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DIGITAL  LOGIC  CIRCUITS 
Introduction 



Logic Gates 

LOGIC  GATES 
Digital Computers 
 
       - Imply that the computer deals with digital information, i.e., it deals  
 with the information that is represented by binary digits 
       - Why BINARY ? instead of Decimal or  other number system ? 
 
         * Consider electronic signal 

signal 
range 

0  1  2  3  4  5  6  7  8  9 

0   0  1  2  3  4  5  6  7  8  9 
1   1  2  3  4  5  6  7  8  9 10 
2   2  3  4  5  6  7  8  9 1011 
3   3  4  5  6  7  8  9 101112 
4   4  5  6  7  8  9 10111213 
5   5  6  7  8  9 1011121314 
6   6  7  8  9 101112131415  
7   7  8  9 10111213141516 
8   8  9 1011121314151617 
9   9 101112131415161718 

0 

1 7 
6 
5 
4 
3 
2 
1 
0 

binary         octal 

0   1 
0   1 
1   10 

0 
1 

* Consider the calculation cost - Add 



BASIC  LOGIC  BLOCK  - GATE - 

Types of Basic Logic Blocks 
 
         - Combinational Logic Block 
             Logic Blocks whose output logic value 
  depends only on the input logic values 
 
         - Sequential Logic Block 
             Logic Blocks whose output logic value 
             depends on the input values and the 
             state (stored information) of the blocks 
 
Functions of Gates can be described by 
 
         - Truth Table 
         - Boolean Function 
         - Karnaugh Map 

Logic Gates 

Gate . 
. 

    . 

Binary 
Digital 
Input 
Signal 

Binary 
Digital 
Output 
Signal 



COMBINATIONAL  GATES 

A                                     
                                   X           X = (A + B)’ 
B 

Name          Symbol           Function    Truth Table 

Logic Gates 

AND  
A                                              X = A • B 
                                   X                 or 
B                                              X = AB 

 0     0     0 
 0     1     0 
 1     0     0 
 1     1     1  
 
  
 0     0     0 
 0     1     1 
 1     0     1 
 1     1     1 

OR  
A                                              
                                    X          X = A + B 
B                                   

I A                                 X          X = A’ 0        1 
1        0 

Buffer     A                                 X          X = A  
A       X 
0        0 
1        1 

NAND 
A                                     
                                    X           X = (AB)’ 
B 

0     0      1 
0     1      1 
1     0      1 
1     1      0   

NOR 
0     0      1 
0     1      0 
1     0      0 
1     1      0   

   XOR 
Exclusive OR 

A                                             X = A  B 
                                   X                or 
B                                          X = A’B + AB’ 

0     0      0 
0     1      1 
1     0      1 
1     1      0   

A                                             X = (A  B)’ 
                                   X                or 
B                                          X = A’B’+ AB 

0     0      1 
0     1      0 
1     0      0 
1     1      1   

XNOR 
 Exclusive NOR 

or Equivalence 

A     B    X 

A     B    X 

A        X 

A     B     X 

A     B     X 

A     B     X 

A     B     X 



BOOLEAN  ALGEBRA 
Boolean Algebra 
 
        * Algebra with Binary(Boolean) Variable and Logic Operations 
        * Boolean Algebra is useful in Analysis and Synthesis of  
 Digital Logic Circuits 
 
              - Input and Output signals can be  
                 represented by Boolean Variables, and 
              - Function of the Digital Logic Circuits can be represented by  
  Logic Operations, i.e., Boolean Function(s) 
              - From a Boolean function, a logic diagram 
                 can be constructed using AND, OR, and I  
 
Truth Table 
 
       * The most elementary specification of the function of a Digital Logic  
 Circuit is the Truth Table 
 
             - Table that describes the Output Values for all the combinations  
  of the Input Values, called MINTERMS 
             - n input variables → 2n minterms  

Boolean Algebra 



LOGIC  CIRCUIT  DESIGN 
x    y    z       F 
0    0    0       0 
0    0    1       1 
0    1    0       0 
0    1    1       0 
1    0    0       1 
1    0    1       1 
1    1    0       1 
1    1    1       1 

F = x + y’z 

Boolean Algebra  

x 
 y 

z 

F 

Truth 
Table 

Boolean 
Function 

Logic 
Diagram 



BASIC  IDENTITIES  OF  BOOLEAN  ALGEBRA 
[1]   x + 0 = x  
[3]   x + 1 = 1 
[5]   x + x = x 
[7]   x + x’ = 1 
[9]   x + y = y + x 
[11] x + (y + z) = (x + y) + z 
[13] x(y + z) = xy +xz 
[15] (x + y)’ = x’y’ 
[17] (x’)’ = x                     

[2]   x • 0 = 0 
[4]   x • 1 = x 
[6]   x • x = x 
[8]   x • X’ = 0 
[10] xy = yx 
[12] x(yz) = (xy)z 
[14] x + yz = (x + y)(x + z) 
[16] (xy)’ = x’ + y’ 

          [15] and [16] : De Morgan’s Theorem  
Usefulness of this Table 
        - Simplification of the Boolean function 
        - Derivation of equivalent Boolean functions 
          to obtain logic diagrams utilizing different logic gates 
          -- Ordinarily ANDs, ORs, and Inverters  
          -- But a certain different form of Boolean function may be convenient  
   to obtain circuits with NANDs or NORs 
   → Applications of De Morgans Theorem 
 
                    x’y’ = (x + y)’          x’+ y’= (xy)’ 
               I, AND → NOR             I, OR → NAND 

Boolean Algebra  



EQUIVALENT  CIRCUITS 

F = ABC + ABC’ + A’C       .......…… (1)           
   = AB(C + C’) + A’C          [13] ..…. (2)    
   = AB • 1 + A’C                  [7]   
   = AB + A’C                       [4]  ...…. (3) 
 

(1) 
 
 
 
 
(2) 
 
 
 
 
 
(3) 

Many different logic diagrams are possible for a given Function 

Boolean Algebra  

A 
B 
C 

F 

A 
B 
 
C F 

F 

A 

B 

 

C 



COMPLEMENT  OF  FUNCTIONS 
A Boolean function of a digital logic circuit is represented by only using 
 logical variables and AND, OR, and Invert operators. 
 
→ Complement of a Boolean function 
          
        - Replace all the variables and subexpressions in the parentheses  
 appearing in the function expression with their respective complements 
    
                  A,B,...,Z,a,b,...,z       A’,B’,...,Z’,a’,b’,...,z’ 
                                  (p + q)    (p + q)’ 
          
        - Replace all the operators with their respective 
          complementary operators 
 
                                      AND    OR 
                                        OR    AND 
 
        - Basically, extensive applications of the De Morgan’s theorem 
 
            (x1 + x2 + ... + xn )’  x1’x2’... xn’ 
 
                        (x1x2 ... xn)'  x1' + x2' +...+ xn'    

Boolean Algebra  



SIMPLIFICATION 

Truth 
Table 

Boolean 
Function 

Unique Many different expressions exist 

Simplification from Boolean function 
        
        - Finding an equivalent expression that is least expensive to implement 
        - For a simple function, it is possible to obtain 
           a simple expression for low cost implementation 
        - But, with complex functions, it is a very difficult task 
 
Karnaugh Map (K-map) is a simple procedure for 
 simplifying Boolean expressions. 

Truth 
Table 

Boolean 
function 

Karnaugh 
Map 

Simplified 
Boolean 
Function 

Map Simplification 



KARNAUGH  MAP 
Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products  
form of Boolean Function, or Truth Table) is 
        - Rectangle divided into 2n cells 
        - Each cell is associated with a Minterm 
        - An output(function) value for each input value associated with a  
 mintern is written in the cell representing the minterm 
  → 1-cell, 0-cell 
 
Each Minterm is identified by a decimal number whose binary representation  
is identical to the binary interpretation of the input values of the minterm. 

x     F 
0     1 
1     0 

x 
0 
1 

0 

1 

x 
0 
1 

0 

1 

Karnaugh Map  
value 
of F 

Identification 
of the cell 

x   y   F 
0   0   0 
0   1   1 
1   0   1 
1   1   1 

y 
x 0   1 
0 

1 

0     1 

2     3 

y 
x 0   1 
0 

1 
0   1 
1   0 

F(x) = 

F(x,y) =  (1,2) 

1-cell 

 (1) 

Map Simplification 



KARNAUGH  MAP 
0   0   0   0 
0   0   1   1 
0   1   0   1 
0   1   1   0 
1   0   0   1 
1   0   1   0 
1   1   0   0 
1   1   1   0 

0   1   0   1 

1   0   0   0 

0   0   0    0   0 
0   0   0    1   1 
0   0   1    0   0 
0   0   1    1   1 
0   1   0    0   0 
0   1   0    1   0 
0   1   1    0   1 
0   1   1    1   0 
1   0   0    0   1 
1   0   0    1   1 
1   0   1    0   0 
1   0   1    1   1 
1   1   0    0   0 
1   1   0    1   0 
1   1   1    0   1 
1   1   1    1   0    

x 
yz 

00 01 11 10 
0 0      1     3      2 

 
4     5      7      6 

x 
yz 

00 01 11 10 
0 

1 

F(x,y,z) =  (1,2,4) 

 1 x 

y 

z 

uv 
wx 

00  01  11  10 
00 
01 

11 

10 

0       1       3      2 

4       5       7      6 

12     13     15     14 

8       9      11     10 

uv 
wx 

00   01   11  10 
00 

01 

11    0     0    0     1 

10    1     1    1     0 

0     1    1     0 

0     0    0     1 

F(u,v,w,x) =  (1,3,6,8,9,11,14) 

u 

v 

w 

x 

Map Simplification 

x   y   z   F 

u   v   w   x   F 



MAP  SIMPLIFICATION  - 2  ADJACENT  
CELLS - 

Adjacent cells 
 
       - binary identifications are different in one bit 
         → minterms associated with the adjacent 
              cells have one variable complemented each other 
 
           Cells (1,0) and (1,1) are adjacent 
           Minterms for (1,0) and (1,1) are  
                  x • y’ --> x=1, y=0 
                  x • y  --> x=1, y=1  
  
          F = xy’+ xy can be reduced to F = x    
                    From the map            

Rule:  xy’ +xy = x(y+y’) = x 

x 
y 

0     1 

0 
 1 1    1 

0    0 

  (2,3) 
  

F(x,y) = 

2 adjacent cells xy’ and xy 

→ merge them to a larger cell x 

= xy’+ xy 
= x 

Map Simplification 



MAP  SIMPLIFICATION - MORE  THAN  2  
CELLS - 

u’v’w’x’ + u’v’w’x + u’v’wx + u’v’wx’ 
= u’v’w’(x’+x) + u’v’w(x+x’) 
= u’v’w’ + u’v’w  
= u’v’(w’+w)  
= u’v’ 

uv 
wx 

1   1   1  1 

1   1 

1   1 

uv 
wx 

1   1  1  1 
1           1 

1  1 
u 

v 

w 

x 

u 

v 

w 

x 

u’v’ 

uw 

u’x’ 

v’x 

1   1 

1   1 

vw’ 

u’v’w’x’+u’v’w’x+u’vw’x’+u’vw’x+uvw’x’+uvw’x+uv’w’x’+uv’w’x 
= u’v’w’(x’+x) + u’vw’(x’+x) + uvw’(x’+x) + uv’w’(x’+x) 
= u’(v’+v)w’ + u(v’+v)w’ 
= (u’+u)w’ = w’ 

Map Simplification 

u 

v 

w 

x 

uv 
wx 

1   1 

1   1 

1   1 

1   1 
u 

v 

uv 

1   1 
1   1 

1   1 
1   1 

1   1   1   1 

x 

w’ 

u 

V’ w 



MAP  SIMPLIFICATION 

     (0,1), (0,2), (0,4), (0,8) 

Adjacent Cells of 1 
Adjacent Cells of 0 
     (1,0), (1,3), (1,5), (1,9) 

... 

... 
Adjacent Cells of 15 
     (15,7), (15,11), (15,13), (15,14) 

uv 
wx 

00  01  11   10 

00 

01   0    0    0     0 

11   0    1    1     0 

10   0    1    0     0 

1    1    0     1 

F(u,v,w,x) =  (0,1,2,9,13,15) 

u 

v 

w 

x 

Merge (0,1) and (0,2) 
     --> u’v’w’ + u’v’x’ 

Merge (1,9) 
     --> v’w’x 

Merge (9,13) 
     --> uw’x 

Merge (13,15) 
     --> uvx 

      F = u’v’w’ + u’v’x’ + v’w’x + uw’x + uvx 
But (9,13) is covered by (1,9) and (13,15) 
      F = u’v’w’ + u’v’x’ + v’w’x + uvx 

Map Simplification 

0 0 0 0 

1 1 0 1 

0 1 1 0 

0 1 0 0 



IMPLEMENTATION  OF  K-MAPS   - Sum-of-Products Form - 

Logic function represented by a Karnaugh map 
can be implemented in the form of I-AND-OR 
 
A cell or a collection of the adjacent 1-cells can 
be realized by an AND gate, with some inversion of the input variables. 

x 

y 

z 

x’ 
y’ 
z’ 

x’ 
y 
z’ 

x 
y 
z’ 

1 1 

1 

F(x,y,z) =  (0,2,6) 

1            1 

1 

x’ 

z’ 
y 
z’ 

Map Simplification 

 

x’ 
y 

x 
y 
z’ 

x’ 
y’ 
z’ 

F 

x 

z 

y 

z 

F 

I   AND     OR 

z’ 

 



IMPLEMENTATION  OF  K-MAPS   - Product-of-Sums Form - 

Logic function represented by a Karnaugh map 
can be implemented in the form of I-OR-AND 
 
If we implement a Karnaugh map using 0-cells, 
the complement of F, i.e., F’, can be obtained. 
Thus, by complementing F’ using DeMorgan’s 
theorem F can be obtained 
 
F(x,y,z) = (0,2,6) 

x 

y 

z x 

y’ 

z 
F’ = xy’ + z 
 
F = (xy’)z’ 
   = (x’ + y)z’ 
 

x 
y 

z 
F 

I      OR                  AND 

Map Simplification 

0 0 1 1 

0 0 0 1 



IMPLEMENTATION  OF  K-MAPS 
- Don’t-Care  Conditions -  

In some logic circuits, the output responses 
for some input conditions are don’t care  
whether they are 1 or 0. 
 
In K-maps, don’t-care conditions are represented 
by d’s in the corresponding cells. 
 
Don’t-care conditions are useful in minimizing 
the logic functions using K-map. 
    - Can be considered either 1 or 0 
    - Thus increases the chances of merging cells into the larger cells 
      --> Reduce the number of variables in the product terms 

x 

y 

z 

1   d   d    1 

d         1 

x’ 

yz’ 

x 

y 
z 

F 

Map Simplification 



COMBINATIONAL  LOGIC  CIRCUITS 
Half Adder 

0   0   0       0    0 
0   0   1       0    1 
0   1   0       0    1 
0   1   1       1    0 
1   0   0       0    1 
1   0   1       1    0 
1   1   0       1    0 
1   1   1       1    1 

cn = xy + xcn-1+ ycn-1 
    = xy + (x  y)cn-1  
s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1 
   = x  y  cn-1 = (x  y)  cn-1 

x 

y 

cn-1 

x 

y 

cn-1 

cn s 

Combinational Logic Circuits 

x 

y 

x 

y 

c = xy          s = xy’ + x’y 
                      = x    y 

x 
y c 

 
s 

x 
y 

cn-1 

S 
 
 
cn 

Full Adder 

0   0   0     0 
0   1   0     1 
1   0   0     1 
1   1   1     0 

x   y    c     s 
0 

1 
0 

0 
0 

0 
1 

1 

x   y   cn-1     cn    s 
0 

0 

1 

0 

0 

1 

1 

1 

0 

1 

0 

1 

1 

0 

1 

0 



COMBINATIONAL  LOGIC  CIRCUITS 

Other Combinational Circuits 
 
        Multiplexer 
        Encoder 
        Decoder 
        Parity Checker 
        Parity Generator 
        etc 

Combinational Logic Circuits 



MULTIPLEXER 
Combinational Logic Circuits 

4-to-1 Multiplexer 

I0 
 
 I1 

I2 

I3 

S0 

S1 

Y 

0       0          I0 
0       1          I1 
1       0          I2 
1       1          I3 

Select      Output 
S1     S0        Y 



ENCODER/DECODER 
Octal-to-Binary Encoder 

Combinational Logic Circuits 

D1 

D2 

D3 

D5 

D6 

D7 

D4 

A0 

A1 

A2 

A0 

A1 

E 

D0 

D1 

D2 

D3 

0    0    0       0    1    1    1 
0    0    1       1    0    1    1 
0    1    0       1    1    0    1 
0    1    1       1    1    1    0 
1    d    d       1    1    1    1 

E   A1   A0    D0  D1  D2  D3 

2-to-4 Decoder 



FLIP  FLOPS 
Characteristics 
       - 2 stable states 
       - Memory capability 
       - Operation is specified by a Characteristic Table 

0-state                       1-state 

In order to be used in the computer circuits, state of the flip flop should  
have input terminals and output terminals so that it can be set to a certain 
state, and its state can be read externally. 

R 

S 

Q 

Q’ 

S  R     Q(t+1) 
0   0     Q(t) 
0   1       0 
1   0       1 
1   1    indeterminate 
           (forbidden) 

Flip Flops 

1                  0              0                  1 

0                  1             1                  0 



CLOCKED  FLIP  FLOPS 
In a large digital system with many flip flops, operations of individual flip flops  
 are required to be synchronized to a clock pulse. Otherwise,  
 the operations of the system may be unpredictable. 

R 

S 

Q 

Q’ 

c 
 (clock) 

Flip Flops 

S         Q 

c 

R         Q’ 

S         Q 

c 

R         Q’ 

operates when           operates when 
clock is high               clock is low 

Clock pulse allows the flip flop to change state only  
when there is a clock pulse appearing at the c terminal. 
 
We call above flip flop  a Clocked RS Latch, and symbolically as 



RS-LATCH  WITH  PRESET  AND  CLEAR  
INPUTS 

Flip Flops 

R 

S 

Q 

Q’ 

c 
 

(clock) 

P(preset) 

clr(clear) 

S        Q 

c 

R        Q’ 

S        Q 

c 

R        Q’ 

P 

clr 

P 

clr 

S        Q 

c 

R        Q’ 

P 

clr 

S        Q 

c 

R        Q’ 

P 

clr 



D-LATCH 
D-Latch 
     Forbidden input values are forced not to occur 
     by using an inverter between the inputs 

Flip Flops 

Q 

Q’ 
D(data) 

E 
(enable) 

      D       Q 

E    Q’ 

E     Q’ 

      D       Q 

D      Q(t+1) 
0          0 
1          1 



EDGE-TRIGGERED  FLIP  FLOPS 
Characteristics 
      - State transition occurs at the rising edge or 
        falling edge of the clock pulse 
 
 
Latches 
 
 
 
 
 
 
Edge-triggered Flip Flops (positive) 

    respond to the input only during these periods 

respond to the input only at this time 

Flip Flops 



POSITIVE  EDGE-TRIGGERED   

T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make  
 T input.  Toggles whenever there is a pulse on T input. 

Flip Flops 

D-Flip Flop 

JK-Flip Flop 

S1       Q1 

  C1 
 
R1      Q1' 

S2       Q2 

  C2 
 
R2      Q2' 

D 

C 

Q 

Q' 

D 

C 

Q 

Q' 

SR1                            SR2 

SR1 active 

SR2 active 

D-FF 

S1       Q1 

  C1 
 
R1      Q1' 

S2       Q2 

  C2 
 
R2      Q2' 

SR1                            SR2 
J 

K 

C 

Q 

Q' 

J      Q 

C 

K     Q' 

SR1 active 

SR2 inactive SR2 inactive 

SR1 inactive 



CLOCK  PERIOD 
Clock period determines how fast the digital circuit operates. 
How can we determine the clock period ? 
 
     Usually, digital circuits are sequential circuits which has some flip flops  

Combinational 
Logic 
Circuit 

FF FF 

Combinational logic Delay 
FF Setup Time 
FF Hold Time FF Delay 

td 
ts,th 

clock period T = td + ts + th 

Flip Flops 

. 

. 

. 

... FF 

C 

Combinational 
Logic  
Circuit 

FF FF 

. 

. 

. 



DESIGN  EXAMPLE 
Design Procedure: 
    Specification  State Diagram  State Table   
    Excitation Table  Karnaugh Map  Circuit Diagram 

Example:  2-bit Counter -> 2 FF's 

current                 next   
  state       input   state        FF inputs 
  A   B           x       A   B    Ja  Ka  Jb  Kb 
  0   0            0       0    0      0    d    0    d 
  0   0            1       0    1      0    d    1    d 
  0   1            0       0    1      0    d    d    0 
  0   1            1       1    0      1    d    d    1 
  1   0            0       1    0      d    0    0    d 
  1   0            1       1    1      d    0    1    d 
  1   1            0       1    1      d    0    d    0 
  1   1            1       0    0      d    1    d    1 

A 

B 

x 

Ja 

1 

d   d 
d   d 

x 

A 

B 

Ka 

d   d 
d   d 

1 

Kb 

A 

B 

x 1 

1 

d 

d 

d 
d 

Ja = Bx      Ka = Bx    Jb = x         Kb = x 
clock 

00 

01 

10 

11 

x=0 

x=1 

x=0 

x=1 

x=0 

x=1 

x=0 

x=1 

Sequential Circuits 

J     Q 

 C 

K    Q'   

J     Q 

 C 

K    Q'   

x A 
A 

B 

x 1   d 
1   d 

d 

d 
Jb 

B 



SEQUENTIAL  CIRCUITS  -   Registers 

Bidirectional Shift Register with Parallel Load 

Sequential Circuits 

D 

Q 
C D 

Q 
C D 

Q 
C D 

Q 
C 

A0 A1 A2 A3 

Clock 
I0 I1 I2 I3 

Shift Registers 

D    Q 
  C 

D    Q 
  C 

D    Q 
  C 

D    Q 
  C 

Serial 
Input 
 
Clock 

Serial 
Output 

D 

Q 
C D 

Q 
C D 

Q 
C D 

Q 
C 

A0 A1 A2 
A3 

4 x 1 
MUX 

4 x 1 
MUX 

4 x 1 
MUX 

4 x 1 
MUX 

Clock S0S1 
SeriaI 
Input 

I0 I1 I2 
I3 

Serial 
Input 



SEQUENTIUAL  CIRCUITS  -   Counters 
Sequential Circuits 

J          K 

Q 

J          K 

Q 

J          K 

Q 

J          K 

Q 

Clock 
 
 
Counter 
Enable 

A0 A1 
A2 A3 

Output 
Carry 



MEMORY  COMPONENTS 

Logical Organization 

Random Access Memory 
 
         - Each word has a unique address 
         - Access to a word requires the same time  
           independent of the location of the word 
         - Organization 

Memory Components 

words 
(byte, or n bytes) 

2k Words 
(n bits/word) 

n data input lines 

n data output lines 

k address lines 
 

Read 
 

Write 

0 

N - 1 



READ  ONLY  MEMORY(ROM) 
Characteristics 
       - Perform read operation only, write operation is not possible 
       - Information stored in a ROM is made permanent 
         during production, and cannot be changed 
       - Organization  

Information on the data output line depends only  
on the information on the address input lines. 
 --> Combinational Logic Circuit  

X0=A’B’ + B’C 
X1=A’B’C + A’BC’ 
X2=BC + AB’C’ 
X3=A’BC’ + AB’ 
X4=AB 
 
X0=A’B’C’ + A’B’C + AB’C 
X1=A’B’C + A’BC’ 
X2=A’BC + AB’C’ + ABC 
X3=A’BC’ + AB’C’ + AB’C 
X4=ABC’ + ABC 

Canonical minterms 

1   0   0   0   0 
1   1   0   0   0 
0   1   0   1   0 
0   0   1   0   0 
0   0   1   1   0 
1   0   0   1   0 
0   0   0   0   1 
0   0   1   0   1 

        address        Output         
                  ABC     X0  X1   X2   X3   X4 

000 
001 
010 
011 
100 
101 
110 
111 

Memory Components 

m x n ROM 
(m=2k) 

k address input lines 

n data output lines 



TYPES OF ROM 
ROM 
 - Store information (function) during production 
 - Mask is used in the production process 
 - Unalterable 
 - Low cost for large quantity production  --> used in the final products 
 
PROM (Programmable ROM) 
 - Store info electrically using PROM programmer at the user’s site 
 - Unalterable 
 - Higher cost than ROM -> used in the system development phase 
  -> Can be used in small quantity system 
 
EPROM (Erasable PROM) 
 - Store info electrically using PROM programmer at the user’s site 
 - Stored info is erasable (alterable) using UV light (electrically in  
  some devices) and rewriteable 
 - Higher cost than PROM but reusable --> used in the system  
  development phase. Not used in the system production  
  due to eras ability 

Memory Components 



INTEGRATED CIRCUITS 
Classification by the Circuit Density 
 
 SSI  -    several (less than 10) independent gates 
 MSI  -     10 to 200 gates; Perform elementary digital functions; 
   Decoder, adder, register, parity checker, etc 
 LSI  -    200 to few thousand gates; Digital subsystem 
   Processor, memory, etc 
 VLSI -    Thousands of gates; Digital system 
   Microprocessor, memory module 
 
Classification by Technology 
 
 TTL  -     Transistor-Transistor Logic 
     Bipolar transistors 
     NAND 
 ECL -    Emitter-coupled Logic 
     Bipolar transistor 
     NOR 
 MOS -     Metal-Oxide Semiconductor 
     Unipolar transistor 
     High density 
 CMOS -  Complementary MOS 
     Low power consumption 

Memory Components 


