Method of Least Squares

Least Squares Regression

Linear Regression

- Fitting a straight line to a set of paired observations: $\left(x_{1}, y_{1}\right),\left(x_{2}\right.$, y_{2}), .., $\left(x_{n}, y_{n}\right)$.
$y=a_{0}+a_{1} x+e$
$a_{l^{-}}$slope
a_{0} - intercept
e - error, or residual, between the model and the observations

Criteria for a "Best" Fit/

- Minimize the sum of the residual errors for all available data:

$$
\sum_{i=1}^{n} e_{i}=\sum_{i=1}^{n}\left(y_{i}-a_{o}-a_{1} x_{i}\right)
$$

$\mathrm{n}=$ total number of points

- However, this is an inadequate criterion, so is the sum of the absolute values

$$
\sum_{i=1}^{n}\left|e_{i}\right|=\sum_{i=1}^{n}\left|y_{i}-a_{0}-a_{1} x_{i}\right|
$$

Figure

- Best strategy is to minimize the sum of the squares of the residuals between the measured y and the y calculated with the linear model:

$$
S_{r}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}, \text { measured }-y_{i}, \text { model }\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-a_{0}-a_{1} x_{i}\right)^{2}
$$

- Yields a unique line for a given set of data.

Least-Squares Fit of a Straight Line/

$$
\begin{aligned}
& \frac{\partial S_{r}}{\partial a_{o}}=-2 \sum\left(y_{i}-a_{o}-a_{1} x_{i}\right)=0 \\
& \frac{\partial S_{r}}{\partial a_{1}}=-2 \sum\left[\left(y_{i}-a_{o}-a_{1} x_{i}\right) x_{i}\right]=0 \\
& 0=\sum y_{i}-\sum a_{0}-\sum a_{1} x_{i} \\
& 0=\sum y_{i} x_{i}-\sum a_{0} x_{i}-\sum a_{1} x_{i}^{2} \\
& \sum a_{0}=n a_{0} \\
& \left.n a_{0}+\left(\sum x_{i}\right) a_{1}=\sum y_{i}\right\} \begin{array}{l}
\text { Normal equations, can be } \\
\text { solved simultaneously }
\end{array} \\
& a_{1}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
& a_{0}=\bar{y} \leftarrow a_{1} \bar{x} \longleftarrow \text { jineering Mathematics II }
\end{aligned}
$$

Figure :

Figure :

Figure:

(a)

(b)

"Goodness" of our fit/

If

- Total sum of the squares around the mean for the dependent variable, y, is S_{t}
- Sum of the squares of residuals around the regression line is S_{r}
- $S_{t}-S_{r}$ quantifies the improvement or error reduction due to describing data in terms of a straight line rather than as an average value.

- For a perfect fit
$\mathrm{S}_{\mathrm{r}}=0$ and $\mathrm{r}=\mathrm{r}^{2}=1$, signifying that the line explains 100 percent of the variability of the data.
- For $\mathrm{r}=\mathrm{r}^{2}=0, \mathrm{~S}_{\mathrm{r}}=\mathrm{S}_{\mathrm{t}}$, the fit represents no improvement.

Polynomial Regression

- Some engineering data is poorly represented by a straight line. For these cases a curve is better suited to fit the data. The least squares method can readily be extended to fit the data to higher order polynomials.

General Linear Least Squares

$$
y=a_{0} z_{0}+a_{1} z_{1}+a_{2} z_{2}+\cdots+a_{m} z_{m}+e
$$

$z_{0}, z_{1}, \ldots, z_{m}$ are $m+1$ basis functions
$\{Y\}=[Z]\{A\}+\{E\}$
$[Z]$ - matrix of the calculated values of the basis functions at the measured values of the independent variable
$\{\mathrm{Y}\}$-observed valued of the dependent variable
$\{A\}$-unknown coefficients
$\{\mathrm{E}\}$-residuals
$S_{r}=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{m} a_{j} z_{j i}\right)^{2} \begin{aligned} & \text { Minimized by taking its partial } \\ & \begin{array}{l}\text { derivative w.r.t. each of the } \\ \text { coefficients and setting the } \\ \text { resulting equation equal to zero }\end{array}\end{aligned}$

