

Logic Gates

Boolean Algebra

Map Specification

Combinational Circuits

Flip-Flops

Sequential Circuits

Memory Components

Integrated Circuits

DIGITAL LOGIC CIRCUITS
Introduction

Logic Gates

LOGIC GATES
Digital Computers

 - Imply that the computer deals with digital information, i.e., it deals
 with the information that is represented by binary digits
 - Why BINARY ? instead of Decimal or other number system ?

 * Consider electronic signal

signal
range

0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 1011
3 3 4 5 6 7 8 9 101112
4 4 5 6 7 8 9 10111213
5 5 6 7 8 9 1011121314
6 6 7 8 9 101112131415
7 7 8 9 10111213141516
8 8 9 1011121314151617
9 9 101112131415161718

0

1 7
6
5
4
3
2
1
0

binary octal

0 1
0 1
1 10

0
1

* Consider the calculation cost - Add

BASIC LOGIC BLOCK - GATE -

Types of Basic Logic Blocks

 - Combinational Logic Block
 Logic Blocks whose output logic value
 depends only on the input logic values

 - Sequential Logic Block
 Logic Blocks whose output logic value
 depends on the input values and the
 state (stored information) of the blocks

Functions of Gates can be described by

 - Truth Table
 - Boolean Function
 - Karnaugh Map

Logic Gates

Gate .
.

 .

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal

COMBINATIONAL GATES

A
 X X = (A + B)’
B

Name Symbol Function Truth Table

Logic Gates

AND
A X = A • B
 X or
B X = AB

 0 0 0
 0 1 0
 1 0 0
 1 1 1

 0 0 0
 0 1 1
 1 0 1
 1 1 1

OR
A
 X X = A + B
B

I A X X = A’ 0 1
1 0

Buffer A X X = A
A X
0 0
1 1

NAND
A
 X X = (AB)’
B

0 0 1
0 1 1
1 0 1
1 1 0

NOR
0 0 1
0 1 0
1 0 0
1 1 0

 XOR
Exclusive OR

A X = A  B
 X or
B X = A’B + AB’

0 0 0
0 1 1
1 0 1
1 1 0

A X = (A  B)’
 X or
B X = A’B’+ AB

0 0 1
0 1 0
1 0 0
1 1 1

XNOR
 Exclusive NOR

or Equivalence

A B X

A B X

A X

A B X

A B X

A B X

A B X

BOOLEAN ALGEBRA
Boolean Algebra

 * Algebra with Binary(Boolean) Variable and Logic Operations
 * Boolean Algebra is useful in Analysis and Synthesis of
 Digital Logic Circuits

 - Input and Output signals can be
 represented by Boolean Variables, and
 - Function of the Digital Logic Circuits can be represented by
 Logic Operations, i.e., Boolean Function(s)
 - From a Boolean function, a logic diagram
 can be constructed using AND, OR, and I

Truth Table

 * The most elementary specification of the function of a Digital Logic
 Circuit is the Truth Table

 - Table that describes the Output Values for all the combinations
 of the Input Values, called MINTERMS
 - n input variables → 2n minterms

Boolean Algebra

LOGIC CIRCUIT DESIGN
x y z F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

F = x + y’z

Boolean Algebra

x
 y

z

F

Truth
Table

Boolean
Function

Logic
Diagram

BASIC IDENTITIES OF BOOLEAN ALGEBRA
[1] x + 0 = x
[3] x + 1 = 1
[5] x + x = x
[7] x + x’ = 1
[9] x + y = y + x
[11] x + (y + z) = (x + y) + z
[13] x(y + z) = xy +xz
[15] (x + y)’ = x’y’
[17] (x’)’ = x

[2] x • 0 = 0
[4] x • 1 = x
[6] x • x = x
[8] x • X’ = 0
[10] xy = yx
[12] x(yz) = (xy)z
[14] x + yz = (x + y)(x + z)
[16] (xy)’ = x’ + y’

 [15] and [16] : De Morgan’s Theorem
Usefulness of this Table
 - Simplification of the Boolean function
 - Derivation of equivalent Boolean functions
 to obtain logic diagrams utilizing different logic gates
 -- Ordinarily ANDs, ORs, and Inverters
 -- But a certain different form of Boolean function may be convenient
 to obtain circuits with NANDs or NORs
 → Applications of De Morgans Theorem

 x’y’ = (x + y)’ x’+ y’= (xy)’
 I, AND → NOR I, OR → NAND

Boolean Algebra

EQUIVALENT CIRCUITS

F = ABC + ABC’ + A’C …… (1)
 = AB(C + C’) + A’C [13] ..…. (2)
 = AB • 1 + A’C [7]
 = AB + A’C [4] ...…. (3)

(1)

(2)

(3)

Many different logic diagrams are possible for a given Function

Boolean Algebra

A
B
C

F

A
B

C F

F

A

B

C

COMPLEMENT OF FUNCTIONS
A Boolean function of a digital logic circuit is represented by only using
 logical variables and AND, OR, and Invert operators.

→ Complement of a Boolean function

 - Replace all the variables and subexpressions in the parentheses
 appearing in the function expression with their respective complements

 A,B,...,Z,a,b,...,z  A’,B’,...,Z’,a’,b’,...,z’
 (p + q)  (p + q)’

 - Replace all the operators with their respective
 complementary operators

 AND  OR
 OR  AND

 - Basically, extensive applications of the De Morgan’s theorem

 (x1 + x2 + ... + xn)’  x1’x2’... xn’

 (x1x2 ... xn)'  x1' + x2' +...+ xn'

Boolean Algebra

SIMPLIFICATION

Truth
Table

Boolean
Function

Unique Many different expressions exist

Simplification from Boolean function

 - Finding an equivalent expression that is least expensive to implement
 - For a simple function, it is possible to obtain
 a simple expression for low cost implementation
 - But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for
 simplifying Boolean expressions.

Truth
Table

Boolean
function

Karnaugh
Map

Simplified
Boolean
Function

Map Simplification

KARNAUGH MAP
Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products
form of Boolean Function, or Truth Table) is
 - Rectangle divided into 2n cells
 - Each cell is associated with a Minterm
 - An output(function) value for each input value associated with a
 mintern is written in the cell representing the minterm
 → 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation
is identical to the binary interpretation of the input values of the minterm.

x F
0 1
1 0

x
0
1

0

1

x
0
1

0

1

Karnaugh Map
value
of F

Identification
of the cell

x y F
0 0 0
0 1 1
1 0 1
1 1 1

y
x 0 1
0

1

0 1

2 3

y
x 0 1
0

1
0 1
1 0

F(x) =

F(x,y) =  (1,2)

1-cell

 (1)

Map Simplification

KARNAUGH MAP
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

0 1 0 1

1 0 0 0

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

x
yz

00 01 11 10
0 0 1 3 2

4 5 7 6

x
yz

00 01 11 10
0

1

F(x,y,z) =  (1,2,4)

 1 x

y

z

uv
wx

00 01 11 10
00
01

11

10

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

uv
wx

00 01 11 10
00

01

11 0 0 0 1

10 1 1 1 0

0 1 1 0

0 0 0 1

F(u,v,w,x) =  (1,3,6,8,9,11,14)

u

v

w

x

Map Simplification

x y z F

u v w x F

MAP SIMPLIFICATION - 2 ADJACENT
CELLS -

Adjacent cells

 - binary identifications are different in one bit
 → minterms associated with the adjacent
 cells have one variable complemented each other

 Cells (1,0) and (1,1) are adjacent
 Minterms for (1,0) and (1,1) are
 x • y’ --> x=1, y=0
 x • y --> x=1, y=1

 F = xy’+ xy can be reduced to F = x
 From the map

Rule: xy’ +xy = x(y+y’) = x

x
y

0 1

0
 1 1 1

0 0

 (2,3)

F(x,y) =

2 adjacent cells xy’ and xy

→ merge them to a larger cell x

= xy’+ xy
= x

Map Simplification

MAP SIMPLIFICATION - MORE THAN 2
CELLS -

u’v’w’x’ + u’v’w’x + u’v’wx + u’v’wx’
= u’v’w’(x’+x) + u’v’w(x+x’)
= u’v’w’ + u’v’w
= u’v’(w’+w)
= u’v’

uv
wx

1 1 1 1

1 1

1 1

uv
wx

1 1 1 1
1 1

1 1
u

v

w

x

u

v

w

x

u’v’

uw

u’x’

v’x

1 1

1 1

vw’

u’v’w’x’+u’v’w’x+u’vw’x’+u’vw’x+uvw’x’+uvw’x+uv’w’x’+uv’w’x
= u’v’w’(x’+x) + u’vw’(x’+x) + uvw’(x’+x) + uv’w’(x’+x)
= u’(v’+v)w’ + u(v’+v)w’
= (u’+u)w’ = w’

Map Simplification

u

v

w

x

uv
wx

1 1

1 1

1 1

1 1
u

v

uv

1 1
1 1

1 1
1 1

1 1 1 1

x

w’

u

V’ w

MAP SIMPLIFICATION

 (0,1), (0,2), (0,4), (0,8)

Adjacent Cells of 1
Adjacent Cells of 0
 (1,0), (1,3), (1,5), (1,9)

...

...
Adjacent Cells of 15
 (15,7), (15,11), (15,13), (15,14)

uv
wx

00 01 11 10

00

01 0 0 0 0

11 0 1 1 0

10 0 1 0 0

1 1 0 1

F(u,v,w,x) =  (0,1,2,9,13,15)

u

v

w

x

Merge (0,1) and (0,2)
 --> u’v’w’ + u’v’x’

Merge (1,9)
 --> v’w’x

Merge (9,13)
 --> uw’x

Merge (13,15)
 --> uvx

 F = u’v’w’ + u’v’x’ + v’w’x + uw’x + uvx
But (9,13) is covered by (1,9) and (13,15)
 F = u’v’w’ + u’v’x’ + v’w’x + uvx

Map Simplification

0 0 0 0

1 1 0 1

0 1 1 0

0 1 0 0

IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map
can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells can
be realized by an AND gate, with some inversion of the input variables.

x

y

z

x’
y’
z’

x’
y
z’

x
y
z’

1 1

1

F(x,y,z) =  (0,2,6)

1 1

1

x’

z’
y
z’

Map Simplification



x’
y

x
y
z’

x’
y’
z’

F

x

z

y

z

F

I AND OR

z’



IMPLEMENTATION OF K-MAPS - Product-of-Sums Form -

Logic function represented by a Karnaugh map
can be implemented in the form of I-OR-AND

If we implement a Karnaugh map using 0-cells,
the complement of F, i.e., F’, can be obtained.
Thus, by complementing F’ using DeMorgan’s
theorem F can be obtained

F(x,y,z) = (0,2,6)

x

y

z x

y’

z
F’ = xy’ + z

F = (xy’)z’
 = (x’ + y)z’

x
y

z
F

I OR AND

Map Simplification

0 0 1 1

0 0 0 1

IMPLEMENTATION OF K-MAPS
- Don’t-Care Conditions -

In some logic circuits, the output responses
for some input conditions are don’t care
whether they are 1 or 0.

In K-maps, don’t-care conditions are represented
by d’s in the corresponding cells.

Don’t-care conditions are useful in minimizing
the logic functions using K-map.
 - Can be considered either 1 or 0
 - Thus increases the chances of merging cells into the larger cells
 --> Reduce the number of variables in the product terms

x

y

z

1 d d 1

d 1

x’

yz’

x

y
z

F

Map Simplification

COMBINATIONAL LOGIC CIRCUITS
Half Adder

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

cn = xy + xcn-1+ ycn-1
 = xy + (x  y)cn-1
s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1
 = x  y  cn-1 = (x  y)  cn-1

x

y

cn-1

x

y

cn-1

cn s

Combinational Logic Circuits

x

y

x

y

c = xy s = xy’ + x’y
 = x  y

x
y c

s

x
y

cn-1

S

cn

Full Adder

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x y c s
0

1
0

0
0

0
1

1

x y cn-1 cn s
0

0

1

0

0

1

1

1

0

1

0

1

1

0

1

0

COMBINATIONAL LOGIC CIRCUITS

Other Combinational Circuits

 Multiplexer
 Encoder
 Decoder
 Parity Checker
 Parity Generator
 etc

Combinational Logic Circuits

MULTIPLEXER
Combinational Logic Circuits

4-to-1 Multiplexer

I0

 I1

I2

I3

S0

S1

Y

0 0 I0
0 1 I1
1 0 I2
1 1 I3

Select Output
S1 S0 Y

ENCODER/DECODER
Octal-to-Binary Encoder

Combinational Logic Circuits

D1

D2

D3

D5

D6

D7

D4

A0

A1

A2

A0

A1

E

D0

D1

D2

D3

0 0 0 0 1 1 1
0 0 1 1 0 1 1
0 1 0 1 1 0 1
0 1 1 1 1 1 0
1 d d 1 1 1 1

E A1 A0 D0 D1 D2 D3

2-to-4 Decoder

FLIP FLOPS
Characteristics
 - 2 stable states
 - Memory capability
 - Operation is specified by a Characteristic Table

0-state 1-state

In order to be used in the computer circuits, state of the flip flop should
have input terminals and output terminals so that it can be set to a certain
state, and its state can be read externally.

R

S

Q

Q’

S R Q(t+1)
0 0 Q(t)
0 1 0
1 0 1
1 1 indeterminate
 (forbidden)

Flip Flops

1 0 0 1

0 1 1 0

CLOCKED FLIP FLOPS
In a large digital system with many flip flops, operations of individual flip flops
 are required to be synchronized to a clock pulse. Otherwise,
 the operations of the system may be unpredictable.

R

S

Q

Q’

c
 (clock)

Flip Flops

S Q

c

R Q’

S Q

c

R Q’

operates when operates when
clock is high clock is low

Clock pulse allows the flip flop to change state only
when there is a clock pulse appearing at the c terminal.

We call above flip flop a Clocked RS Latch, and symbolically as

RS-LATCH WITH PRESET AND CLEAR
INPUTS

Flip Flops

R

S

Q

Q’

c

(clock)

P(preset)

clr(clear)

S Q

c

R Q’

S Q

c

R Q’

P

clr

P

clr

S Q

c

R Q’

P

clr

S Q

c

R Q’

P

clr

D-LATCH
D-Latch
 Forbidden input values are forced not to occur
 by using an inverter between the inputs

Flip Flops

Q

Q’
D(data)

E
(enable)

 D Q

E Q’

E Q’

 D Q

D Q(t+1)
0 0
1 1

EDGE-TRIGGERED FLIP FLOPS
Characteristics
 - State transition occurs at the rising edge or
 falling edge of the clock pulse

Latches

Edge-triggered Flip Flops (positive)

 respond to the input only during these periods

respond to the input only at this time

Flip Flops

POSITIVE EDGE-TRIGGERED

T-Flip Flop: JK-Flip Flop whose J and K inputs are tied together to make
 T input. Toggles whenever there is a pulse on T input.

Flip Flops

D-Flip Flop

JK-Flip Flop

S1 Q1

 C1

R1 Q1'

S2 Q2

 C2

R2 Q2'

D

C

Q

Q'

D

C

Q

Q'

SR1 SR2

SR1 active

SR2 active

D-FF

S1 Q1

 C1

R1 Q1'

S2 Q2

 C2

R2 Q2'

SR1 SR2
J

K

C

Q

Q'

J Q

C

K Q'

SR1 active

SR2 inactive SR2 inactive

SR1 inactive

CLOCK PERIOD
Clock period determines how fast the digital circuit operates.
How can we determine the clock period ?

 Usually, digital circuits are sequential circuits which has some flip flops

Combinational
Logic
Circuit

FF FF

Combinational logic Delay
FF Setup Time
FF Hold Time FF Delay

td
ts,th

clock period T = td + ts + th

Flip Flops

.

.

.

... FF

C

Combinational
Logic
Circuit

FF FF

.

.

.

DESIGN EXAMPLE
Design Procedure:
 Specification  State Diagram  State Table 
 Excitation Table  Karnaugh Map  Circuit Diagram

Example: 2-bit Counter -> 2 FF's

current next
 state input state FF inputs
 A B x A B Ja Ka Jb Kb
 0 0 0 0 0 0 d 0 d
 0 0 1 0 1 0 d 1 d
 0 1 0 0 1 0 d d 0
 0 1 1 1 0 1 d d 1
 1 0 0 1 0 d 0 0 d
 1 0 1 1 1 d 0 1 d
 1 1 0 1 1 d 0 d 0
 1 1 1 0 0 d 1 d 1

A

B

x

Ja

1

d d
d d

x

A

B

Ka

d d
d d

1

Kb

A

B

x 1

1

d

d

d
d

Ja = Bx Ka = Bx Jb = x Kb = x
clock

00

01

10

11

x=0

x=1

x=0

x=1

x=0

x=1

x=0

x=1

Sequential Circuits

J Q

 C

K Q'

J Q

 C

K Q'

x A
A

B

x 1 d
1 d

d

d
Jb

B

SEQUENTIAL CIRCUITS - Registers

Bidirectional Shift Register with Parallel Load

Sequential Circuits

D

Q
C D

Q
C D

Q
C D

Q
C

A0 A1 A2 A3

Clock
I0 I1 I2 I3

Shift Registers

D Q
 C

D Q
 C

D Q
 C

D Q
 C

Serial
Input

Clock

Serial
Output

D

Q
C D

Q
C D

Q
C D

Q
C

A0 A1 A2
A3

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

4 x 1
MUX

Clock S0S1
SeriaI
Input

I0 I1 I2
I3

Serial
Input

SEQUENTIUAL CIRCUITS - Counters
Sequential Circuits

J K

Q

J K

Q

J K

Q

J K

Q

Clock

Counter
Enable

A0 A1
A2 A3

Output
Carry

MEMORY COMPONENTS

Logical Organization

Random Access Memory

 - Each word has a unique address
 - Access to a word requires the same time
 independent of the location of the word
 - Organization

Memory Components

words
(byte, or n bytes)

2k Words
(n bits/word)

n data input lines

n data output lines

k address lines

Read

Write

0

N - 1

READ ONLY MEMORY(ROM)
Characteristics
 - Perform read operation only, write operation is not possible
 - Information stored in a ROM is made permanent
 during production, and cannot be changed
 - Organization

Information on the data output line depends only
on the information on the address input lines.
 --> Combinational Logic Circuit

X0=A’B’ + B’C
X1=A’B’C + A’BC’
X2=BC + AB’C’
X3=A’BC’ + AB’
X4=AB

X0=A’B’C’ + A’B’C + AB’C
X1=A’B’C + A’BC’
X2=A’BC + AB’C’ + ABC
X3=A’BC’ + AB’C’ + AB’C
X4=ABC’ + ABC

Canonical minterms

1 0 0 0 0
1 1 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 1 1 0
1 0 0 1 0
0 0 0 0 1
0 0 1 0 1

 address Output
 ABC X0 X1 X2 X3 X4

000
001
010
011
100
101
110
111

Memory Components

m x n ROM
(m=2k)

k address input lines

n data output lines

TYPES OF ROM
ROM
 - Store information (function) during production
 - Mask is used in the production process
 - Unalterable
 - Low cost for large quantity production --> used in the final products

PROM (Programmable ROM)
 - Store info electrically using PROM programmer at the user’s site
 - Unalterable
 - Higher cost than ROM -> used in the system development phase
 -> Can be used in small quantity system

EPROM (Erasable PROM)
 - Store info electrically using PROM programmer at the user’s site
 - Stored info is erasable (alterable) using UV light (electrically in
 some devices) and rewriteable
 - Higher cost than PROM but reusable --> used in the system
 development phase. Not used in the system production
 due to eras ability

Memory Components

INTEGRATED CIRCUITS
Classification by the Circuit Density

 SSI - several (less than 10) independent gates
 MSI - 10 to 200 gates; Perform elementary digital functions;
 Decoder, adder, register, parity checker, etc
 LSI - 200 to few thousand gates; Digital subsystem
 Processor, memory, etc
 VLSI - Thousands of gates; Digital system
 Microprocessor, memory module

Classification by Technology

 TTL - Transistor-Transistor Logic
 Bipolar transistors
 NAND
 ECL - Emitter-coupled Logic
 Bipolar transistor
 NOR
 MOS - Metal-Oxide Semiconductor
 Unipolar transistor
 High density
 CMOS - Complementary MOS
 Low power consumption

Memory Components

