and B belong to 
the poset (L, ⊆). Then  

                    a∨ b =A U B     &  a ∧b = A ∩ B  

     Why?   

     Assuming C is a upper bound of {a, b}, then  

                       A ⊆ C and  B ⊆ C   thus A U B ⊆ C  

      Assuming C is a lower bound of {a, b}, then  

                       C ⊆ A and  C ⊆ B   thus C ⊆ A ∩ B  
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• Example 2 

   Consider the poset (Z+, ≤), where for a and b in Z+, a ≤ 

b if and only if a | b , then  

                           a∨b = LCM(a,b)    

                           a∧b = GCD(a,b) 

 

   LCM: least common multiple  

   GCD: greatest common divisor  
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• Example 3 

    Let n be a positive integer and Dn  be the set of all 

positive divisors of n. Then Dn  is a lattice under the 

relation of divisibility. For instance,  

     D20= {1,2,4,5,10,20}       D30= {1,2,3,5,6,10,15,20}  
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• Example 4 

    Which of the Hasse diagrams represent lattices? 
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• Example 6 

   Let S be a set and L =P(S). Then (L, ⊆ ) is a lattice, and 

its dual lattice is (L, ⊇), where “⊆”  is “contained in”, 

and “⊇” is “contains”. Then,  in the poset (L, ⊇ )   

                  join:       A∨B=A∩B ,  

                 meet:      A∧B=A∪B. 
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• Theorem 1  

    If (L1, ≤ ) and (L2, ≤ )  are lattices, then (L, ≤ ) is a lattices, 

where L= L1 ×L2, and the partial order ≤ of L is the product 

partial order.  

    Proof:   we denote  

               the join and meet in is L1by ∨1 and ∧1 

               the join and meet in is L2by ∨2 and ∧2 

      We know that L is a poset (Theorem 1 in p.219)   

    for (a1,b1) and (a2,b2) in L. then  

                   (a1,b1) ∨ (a2,b2) = (a1 ∨1 a2, b1 ∨2 b2 )  in L  

                   (a1,b1) ∧ (a2,b2) = (a1 ∧1 a2,  b1 ∧2 b2 )  in L  
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• Example 7 
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• Sublattice 

    Let (L, ≤) be a lattice. A nonempty subset S of L is 

called a sublattice of L if a ∨ b in S and a ∧ b in S 

whenever a and b in S   

     For instance 

     Example 3 is one of sublattices of Example 2 
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• Example 9  
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• Isomorphic Lattices 

    If f: L1L2 is an isomorphism form the poset (L1, ≤1 ) 

to the poset (L2, ≤ 2) , then L1 is a lattice if and only if 

L2 is a lattice. In fact, if a and b are elements of L1, then  

         f(a ∨ b)= f(a) ∨ f(b) &  f (a ∧ b)=f(a) ∧ f(b).  

    If two lattices are isomorphic, as posets, we say they are 

isomorphic lattices.   
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• Example 10 (P.225 Ex.17) 

    Let A={1,2,3,6} and let ≤ be the relation | .  

    Let A’= {ф, {a}, {b}, {a, b}} and let ≤’ be set containment, ⊆.  

    If f(1)= ф, f(2)={a}, f(3)={b}, f(6)={a, b}, then f is an 

isomorphism. They have the same Hasse diagrams.  
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• a ∨ b (LUB{a, b})  

  1. a ≤ a∨b  and b ≤ a∨b;  a∨b is an upper bound of a and b 

  2. If a ≤ c and b ≤ c, then  a∨ b ≤ c ;  a∨ b is the least upper 

bound of a and b  

 

• a ∧ b (GLB{a, b})  

   3. a∧b ≤ a and a ∧ b ≤ b; a ∧ b is a lower bound of a and b 

  4. If c≤ a and c ≤ b, then  c≤ a ∧ b ; a ∧ b is the greatest lower 

bound of a and b  
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• Theorem 2 

    Let L be a lattice. Then for every a and b in L 

   (a) a ∨ b =b if and only if a ≤  b  

   (b) a ∧ b =a if and only if a ≤  b  

   (c) a ∧ b =a if and only if a∨ b =b   

 Proof:  

(a) if a∨b =b, since a≤ a∨b, thus a ≤ b  

     if a ≤  b, since b ≤  b , thus b is a upper bound of a and b, by 

definition of least upper bound we have a∨b ≤ b. since a∨b 

is an upper bound of a and b, b ≤  a∨b, so a∨b =b  

(b) Similar to (a);     (c) the proof follows from (a) & (b) 
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• Example 12 

    Let L be a linearly ordered set. If a and b in L, then 

either a ≤ b or b ≤ a. It follows form Theorem 2 that L is 

a lattice, since every pair of elements has a least upper 

bound and a greatest lower bound.   
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• Theorem 3 
Let L be a lattice. Then  

1. Idempotent properties:       a∨a =a ;        a∧a =a   

 

2. Commutative properties:   a∨b= b∨a;   a∧b = b∧a  

 

3. Associative properties:    (a)   (a∨b)∨c= a∨(b∨c ) 

                                               (b)   (a∧b) ∧c= a∧(b∧c)  

 

4. Absorption properties:      (a)  a ∨ (a ∧b) =a                                 

                                                 (b)  a ∧ (a ∨ b) =a  
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Proof:  3.  (a) (a∨b)∨c= a∨(b∨c)  

                   a≤ a∨(b∨c)  &   b∨c≤ a∨(b∨c) 

                   b≤ b∨c   & c ≤ b∨c                  (definition of LUB)  

          b≤ b∨c   &  c ≤ b∨c &   b∨c≤ a∨(b∨c)   

               b≤  a∨(b∨c)  & c ≤ a∨(b∨c)   (transitivity)  

    a≤ a∨(b∨c) & b≤  a∨(b∨c)   a∨(b∨c) is a upper of a and b 

   then we have a∨b ≤ a∨(b∨c)     (why?)   

   a∨b ≤ a∨(b∨c) & c ≤ a∨(b∨c)  

                                           a∨(b∨c) is a upper of a∨b and c  

   then we have (a∨b)∨c ≤  a∨(b∨c)  

Similarly,         a∨(b∨c) ≤ (a∨b)∨c  

Therefore (a∨b)∨c =  a∨(b∨c)  (why?) 
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• (a ∨ b) ∨c = a ∨ (b ∨c) =  a ∨ b ∨c  

 

• (a∧ b)∧ c = a ∧ (b ∧ c) = a ∧ b ∧ c  

 

• LUB({a1,a2,…,an})= a1 ∨ a2 ∨ … ∨ an 

 

• GLB({a1,a2,…,an}) =a1 ∧ a2 ∧ … ∧ an  
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• Theorem 4 

    Let L be a lattice. Then, for every a, b and c in L 

    1. If a ≤ b, then  

                     (a) a ∨ c ≤ b ∨c    

                     (b) a ∧c ≤ b ∧ c  

     2. a ≤ c and b ≤ c if and only if a ∨ b ≤ c  

     3. c ≤ a and c ≤ b if and only if c ≤ a ∧b 

     4. If a ≤b and c ≤d, then  

                     (a) a∨c ≤ b∨d     

                     (b) a ∧ c ≤  b∧d  
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• Proof  

   1. (a) If a ≤ b, then a ∨ c ≤ b ∨c    

       c ≤ b ∨c ;      b≤ b ∨c  (definition of LUB)   

        a ≤ b ;   b≤ b ∨c    a≤ b ∨c  (transitivity)    

     therefore,   

          b ∨c is a upper bound of a and c , which means  

                         a ∨ c ≤ b ∨c         (why? ) 

      

 The proofs for others left as exercises.  
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• Bounded 

    A lattice L is said to be bounded if it has a greatest 

element I and a least element 0  

  For instance:  

    Example 15: The lattice P(S) of all subsets of a set S, with 

the relation containment is bounded. The greatest element is 

S and the least element is empty set.  

  

    Example 13: The lattice Z+ under the partial order of 

divisibility is not bounded, since it has a least element 1, but 

no greatest element.  
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• If L is a bounded lattice, then for all a in A 

                           0  ≤  a  ≤  I 

              a ∨ 0 = a,        a ∨ I = I 

             a ∧ 0 = 0 ,        a ∧ I = a  

 

Note:  I (0) and a are comparable, for all a in A.  
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• Theorem 5 

    Let L={a1,a2,…,an} be a finite lattice. Then L is 

bounded.  

    Proof:  

     The greatest element of L is a1 ∨ a2 ∨ … ∨ an,  and the 

least element of L is a1 ∧ a2 ∧ … ∧ an  
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• Distributive  

   A lattice L is called distributive if for any elements a, b 

and c in L we have the following distributive properties:  

         1.   a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)  

         2.   a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)  

   If L is not distributive, we say that L is nondistributive. 

 

Note: the distributive property holds when 

      a. any two of the elements a, b and c are equal or 

      b. when any one of the elements is 0 or I.   
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• Example 16 

    For a set S, the lattice P(S) is distributive, since union 

and intersection each satisfy the distributive property.  

• Example 17 

    The lattice whose Hasse diagram shown as follows is 

distributive.  
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• Example 18 

    Show that the lattices as follows are nondistributive.  
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• Theorem 6 

    A lattice L is nondistributive if and only if it contains a 

sublattice that is isomorphic to one of the lattices whose 

Hasse diagrams are as show.   
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• Complement 

    Let L be bounded lattice with greatest element I and 

least element 0, and let a in L. An element a’ in L is 

called a complement of a if  

                     a ∨ a’ = I and a ∧ a’ =0   

    Note that 0’=I and I’=0  
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• Example 19 

    The lattice L=P(S) is such that every element has a 

complement, since if A in L, then its set complement A 

has the properties A ∨ A = S and A ∧ A=ф. That is, the 

set complement is also the complement in L.  

• Example 20 
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• Example 21 
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• Theorem 7  

    Let L be a bounded distributive lattice. If a complement exists, it is 
unique.   

  Proof: Let a’ and a’’ be complements of the element a in L, then  

       a ∨ a’ = I,   a ∨  a’’= I ;       a ∧ a’ = 0,   a ∧ a’’ =0   

 using the distributive laws, we obtain 

             a’= a’ ∨ 0 = a’ ∨(a ∧ a’’ ) = (a’ ∨ a) ∧ (a’ ∨ a’’)  

                               = I ∧ (a’ ∨ a’’)  = a’ ∨ a’’    

Also    

             a’’= a’’ ∨ 0 = a’’ ∨(a ∧ a’ ) = (a’’ ∨ a) ∧ (a’’ ∨ a’)  

                                  = I ∧ (a’ ∨ a’’)  = a’ ∨ a’’    

Hence a’=a’’ 
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• Complemented  

   A lattice L is called complemented if it is 

bounded and if every element in L has a 

complement.  
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• Example 22 

   The lattice L=P(S) is complemented. Observe that in 

this case each element of L has a unique complement, 

which can be seen directly or is implied by Theorem 7.  

• Example 23  
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• Theorem 1 

    If S1={x1,x2,…,xn} and S2={y1,y2,…,yn} are any two finite 

sets with n elements, then the lattices (P(S1), ⊆) and (P(S2), 

⊆) are isomorphic. Consequently, the Hasse diagrams of 

these lattices may be drawn identically.   
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• Example 1:      

    S={a, b, c} and T={2,3,5}. Consider the Hasse diagrams of 

the two lattices (P(S), ⊆) and (P(T), ⊆).  
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• Label the subsets 

    Let a set S={a1,a2,…,an}, then P(S) has 2n subsets. We 

label subsets by sequences of 0’s and 1’s of length n.  

    For instance,  

    {a1,a2}      1 1 0 0 …0  

    {a1,an }     1 0 0 0 …1  

    ф              0 0 0 0 …0  

{a1,a2,…,an} 1 1 1 1 …1  

    …  
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• Get the unique Hasse Diagram 
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• Lattice Bn 

    If the Hasse diagram of the lattice corresponding to a set with 

n elements is labeled by sequences of 0’s and 1’s of length n, 

the resulting lattice is named Bn. The properties of the partial 

order on Bn can be described directly as follows. If x=a1a2…an 

and y=b1b2…bn are two element of Bn, then   

 

     1. x ≤ y iff ak ≤ bk (as numbers 0 or 1) for k=1,2,…,n   

     2. x ∧ y=c1c2…cn, where ck= min{ak,bk}  

     3. x ∨ y=c1c2…cn, where ck= max{ak,bk}  

       4. x has a complement x’=z1z2…zn, where zk=1 if xk=0 and   

zk=0 if xk=1 
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• Boolean algebra   

    A finite lattice is called a Boolean algebra if it is 

isomorphic with Bn for some nonnegative integer n.  

 Finite Boolean Algebras 

39 

0 

1 

n=1 

01 10 

00 

11 

n=2 

111 

110 011 
101 

100 

000 

001 
010 

n=3 

 

n=0 

|Bn| =2n 



• (P(S), ⊆)  

    Each x and y in Bn correspond to subsets A and B of S. Then 

x ≤ y, x ∧ y, x ∨ y and x’ correspond to A ⊆ B, A ∩ B, A U 

B and A.  Therefore,  

          (P(S), ⊆) is isomorphic with Bn, where n=|S|  

• Example 3  

    Consider the lattice D6 consisting of all positive integer 

divisors of 6 under the partial order of divisibility.  
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• Example 4 

   Consider the lattices D20 and D30 of all positive integer 

divisors of 20 and 30, respectively.  
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• Theorem 2  

    Let n=p1p2…pk, where the pi are distinct primes. The Dn is a 

Boolean algebra.  

    Proof:  

    Let S={p1 , p2 , … , pk}. If T ⊆ S and aT is the product of the 

primes in T, then aT | n. Any divisor of n must be of the form aT 

for some subset T of S  (let aф=1) .  

    If V and T are subsets of S, V ⊆T if and only if aV | aT 

      aV ∩ T = aV ∧ aT = GCD(aV,aT)    &  

      aV U T= aV ∨ aT  = LCM(aV,aT)  

   Thus, the function f: P(S) Dn given by f(T)=aT is a isomorphism 

form P(S) to Dn. Since P(S) is a Boolean algebra, so is Dn.  

 Finite Boolean Algebras 

42 



• Example 

   Let S={2,3,5}, show the Hasse diagrams of (P(S), ⊆) 

and D30 as follows.   
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• Example 5 

    Since 210=2×3×5×7, 66=2×3×11 and 646=2×17×19, then D210,  
D66 D646 are all Boolean algebras.    

 

• Example 9 

    Since 40=23×5, and 75=3×52, neither D40 and D75 are Boolean 
algebras.      

    Note: If n is positive integer and p2 | n, where p is a prime number, then 
Dn is not a Boolean algebra.    
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• Theorem 3 (Substitution rule for Boolean algebra)   
    Any formula involving U or ∩ that holds for arbitrary subsets of a 

set S will continue to hold for arbitrary elements of  a Boolean 
algebra L if is ∧ substituted for ∩ and ∨ for  U.  

 

Example 6  If L is any Boolean algebra and x,y and z are in L, then the 
following three properties hold.  

   1. (x’)’=x        2. (x∧y)’ = x’ ∨ y’    3. (x∨y)’ = x’ ∧ y’   

    This is true by theorem 3,  

   1.  (A)=A         2. (A∩B) =A U B        3. (A U B ) = A ∩ B 

    hold for arbitrary subsets A and B of a set S.  

   More properties can be found in p. 247, 1 ~12  
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• Example 7 

   Show the lattice whose Hasse diagram shown below is 

not a Boolean algebra.    
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    Denote the Boolean algebra B1 simply as B. Thus B 

contains only the  two elements 0 and 1. It is a fact that any 

of the Boolean algebras Bn can be described in terms of B. 

The following theorem gives this description.  

 

•  Theorem 4 

    For any n>=1, Bn is the product B×B×…×B of B, n 

factors, where B×B×…×B is given the product partial 

order.     
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