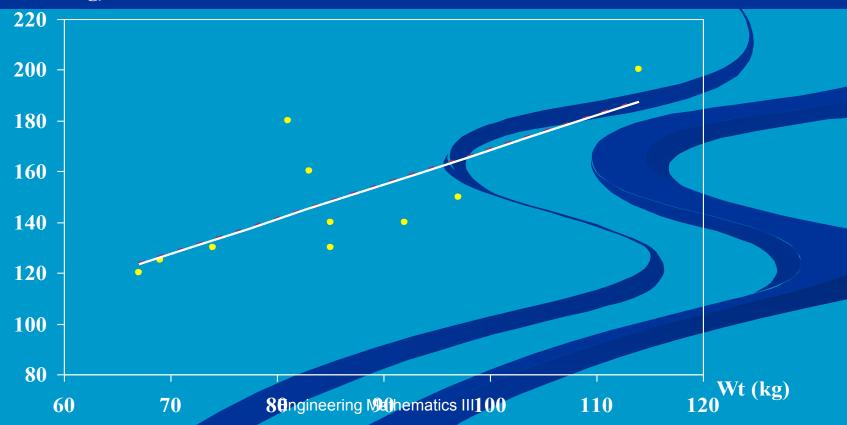
Regression Analyses

Regression: technique concerned with predicting some variables by knowing others

The process of predicting variable Y using variable X

- Uses a variable (x) to predict some outcome variable (y)
- Tells you how values in y change as a function of changes in values of x

Correlation and Regression


Correlation describes the strength of a linear relationship between two variables
 Linear means "straight line"

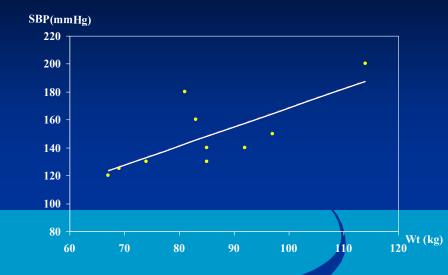
Regression tells us how to draw the straight line described by the correlation.

Regression

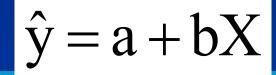
 Calculates the "best-fit" line for a certain set of data
 The regression line makes the sum of the squares of the residuals smaller than for any other line
 Regression minimizes residuals

SBP(mmHg)

By using the least squares method (a procedure that minimizes the vertical deviations of plotted points surrounding a straight line) we are able to construct a best fitting straight line to the scatter diagram points and then formulate a regression equation in the form of:


$$\hat{y} = a + bX$$

$$\hat{\mathbf{y}} = \overline{\mathbf{y}} + \mathbf{b}(\mathbf{x} - \overline{\mathbf{x}})$$

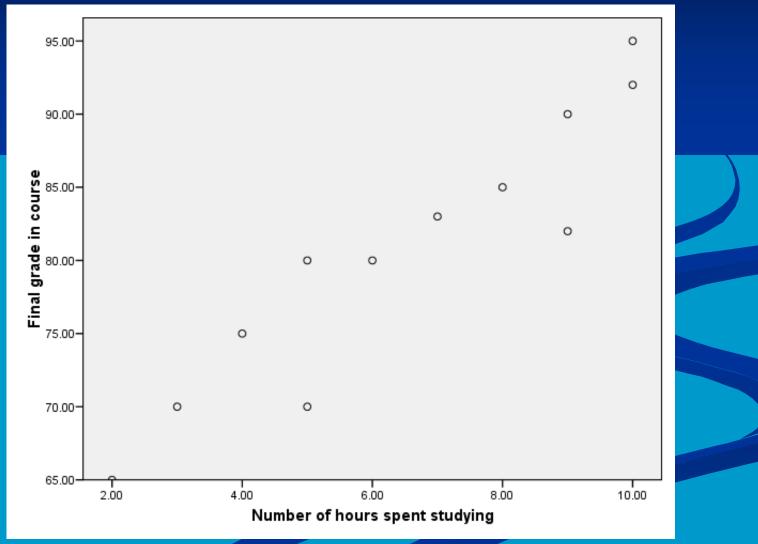

$$\mathbf{b} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

Regression Equation

Regression equation describes the regression line mathematically
 Intercept
 Slope

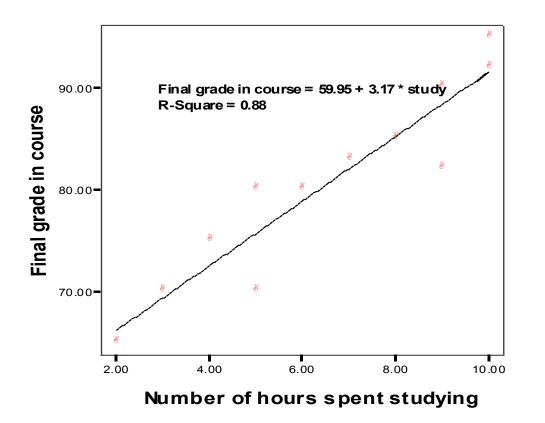
Linear Equations

Change in X


b = Slope

Change

in


a = Y-intercept

Hours studying and grades

Engineering Mathematics III

Regressing grades on hours

Predicted final grade in class =

59.95 + 3.17*(number of hours you study per week)

Linear Regression

Predicted final grade in class = 59.95 + 3.17*(hours of study)

Predict the final grade of...

Someone who studies for 12 hours
Final grade = 59.95 + (3.17*12)
Final grade = 97.99

Someone who studies for 1 hour:
Final grade = 59.95 + (3.17*1)
Final grade = 63.12

Things to remember

Regressions are still focuses on association, not causation.

Association is a necessary prerequisite for inferring causation, but also: The independent variable must preceded the dependent variable in time.

The two variables must be plausibly lined by a theory,

Competing independent variables must be eliminated.

Exercise

A sample of 6 persons was selected the value of their age (x variable) and their weight is demonstrated in the following table. Find the regression equation and what is the predicted weight when age is 8.5 years.

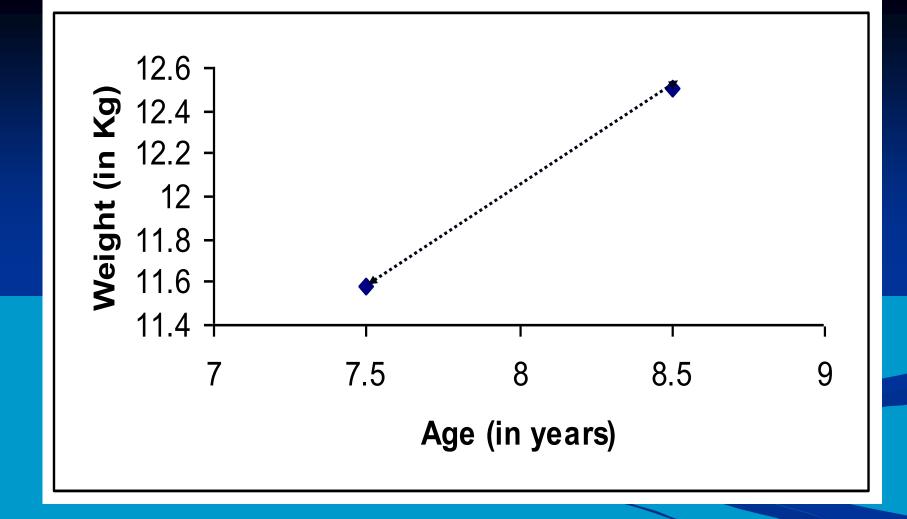
Serial no.	Age (x)	Weight (y)
1	7	12
2	6	8
3	8	12
4	5	10
5	6	11
6	9	13

Serial no.	Age (x)	Weight (y)	ху	X ²	Y2
1	7	12	84	49	144
2	6	8	48	36	64
3	8	12	96	64	144
4	5	10	50	25	100
5	6	11	66	36	121
6	9	13	117	81	169
Total	41	66	461	291	742

$$\overline{\mathbf{x}} = \frac{41}{6} = 6.83$$

$$\overline{y} = \frac{66}{6} = 11$$

$$b = \frac{461 - \frac{41 \times 66}{6}}{291 - \frac{(41)^2}{6}} = 0.92$$


Regression equation

$\hat{y}_{(x)} = 11 + 0.9(x - 6.83)$

 $\hat{y}_{(x)} = 4.675 + 0.92x$

$\hat{y}_{(8.5)} = 4.675 + 0.92 * 8.5 = 12.50 \text{Kg}$

$\hat{y}_{(7.5)} = 4.675 + 0.92 * 7.5 = 11.58 \text{Kg}$

we create a regression line by plotting two estimated values for y against their X component, then extending the line right and left.

Exercise 2

The following are the age (in years) and systolic blood pressure of 20 apparently healthy adults.

Age	B.P	Age	B.P
(X)	(y)	(X)	(y)
20	120	46	128
43	128	53	136
63	141	60	146
26	126	20	124
53	134	63	143
31	128	43	130
58	136	26	124
46	132	19	121
58	140	31	126
70	144	23	123

Find the correlation between age and blood pressure using simple and Spearman's correlation coefficients, and comment. Find the regression equation? What is the predicted blood pressure for a man aging 25 years?

Serial	X	У	ху	x2
1	20	120	2400	400
2	43	128	5504	1849
3	63	141	8883	3969
4	26	126	3276	676
5	53	134	7102	2809
6	31	128	3968	961
7	58	136	7888	3364
8	46	132	6072	2116
9	58	140	8120	3364
10	70	144	10080	4900

Serial	X	У	ху	x2	
11	46	128	5888	2116	
12	53	136	7208	2809	
13	60	146	8760	3600	
14	20	124	2480	400	
15	63	143	9009	3969	
16	43	130	5590	1849	
17	26	124	3224	676	
18	19	121	2299	361	
19	31	126	3906	961	
20	23	123	2829	529	
Total	852	2630 gineering Mathemat	114486	41678	

B.P = 112.13 + 0.4547 * 25=123.49 = 123.5 mm hg

Engineering Mathematics III

=112.13 + 0.4547 x

$$b_{1} = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^{2} - \frac{(\sum x)^{2}}{n}}$$

ŷ

for age 25

$$\frac{114486 - \frac{852 \times 2630}{20}}{41678 - \frac{852^2}{20}} = 0.4547$$

Multiple Regression

Multiple regression analysis is a straightforward extension of simple regression analysis which allows more than one independent variable.

Multiple Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.736 ^a	.542	.532	2760.003

 Predictors: (Constant), Percent of Population 25 years and Ov er with Bachelor's Degree or More, March 2000 estimates

ANOVA®							
Model		Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	4.32E+08	1	432493775.8	56.775	.000 ^a	
	Residual	3.66E+08	48	7617618.586			
	Total	7.98E+08	49				

a. Predictors: (Constant), Percent of Population 25 years and Over with Bachelor's Degree or More, March 2000 estimates

b. Dependent Variable: Personal Income Per Capita, current dollars, 1999

	Coefficients									
		Unstandardized Coefficients		Standardized Coefficients						
Model		В	Std. Error	Beta	l t	Sig.				
1	(Constant)	10078.565	2312.771		4.358	.000				
	Percent of Population 25 years and Over with Bachelor's Degree or More, March 2000 estimates	688.939	91.433	.736	7.535	.000				

a. Dependent Variable: Personal Income Per Capita, current dollars, 1999

Model Summary

Mo	odel	R	R Square	Adjusted R Square	Std. Error of the Estimate
1		.849 ^a	.721	.709	2177.791

a. Predictors: (Constant), Population Per Square Mile, Percent of Population 25 y ears and Ov er with Bachelor's Degree or More, March 2000 estimates

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	5.75E+08	2	287614518.2	60.643	.000 ^a
	Residual	2.23E+08	47	4742775.141		
	Total	7.98E+08	49			

a. Predictors: (Constant), Population Per Square Mile, Percent of Population 25 years and Ov er with Bachelor's Degree or More, March 2000 estimates

b. Dependent Variable: Personal Income Per Capita, current dollars, 1999

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	13032.847	1902.700		6.850	.000
	Percent of Population 25 years and Over with Bachelor's Degree or More, March 2000 estimates	517.628	78.613	.553	6.584	.000
	Population Per Square Mile	7.953	1.450	.461	5.486	.000

a. Dependent Variable: Personal Income Per Capita, current dollars, 1999