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!'_ equations




i Solution of linear system of equations

= Numerical solution of differential equations
(Finite Difference Method)

= Numerical solution of integral equations (Finite
Element Method, Method of Moments)
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Consistency (Solvability)

= The linear system of equations Ax=b has a
solution, or said to be consistent IFF

Rank{A}=Rank{A|b}
= A system is inconsistent when
Rank{A}<Rank{A|b}

Rank{A} is the maximum number of linearly independent columns
or rows of A. Rank can be found by using ERO (Elementary Row
Oparations) or ECO (Elementary column operations).

ERO=# of rows with at least one nonzero entry
ECO=# of columns with at least one nonzero entry
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i Elementary row operations

= The following operations applied to the
augmented matrix [A|b], yield an equivalent
linear system

=« Interchanges: The order of two rows can be
changed

= Scaling: Multiplying a row by a nonzero constant

= Replacement: The row can be replaced by the sum
of that row and a nonzero multiple of any other row.
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An inconsistent example

IMEN

ERO:Multiply the first row with ~ eausionz

equation 1

-2 and add to the second row
1 2 | i
0 0 Rank{A}=1 Then this A
system of
equations is
1 2 4 \not solvable
{O ) _3} Rank{A|b}=2 J
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i Uniqueness of solutions

= The system has a unique solution IFF
Rank{A}=Rank{A|b}=n
n is the order of the system

= Such systems are called full-rank systems
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i Full-rank systems

= If Rank{A}=n
Det{A} # 0 = A is nonsingular so invertible
Unique solution

_equation 1

1 27x] [4

eduation 2

0 1 2 3
X
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i Rank deficient matrices

= If Rank{A}=m<n

Det{A} = 0 = A is singular so not invertible
infinite number of solutions (n-m free variables)
under-determined system

1 2 xl 4 o equation 1
2 4 X2 8 | ' equation 2

Rank{A}=Rank{A|b}=1

Consistent so solvable
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i Ill-conditioned system of equations

= A small deviation in the entries of A matrix,
causes a large deviation in the solution.
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i Ill-conditioned continued.....

= A linear system of

2.5

equationsissaidto 2
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be "ill-conditioned”
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i Types of linear system of equations

= Coefficient matrix A is square and real
= The RHS vector b is nonzero and real

= Consistent system, solvable

= Full-rank system, unique solution

= Well-conditioned system
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i Solution Techniques

= Direct solution methods

= Finds a solution in a finite number of operations by
transforming the system into an equivalent system
that is ‘easier’ to solve.

= Diagonal, upper or lower triangular systems are
easier to solve

= Number of operations is a function of system size n.

s [terative solution methods

» Computes succesive approximations of the solution
vector for a given A and b, starting from an initial
point X,.

« Total number of operations is uncertain, may not
converge.
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Direct solution Methods

s Gaussian Elimination

= By using ERO, matrix A is transformed into an upper
triangular matrix (all elements below diagonal 0)

= Back substitution is used to solve the upper-

triangular system
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First step of elimination

Pivotal element
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Second step of elimination

Pivotal element
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Gaussion elimination algorithm
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Back substitution algorithm
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i Operation count

= Number of arithmetic operations required by
the algorithm to complete its task.

= Generally only multiplications and divisions are
counted

= Elimination process

2
= Back substitution 72 *7 Dominates
2 Not efficient for
different RHS vectors

« Total =, n

3 3
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