
Graph Theory 

Chapter -5 



Varying Applications (examples) 

• Computer networks 

• Distinguish between two chemical compounds with 
the same molecular formula but different structures 

• Solve shortest path problems between cities 

• Scheduling exams and assign channels to television 
stations 



Topics Covered 

• Definitions  

• Types 

• Terminology 

• Representation 

• Sub-graphs 

• Connectivity 

• Hamilton and Euler definitions 

• Shortest Path  

• Planar Graphs 

• Graph Coloring  

 

 

 



Definitions - Graph 

  

 A generalization of the simple concept of a set of 
dots, links, edges or arcs.  

 Representation: Graph G =(V, E) consists set of vertices denoted by V, 

or by V(G) and set of edges E, or E(G) 

http://en.wikipedia.org/wiki/Edge


Definitions – Edge Type 

 Directed: Ordered pair of vertices. Represented as (u, v) directed from 

vertex u to v. 

 

 
 Undirected: Unordered pair of vertices. Represented as {u, v}. Disregards 

any sense of direction and treats both end vertices interchangeably. 

 

 

 

 

 

u v 

u v 



Definitions – Edge Type 

• Loop: A loop is an edge whose endpoints are equal i.e., an 
edge joining a vertex to it self is called a loop. Represented as 
{u, u} = {u} 

 

 

 

• Multiple Edges: Two or more edges joining the same pair of 

vertices.  

 

u 



Definitions – Graph Type 

 Simple (Undirected) Graph: consists of V, a nonempty set of vertices, 

and E, a set of unordered pairs of distinct elements of V called edges 
(undirected)  

 Representation Example: G(V, E), V = {u, v, w}, E = {{u, v}, {v, w}, {u, w}} 

 

 

 

 

u v 

w 



Definitions – Graph Type 

 Multigraph: G(V,E), consists of set of vertices V, set of Edges E and 
a function f from E to {{u, v}| u, v  V, u ≠ v}. The edges e1 and e2 
are called multiple or parallel edges if f (e1) = f (e2). 

    Representation Example: V = {u, v, w}, E = {e1, e2, e3} 

 

u 

v 

w e1 
e2 

e3 



Definitions – Graph Type 

 Pseudograph: G(V,E), consists of set of vertices V, set of Edges E and a 
function F from E to {{u, v}| u, v Î V}. Loops allowed in such a graph. 

 Representation Example: V = {u, v, w}, E = {e1, e2, e3, e4} 
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Definitions – Graph Type 

 Directed Graph: G(V, E), set of vertices V, and set of Edges E, that are 
ordered pair of elements of V (directed edges) 

 Representation Example: G(V, E), V = {u, v, w}, E = {(u, v), (v, w), (w, u)} 

 

u 

w 

v 



Definitions – Graph Type 

 Directed Multigraph: G(V,E), consists of set of vertices V, set of Edges 

E and a function f from E to {{u, v}| u, v  V}. The edges e1 and e2 are 
multiple edges if f(e1) = f(e2) 

 Representation Example: V = {u, v, w}, E = {e1, e2, e3, e4} 

u 

u 

u 
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Definitions – Graph Type 

 

 
Type Edges Multiple Edges 

Allowed ? 
Loops Allowed ? 

Simple Graph undirected No No 

Multigraph undirected Yes No 

Pseudograph undirected Yes Yes 

Directed Graph directed No Yes 

Directed 
Multigraph 

directed Yes Yes 



Terminology – Undirected graphs 

• u and v are adjacent if {u, v} is an edge, e is called incident with u and v. u and v are called 
endpoints of {u, v} 

 
• Degree of Vertex (deg (v)): the number of edges incident on a vertex. A loop contributes twice to 

the degree (why?).  
 
• Pendant Vertex: deg (v) =1 
 
• Isolated Vertex: deg (v) = 0 

 
Representation Example: For V = {u, v, w} , E = { {u, w}, {u, w}, (u, v) }, deg (u) = 2, deg (v) = 1, deg (w) = 

1, deg (k) = 0, w and v are pendant , k is isolated 

u 
k 

w 

v 



Terminology – Directed graphs 

• For the edge (u, v), u is adjacent to v OR v is adjacent from u, u – Initial vertex, v – Terminal vertex 
 
• In-degree (deg- (u)): number of edges for which u is terminal vertex 
 
• Out-degree (deg+ (u)): number of edges for which u is initial vertex 
 
Note: A loop contributes 1 to both in-degree and out-degree (why?) 
 
Representation Example: For V = {u, v, w} , E = { (u, w), ( v, w), (u, v) }, deg- (u) = 0, deg+ (u) = 2, deg- (v) = 

1,  
deg+ (v) = 1, and deg- (w) = 2, deg+ (u) = 0 
 

u 

w 

v 



Theorems: Undirected Graphs 

Theorem 1 

The Handshaking theorem: 

  

  
(why?) Every edge connects 2 vertices 
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Theorems: Undirected Graphs 

 Theorem 2: 
 An undirected graph has even number of vertices with odd degree 
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Theorems: directed Graphs 

• Theorem 3:         deg + (u) =        deg - (u) = |E| 
  

  





Simple graphs – special cases 

• Complete graph: Kn, is the simple graph that contains exactly one 
edge between each pair of distinct vertices. 

 Representation Example: K1, K2, K3, K4  

K2 K1 K4 

K3 



Simple graphs – special cases 

• Cycle: Cn, n ≥ 3 consists of n vertices v1, v2, v3 … vn and edges {v1, v2}, 
{v2, v3}, {v3, v4} … {vn-1, vn}, {vn, v1} 

 Representation Example: C3, C4 

C3 C4 



Simple graphs – special cases 

• Wheels: Wn, obtained by adding additional vertex to Cn and 

connecting all vertices to this new vertex by new edges.  
 Representation Example: W3, W4  

W3 W4 



Simple graphs – special cases 

• N-cubes: Qn, vertices represented by 2n bit strings of length n. Two 
vertices are adjacent if and only if the bit strings that they represent 
differ by exactly one bit positions  

 Representation Example: Q1, Q2 

0 

10 

1 

00 
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Q1 

01 

Q2 



Bipartite graphs 

• In a simple graph G, if V can be partitioned into two disjoint sets V1 and V2 such 
that every edge in the graph connects a vertex in V1 and a vertex V2 (so that no 
edge in G connects either two vertices in V1 or two vertices in V2) 

 Application example:  Representing Relations 
 Representation example: V1 = {v1, v2, v3} and V2 = {v4, v5, v6},  

v1 

v2 

v3 

v4 

v5 

v6 

V1 
V2 



Complete Bipartite graphs 

• Km,n is the graph that has its vertex set portioned into two subsets of 
m and n vertices, respectively There is an edge between two vertices 
if and only if one vertex is in the first subset and the other vertex is in 
the second subset. 

 Representation example: K2,3, K3,3 

K2,3 K3,3 



Subgraphs 

• A subgraph of a graph G = (V, E) is a graph H =(V’, E’) where V’ is a subset of V 
and E’ is a subset of E 

 Application example: solving sub-problems within a graph 

 Representation example: V = {u, v, w}, E = ({u, v}, {v, w}, {w, u}}, H1 , H2 

u 

v w 

u u 

w v v 

H1 
H2 G 



Subgraphs 

• G = G1 U G2 wherein E = E1 U E2 and V = V1 U V2, G, G1 and G2 are simple 
graphs of G 

 

    Representation example: V1 = {u, w}, E1 = {{u, w}}, V2 = {w, v},   

    E1 = {{w, v}}, V = {u, v ,w}, E = {{{u, w}, {{w, v}} 

u 

v w w 
v w 

u 

G1 G2 
G 



Representation 

• Incidence (Matrix): Most useful when information about edges is 
more desirable than information about vertices. 

 

• Adjacency (Matrix/List): Most useful when information about the 
vertices is more desirable than information about the edges. These 
two representations are also most popular since information about 
the vertices is often more desirable than edges in most applications 



Representation- Incidence Matrix 

 G = (V, E) be an unditected graph. Suppose that v1, v2, v3, …, vn are the vertices and e1, e2, …, em are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the 
nx m matrix M = [m ij], where 
 
 
 

 
 
 Can also be used to represent : 
 Multiple edges: by using columns with identical entries, since these edges are incident with the same pair of vertices 
 Loops: by using a column with exactly one entry equal to 1, corresponding to the vertex that is incident with the loop 
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Representation- Incidence Matrix 

• Representation Example: G = (V, E) 

e1 e2 e3 

v 1 0 1 

u 1 1 0 

w 0 1 1 v w 

u 

e1 

e3 

e2 



Representation- Adjacency Matrix 

 There is an N x N matrix, where |V| = N , the Adjacenct Matrix (NxN) A = 
[aij] 
 

  For undirected graph 
 
 
 
 
 
 

  For directed graph 
 
 
 
 
 

 

 This makes it easier to find subgraphs, and to reverse graphs if needed. 
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Representation- Adjacency Matrix 

• Adjacency is chosen on the ordering of vertices. Hence, there as are 
as many as n! such matrices. 

• The adjacency matrix of simple graphs are symmetric (aij = aji) (why?) 

• When there are relatively few edges in the graph the adjacency 
matrix is a sparse matrix 

• Directed Multigraphs can be represented by using aij = number of 
edges from vi to vj 

 



Representation- Adjacency Matrix 

• Example: Undirected Graph G (V, E) 

v u w 

v 0 1 1 

u 1 0 1 

w 1 1 0 

u 

v w 



Representation- Adjacency Matrix 

• Example: directed Graph G (V, E) 

v u w 

v 0 1 0 

u 0 0 1 

w 1 0 0 

u 

v w 



Representation- Adjacency List 

 Each node (vertex) has a list of which nodes (vertex) it is adjacent 

 Example: undirectd graph G (V, E) 

node Adjacency List 

u v , w 

v w, u 

w u , v 

u 

v w 



Graph - Isomorphism 

• G1 = (V1, E2) and G2 = (V2, E2) are isomorphic if:   
• There is a one-to-one and onto function f from V1 to V2 with the 

property that 
– a and b are adjacent in G1 if and only if f (a) and f (b) are adjacent in G2, for all 

a and b in V1.  

• Function f is called isomorphism 
  
Application Example:  
In chemistry, to find if two compounds have the same structure  



Graph - Isomorphism 

 Representation example: G1 = (V1, E1) , G2 = (V2, E2)  

 f(u1) = v1, f(u2) = v4, f(u3) = v3, f(u4) = v2,  

u1 

u3 
u4 

u2 

v3 
v4 

v1 v2 



Connectivity 

• Basic Idea: In a Graph Reachability among vertices by 
traversing the edges  

 Application Example:  

 - In a city to city road-network, if one city can be reached from 
another city.  

 - Problems if determining whether a message can be sent 
between two     

       computer using intermediate links 

 - Efficiently planning routes for data delivery in the Internet 

 
  



Connectivity – Path 

 A Path is a sequence of edges that begins at a vertex of a 
graph and travels along edges of the graph, always 
connecting pairs of adjacent vertices. 

  
 Representation example: G = (V, E), Path P represented, 

from u to v is {{u, 1}, {1, 4}, {4, 5}, {5, v}} 

1 

u 
3 

4 5 

2 

v 



Connectivity – Path 

Definition for Directed Graphs 
 A Path of length n (> 0) from u to v in G is a sequence of n edges e1, e2 , 

e3, …, en of G such that f (e1) = (xo, x1), f (e2) = (x1, x2), …, f (en) = (xn-1, xn), 
where x0 = u and xn = v. A path is said to pass through x0, x1, …, xn  or 
traverse e1, e2 , e3, …, en  

 
For Simple Graphs, sequence is x0, x1, …, xn 
 
 In directed multigraphs when it is not necessary to distinguish between 

their edges, we can use sequence of vertices to represent the path 
 
 Circuit/Cycle: u = v, length of path > 0 
 
 Simple Path: does not contain an edge more than once 

 



Connectivity – Connectedness 

Undirected Graph 

 An undirected graph is connected if there exists is a 
simple path between every pair of vertices 

  
Representation Example: G (V, E) is connected since for V = 

{v1, v2, v3, v4, v5}, there exists a path between {vi, vj}, 1 ≤ 
i, j≤ 5 

 

v1 

v2 

v3 

v5 

v4 



Connectivity – Connectedness 

Undirected Graph 
 
• Articulation Point (Cut vertex): removal of a vertex produces a 

subgraph with more connected components than in the original 
graph. The removal of a cut vertex from a connected graph produces a 
graph that is not connected 

• Cut Edge: An edge whose removal produces a subgraph with more 
connected components than in the original graph.  

 Representation example: G (V, E), v3 is the articulation point or edge 
{v2, v3}, the number of connected components is 2 (> 1) 

 

v1 

v2 

v3 

v4 

v5 



Connectivity – Connectedness 

Directed Graph 

• A directed graph is strongly connected if there is a path from a to b 
and from b to a whenever a and b are vertices in the graph 

• A directed graph is weakly connected if there is a (undirected) path 
between every two vertices in the underlying undirected path 

 

 A strongly connected Graph can be weakly connected but the vice-
versa is not true (why?) 

 



Connectivity – Connectedness 

Directed Graph 

 Representation example: G1 (Strong component), G2 (Weak Component), G3 
is undirected graph representation of G2 or G1 

G2 
G1 G3 



Connectivity – Connectedness 

• Directed Graph 
 Strongly connected Components: subgraphs of a Graph G 

that are strongly connected 
 Representation example: G1 is the strongly connected 

component in G 

G1 G 



Isomorphism - revisited 

 A isomorphic invariant for simple graphs is the existence 

of a simple circuit of length k , k is an integer > 2 (why ?) 

 Representation example: G1 and G2 are isomorphic since we have 
the invariants, similarity in  degree of nodes, number of edges, length 
of circuits 

G1 G2 



Counting Paths 

• Theorem: Let G be a graph with adjacency matrix A with respect to the ordering 
v1, v2, …, Vn (with directed on undirected edges, with multiple edges and loops 
allowed). The number of different paths of length r from Vi to Vj, where r is a 
positive integer, equals the (i, j)th entry of (adjacency matrix) Ar. 

 

 Proof: By Mathematical Induction.  

  

 Base Case: For the case N = 1, aij =1 implies that there is a path of length 1. This is true 
since this corresponds to an edge between two vertices.  

 

 We assume that theorem is true for N = r and prove the same for N = r +1. Assume that 
the (i, j)th entry of Ar is the number of different paths of length r from vi to vj. By induction 
hypothesis, bik is the number of paths of length r from vi to vk.  

  

  



Counting Paths 

Case r +1: In Ar+1 = Ar. A,  

    The (i, j)th entry in Ar+1 , bi1a1j + bi2 a2j + …+ bin anj  

        where bik is the (i, j)th entry of Ar.  

 

 By induction hypothesis, bik is the number of paths of length r from vi to vk. 

  

    The (i, j)th entry in Ar+1  corresponds to the length between i and j    and the length is 
r+1. This path is made up of length r from vi to vk and of length from vk to vj. By 
product rule for counting, the number of such paths is bik* akj The result is bi1a1j + 
bi2 a2j + …+ bin anj ,the desired result. 

 



Counting Paths 

 
      a ------- b 
      |          | 
      |          | 
      c -------d 
 
A = 0 1 1 0       A4  =   8 0 0 8 
      1 0 0 1                  0 8 8 0 
      1 0 0 1                  0 8 8 0 
      0 1 1 0                  8 0 0 8 
 
Number of paths of length 4 from a to d is (1,4) th entry of A4 = 8. 
 
  



The Seven Bridges of Königsberg, Germany 

• The residents of Königsberg, Germany, wondered if it was 
possible to take a walking tour of the town that crossed 
each of the seven bridges over the Presel river exactly once. 
Is it possible to start at some node and take a walk that uses 
each edge exactly once, and ends at the starting node? 
 



The Seven Bridges of Königsberg, Germany 

 You can redraw the original picture as long as for every edge between nodes i 

and j in the original you put an edge between nodes i and j in the redrawn 
version (and you put no other edges in the redrawn version). 

 

Original: 

2 

3 
4 1 

Redrawn: 

4 

2 3 



The Seven Bridges of Königsberg, Germany 

• Has no tour that uses each edge exactly once. 

• (Even if we allow the walk to start and finish in different places.) 

• Can you see why? 

 

Euler: 



Euler - definitions 

• An Eulerian path (Eulerian trail, Euler walk) in a graph is a path that 
uses each edge precisely once. If such a path exists, the graph is 
called traversable. 

 
• An Eulerian cycle (Eulerian circuit, Euler tour) in a graph is a cycle 

that uses each edge precisely once. If such a cycle exists, the graph is 
called Eulerian (also unicursal). 
 

• Representation example: G1 has Euler path a, c, d, e, b, d, a, b 
 

a b 

c d e 



The problem in our language: 

Show that                       is not Eulerian. 
 
In fact, it contains no Euler trail. 



Euler - theorems  

1.   A connected graph G is Eulerian if and only if G is connected and has no 

vertices of odd degree 

 

2.  A connected graph G is has an Euler trail from node a to some other 
node b if and only if G is connected and a  b are the only two nodes of 
odd degree 

 



Euler – theorems (=>) 

 Assume G has an Euler trail T from node a to node b (a and b not 

necessarily distinct). 

  

 For every node besides a and b, T uses an edge to exit for each edge it 
uses to enter. Thus, the degree of the node is even. 

 

 1. If a = b, then a also has even degree.  Euler circuit 

 

 2. If a  b, then a and b both have odd degree.  Euler path 
 

 



Euler - theorems  

1.   A connected graph G is Eulerian if and only if G is connected and 

has no vertices of odd degree 

 

a b 

c d 

e 

f 

Building a simple path: 
{a,b}, {b,c}, {c,f}, {f,a} 
 
Euler circuit constructed if all edges 
are used. True here? 



Euler - theorems  

1.   A connected graph G is Eulerian if and only if G is connected and 

has no vertices of odd degree 

 

c d 

e 
Delete the simple path: 
{a,b}, {b,c}, {c,f}, {f,a} 
 
C is the common vertex for this 
sub-graph with its “parent”. 



Euler - theorems  

1.   A connected graph G is Eulerian if and only if G is connected and 

has no vertices of odd degree 

 

c d 

e 

Constructed subgraph may not be connected. 
 
C is the common vertex for this sub-graph  
with its “parent”. 
 
C has even degree. 
 
Start at c and take a walk: 
 {c,d}, {d,e}, {e,c} 



Euler - theorems  

1.   A connected graph G is Eulerian if and only if G is connected and 

has no vertices of odd degree 

 

a b 

c d 
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f 

“Splice” the circuits in the 2 graphs: 
{a,b}, {b,c}, {c,f}, {f,a} 
 “+” 
{c,d}, {d,e}, {e,c} 
 “=“ 
{a,b}, {b,c}, {c,d}, {d,e}, {e,c}, {c,f} 
{f,a} 



Euler Circuit  

1. Circuit C := a circuit in G beginning at an arbitrary vertex 
v. 

1. Add edges successively to form a path that returns to this 
vertex. 

2. H := G – above circuit C 

3. While H has edges 
1. Sub-circuit sc := a circuit that begins at a vertex in H that is also 

in C (e.g., vertex “c”) 

2. H := H – sc  (- all isolated vertices) 

3. Circuit := circuit C “spliced” with sub-circuit sc 

4. Circuit C has the Euler circuit. 
 



Representation- Incidence Matrix 

e1 e2 e3 

a 1 0 0 

b 1 1 0 

c 0 1 1 

d 0 0 1 

e 0 0 0 

f 0 0 0 

e4 e5 e6 e7 

0 0 0 1 

0 0 0 0 

0 1 1 0 

1 0 0 0 

1 1 0 0 

0 0 1 1 

a b 

c d 

e 

f 

e1 

e2 

e3 

e4 

e5 
e6 

e7 



Homework 1 

• Write a program to obtain Euler Circuits. 
– Input graphs can be Eulerian, no need for checking “non” Euler graphs 
– Include a simple user interface to “input” the graph. 
– Minimum of 10 edges (no more than 15 edges needed) 
– Simple documentation 
– Include a sample graph, if needed, to test 
– Any programming language 
– Submission on WebCT 
 

• Due on January 27th 11.55pm. 
 



Hamiltonian Graph 

• Hamiltonian path (also called traceable path) is a path that visits each vertex 
exactly once. 

 
• A Hamiltonian cycle (also called Hamiltonian circuit, vertex tour or graph 

cycle) is a cycle that visits each vertex exactly once (except for the starting 
vertex, which is visited once at the start and once again at the end). 

 
• A graph that contains a Hamiltonian path is called a traceable graph. A graph 

that contains a Hamiltonian cycle is called a Hamiltonian graph. Any 
Hamiltonian cycle can be converted to a Hamiltonian path by removing one of 
its edges, but a Hamiltonian path can be extended to Hamiltonian cycle only if 
its endpoints are adjacent. 



A graph of the vertices of a dodecahedron. 
 
Is it Hamiltonian? 

Yes
. 



This one has a Hamiltonian path, but not a 
Hamiltonian tour. 

Hamiltonian Graph 



Hamiltonian Graph 

This one has an Euler tour, but no Hamiltonian path. 



Hamiltonian Graph 

• Similar notions may be defined for directed graphs, where edges (arcs) of a 
path or a cycle are required to point in the same direction, i.e., connected 
tail-to-head. 

 
• The Hamiltonian cycle problem or Hamiltonian circuit problem in graph theory  

is to find a Hamiltonian cycle in a given graph. The Hamiltonian path problem 
is to find a Hamiltonian path in a given graph. 

 
• There is a simple relation between the two problems. The Hamiltonian path 

problem for graph G is equivalent to the Hamiltonian cycle problem in a graph 
H obtained from G by adding a new vertex and connecting it to all vertices of 
G. 

 
• Both problems are NP-complete. However, certain classes of graphs always 

contain Hamiltonian paths. For example, it is known that every tournament 
has an odd number of Hamiltonian paths. 
 



Hamiltonian Graph 

• DIRAC’S Theorem: if G is a simple graph with n vertices with n 
≥ 3 such that the degree of every vertex in G is at least n/2 
then G has a Hamilton circuit. 

 

• ORE’S Theorem: if G is a simple graph with n vertices with n ≥ 
3 such that deg (u) + deg (v) ≥ n fro every pair of nonadjacent 
vertices u and v in G, then G has a Hamilton circuit. 



Shortest Path 

• Generalize distance to weighted setting 

• Digraph G = (V,E) with weight function W: E  R (assigning real values to 
edges) 

• Weight of path p = v1  v2  …  vk is 

 

 
 

• Shortest path = a path of the minimum weight 

• Applications 

– static/dynamic network routing 

– robot motion planning 

– map/route generation in traffic 

1

1

1

( ) ( , )
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w p w v v










Shortest-Path Problems   

• Shortest-Path problems 

– Single-source (single-destination). Find a shortest path 
from a given source (vertex s) to each of the vertices. 
The topic of this lecture. 

– Single-pair. Given two vertices, find a shortest path 
between them. Solution to single-source problem 
solves this problem efficiently, too. 

– All-pairs. Find shortest-paths for every pair of vertices. 
Dynamic programming algorithm.  

– Unweighted shortest-paths – BFS.      



Optimal Substructure 

• Theorem: subpaths of shortest paths are 
shortest paths 

• Proof (”cut and paste”) 

– if some subpath were not the shortest path, one 
could substitute the shorter subpath and create a 
shorter total path 



Negative Weights and Cycles? 

• Negative edges are OK, as long as there are no negative 
weight cycles (otherwise paths with arbitrary small “lengths” 
would be possible) 

• Shortest-paths can have no cycles (otherwise we could 
improve them by removing cycles) 

– Any shortest-path in graph G can be no longer than n – 1 
edges, where n is the number of vertices 



Shortest Path Tree 

• The result of the algorithms – a shortest  path tree. For each vertex v, it  

– records a shortest path from the start vertex s  to v. v.parent() gives a 
predecessor of v in this shortest path 

– gives a shortest path length from s to v, which is recorded in v.d(). 

• The same pseudo-code assumptions are used. 

• Vertex ADT with operations: 

– adjacent():VertexSet 

– d():int  and  setd(k:int) 

– parent():Vertex  and  setparent(p:Vertex) 



Relaxation 

• For each vertex v in the graph, we maintain v.d(), the estimate of the 
shortest path from s, initialized to at the start 

• Relaxing an edge (u,v) means testing whether we can improve the 
shortest path to v found so far by going through u 

5

u v 

v u 

2 

2 

9

5 7

Relax(u,v) 

5

u v 

v u 

2 

2 

6

5 6

Relax(u,v) 

Relax (u,v,G) 

if v.d() > u.d()+G.w(u,v) then 

   v.setd(u.d()+G.w(u,v)) 

   v.setparent(u) 



Dijkstra's Algorithm 

• Non-negative edge weights 

• Greedy, similar to Prim's algorithm for MST 

• Like breadth-first search (if all weights = 1, one can simply use BFS) 

• Use Q, a priority queue ADT keyed by v.d() (BFS used FIFO queue, here we 
use a PQ, which is re-organized whenever some d decreases) 

• Basic idea 

– maintain a set S of solved vertices 

– at each step select "closest" vertex u, add it to S, and relax all edges 
from u 



Dijkstra’s ALgorithm 

Solution to Single-source (single-destination).  
• Input: Graph G, start vertex s 

relaxing 

edges 

Dijkstra(G,s) 

01 for each vertex u  G.V() 

02    u.setd()

03    u.setparent(NIL) 

04 s.setd(0) 

05 S                     // Set S is used to explain the 

algorithm

06 Q.init(G.V())  // Q is a priority queue ADT 

07 while not Q.isEmpty()

08    u  Q.extractMin() 

09    S S {u}  

10    for each v  u.adjacent() do 

11       Relax(u, v, G) 

12       Q.modifyKey(v) 
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Dijkstra’s Algorithm 

• O(n2) operations 

– (n-1) iterations: 1 for each vertex added to the 
distinguished set S. 

– (n-1) iterations: for each adjacent vertex of the 
one added to the distinguished set. 

• Note: it is single source – single destination 
algorithm 

 



Traveling Salesman Problem 

• Given a number of cities and the costs of traveling from one to the other, 
what is the cheapest roundtrip route that visits each city once and then 
returns to the starting city? 

 
• An equivalent formulation in terms of graph theory  is: Find the 

Hamiltonian cycle with the least weight in a weighted graph. 
 
• It can be shown that the requirement of returning to the starting city does 

not change the computational complexity of the problem. 
 
• A related problem is the (bottleneck TSP): Find the Hamiltonian cycle in a 

weighted graph with the minimal length of the longest edge. 



Planar Graphs 

• A graph (or multigraph) G is called planar if G can be drawn in the plane with its 
edges intersecting only at vertices of G, such a drawing of G is called an embedding 
of G in the plane.  

 
 Application Example: VLSI design (overlapping edges requires extra layers), Circuit 

design (cannot overlap wires on board) 
  
 Representation examples: K1,K2,K3,K4 are planar, Kn for n>4 are non-planar 

 

K4 



Planar Graphs 

• Representation examples: Q3 



Planar Graphs 

• Representation examples: K3,3 is Nonplanar 
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 Theorem : Euler's planar graph theorem 

For a connected planar graph or multigraph:  

                                        v – e + r = 2 

number 

of vertices 
number 

of edges 

number 

of regions 

Planar Graphs 



Planar Graphs 

Example of Euler’s theorem 

K4 

R1 
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R3 

A planar graph divides the plane 

into several regions (faces), one  

of them is the infinite region. 

   v=4,e=6,r=4, v-e+r=2 

R4 



Planar Graphs 

• Proof of Euler’s formula: By Induction 

 Base Case: for G1 , e1 = 1, v1 = 2 and r1= 1 

 

 

  

 n+1 Case: Assume,  rn = en – vn + 2 is true. Let {an+1, bn+1} be the edge that 
is added to Gn to obtain Gn+1 and we prove that rn = en – vn + 2 is true. Can 
be proved using two cases. 
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Planar Graphs 

• Case 1: 

 

  rn+1  = rn + 1, en+1  = en + 1, vn+1 = vn => rn+1 = en+1 – vn+1 + 2 
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Planar Graphs 

• Case 2: 

 

  rn+1  = rn, en+1  = en + 1, vn+1 = vn + 1 => rn+1 = en+1 – vn+1 + 2 

R 

an+1 

bn+1 



Planar Graphs 

Corollary 1: Let G = (V, E) be a connected simple planar graph with 
|V| = v, |E| = e > 2, and r regions. Then 3r ≤ 2e and e ≤ 3v – 6 

Proof: Since G is loop-free and is not a multigraph, the boundary of 
each region (including the infinite region) contains at least three 
edges. Hence, each region has degree ≥ 3.  

Degree of region: No. of edges on its boundary; 1 edge may occur 
twice on boundary -> contributes 2 to the region degree. 

Each edge occurs exactly twice: either in the same region or in 2 
different regions 
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Region Degree 

R 

R 

Degree of R = 3 

Degree of R = ? 



Planar Graphs 

Each edge occurs exactly twice: either in the same region or in 2 
different regions 

2e = sum of degree of r regions determined by 2e  

2e ≥ 3r. (since each region has a degree of at least 3) 

r ≤ (2/3) e 

From Euler’s theorem, 2 = v – e + r  

2 ≤  v – e + 2e/3  

2 ≤  v – e/3 

So 6 ≤  3v – e  

or e ≤ 3v – 6 



Planar Graphs 

Corollary 2: Let G = (V, E) be a connected simple planar graph then 
G has a vertex degree that does not exceed 5 

Proof: If G has one or two vertices the result is true 

If G has 3 or more vertices then by Corollary 1, e ≤ 3v – 6 

2e ≤ 6v – 12 

If the degree of every vertex were at least 6: 

 by Handshaking theorem: 2e = Sum (deg(v)) 

 2e ≥ 6v. But this contradicts the inequality 2e ≤ 6v – 12 

There must be at least one vertex with degree no greater than 5 

 



Planar Graphs 

Corollary 3: Let G = (V, E) be a connected simple planar graph with 
v vertices ( v ≥ 3) , e edges,  and no circuits of length 3 then e ≤  2v 
-4 

Proof: Similar to Corollary 1 except the fact that no circuits of length 
3 imply that degree of region must be at least 4.  



Planar Graphs 

• Elementary sub-division: Operation in which  a graph are obtained by 
removing an edge {u, v} and adding the vertex w and edges {u, w}, {w, v} 

 

 

• Homeomorphic Graphs: Graphs G1 and G2 are termed as homeomorphic 
if they are obtained by sequence of elementary sub-divisions. u v u v w 



Planar Graphs 

• Kuwratoski’s Theorem: A graph is non-planar if and only if it contains a 
subgraph homeomorephic to K3,3 or K5 

 Representation Example: G is Nonplanar  
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Graph Coloring Problem 

• Graph coloring is an assignment of "colors", almost always taken to be 
consecutive integers starting from 1 without loss of generality, to certain 
objects in a graph. Such objects can be vertices, edges, faces, or a mixture 
of the above.  

 

• Application examples: scheduling, register allocation in a microprocessor, 
frequency assignment in mobile radios, and pattern matching 

 



Vertex Coloring Problem 

• Assignment of colors to the vertices of the graph such that proper coloring 
takes place (no two adjacent  vertices are assigned the same color)  

• Chromatic number: least number of colors needed to color the graph  

• A graph that can be assigned a (proper) k-coloring is k-colorable, and it is k-
chromatic if its chromatic number is exactly k.  

 



Vertex Coloring Problem 

• The problem of finding a minimum coloring of a graph is NP-Hard 
• The corresponding decision problem (Is there a coloring which uses at most k 

colors?) is NP-complete  
• The chromatic number for Cn = 3 (n is odd) or 2 (n is even), Kn = n, Km,n = 2  
• Cn: cycle with n vertices; Kn: fully connected graph with n vertices; Km,n: 

complete bipartite graph 

C5 K4 K2, 3 

C4 



Vertex Covering Problem 

• The Four color theorem: the chromatic number of a planar graph is no 
greater than 4 

• Example: G1 chromatic number = 3, G2 chromatic number = 4 

• (Most proofs rely on case by case analysis). 
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