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Solution of linear system of equations 

 Numerical solution of differential equations 
(Finite Difference Method) 

 Numerical solution of integral equations (Finite 
Element Method, Method of Moments) 
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Consistency (Solvability) 

 The linear system of equations Ax=b has a 
solution, or said to be consistent IFF 

 Rank{A}=Rank{A|b}  

 A system is inconsistent when 

  Rank{A}<Rank{A|b}  

Rank{A} is the maximum number of linearly independent columns 
or rows of A. Rank can be found by using ERO (Elementary Row 
Oparations) or ECO (Elementary column operations). 

ERO# of rows with at least one nonzero entry 
ECO# of columns with at least one nonzero entry 
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Elementary row operations 

 The following operations applied to the 
augmented matrix [A|b], yield an equivalent 
linear system 

 Interchanges: The order of two rows can be 
changed 

 Scaling: Multiplying a row by a nonzero constant 

 Replacement: The row can be replaced by the sum 
of that row and a nonzero multiple of any other row. 
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An inconsistent example 
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Uniqueness of solutions 

 The system has a unique solution IFF 

 Rank{A}=Rank{A|b}=n 

 n is the order of the system 

 Such systems are called full-rank systems 

Engineering Mathematics III 



7 

Full-rank systems 

 If Rank{A}=n  

 Det{A}  0  A is nonsingular so invertible 

 Unique solution 
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Rank deficient matrices 

 If Rank{A}=m<n 

 Det{A} = 0  A is singular so not invertible  

 infinite number of solutions (n-m free variables) 

 under-determined system 
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Ill-conditioned system of equations 

 A small deviation in the entries of A matrix, 
causes a large deviation in the solution. 
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Ill-conditioned continued..... 

 A linear system of 

equations is said to 

be “ill-conditioned” 

if the coefficient 

matrix tends to be 

singular 
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Types of linear system of equations 

 Coefficient matrix A is square and real 

 The RHS vector b is nonzero and real 

 Consistent system, solvable 

 Full-rank system, unique solution 

 Well-conditioned system 

Engineering Mathematics III 



12 

Solution Techniques 

 Direct solution methods 
 Finds a solution in a finite number of operations by 

transforming the system into an equivalent system 
that is ‘easier’ to solve.  

 Diagonal, upper or lower triangular systems are 
easier to solve 

 Number of operations is a function of system size n. 

 Iterative solution methods 
 Computes succesive approximations of the solution 

vector for a given A and b, starting from an initial 
point x0.  

 Total number of operations is uncertain, may not 
converge. 
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Direct solution Methods 

 Gaussian Elimination 

 By using ERO, matrix A is transformed into an upper 
triangular matrix (all elements below diagonal 0) 

 Back substitution is used to solve the upper-
triangular system 
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First step of elimination 
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Second step of elimination 
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Gaussion elimination algorithm 

    

For c=p+1 to n 

0

/

)(

)()(

,





p

rp

p

pp

p

rppr

a

aam

)(

,

)()1( p

pcpr

p

rc

p

rc amaa 

)(

,

)()1( p

ppr

p

r

p

r bmbb 

Engineering Mathematics III 



17 

Back substitution algorithm 
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Operation count 

 Number of arithmetic operations required by 
the algorithm to complete its task. 

 Generally only multiplications and divisions are 
counted  

 Elimination process  

 

 Back substitution 
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