Solution of ordinary differential equations (first order, second order and simultaneous) by Euler's, Picard's and fourth-order RungeKutta methods

PRELIMINARIES

Consider
$\frac{d y}{d x}=f(x, y)$ with an initial condition $y=y_{0}$ at $x=x_{0}$.
The function $f(x, y)$ may be linear, nonlinear or table of values

When the value of y is given at $x=x_{0}$ and the solution is required for $x_{0} \leq x \leq x_{f}$ then the problem is called an initial value problem. If y is given at x $=x_{f}$ and the solution is required for $x_{f} \geq x \geq x_{0}$ then the problem is called a boundary value problem.

INITIAL VALUE PROBLEMS

- A Solution is a curve $g(x, y)$ in the $x y$ plane whose slope at each point (x, y) in the specified region is given by $\frac{d y}{d x}=f(x, y)$.
- The initial point (x_{0}, y_{0}) of the solution curve $g(x, y)$ and the slope of the curve at this point is given. We then extrapolate the values of y for the required set of values in the range ($\mathrm{x}_{0}, \mathrm{x}_{\mathrm{f}}$).

EULER'S METHOD

EULER'S METHOD

- This method uses the simplest extrapolation technique.
- The slope at $\left(x_{0}, y_{0}\right)$ is $f\left(x_{0}, y_{0}\right)$.
- Taking a small step in the direction given by the above slope, we get

$$
y_{1}=y\left(x_{0}+h\right)=y_{0}+h f\left(x_{0}, y_{0}\right)
$$

- Similarly y_{2} can be obtained from y_{1} by taking an equal step h in the direction given by the slope

$$
f\left(x_{1}, y_{1}\right) .
$$

- In general $\mathbf{y}_{\mathbf{i + 1}}=\mathbf{y}_{\mathbf{i}}+\mathbf{h} \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}\right)$

Modifications

- Modified Euler Method
- In this method the average of the slopes at (x_{0}, y_{0}) and ($x_{1}, y={ }_{1}{ }^{(1)}$) is taken instead of the slope at $\left(x_{0}, y_{0}\right)$ where $y_{1}{ }^{(1)}=y_{1}+h f\left(x_{0}, y_{0}\right)$.
- In general,

$$
y_{i+1}=y_{i}+1 / 2 h\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i}+h, y_{i}+h f\left(x_{i}, y_{i}\right)\right)\right]
$$

- Improved Modified Euler Method
- In this method points are averaged instead of slopes.

$$
\mathbf{y}_{\mathrm{i}+1}=\mathbf{y}_{\mathrm{i}}+\mathbf{h f}\left(\mathbf{x}_{\mathbf{i}}+\frac{\mathrm{h}}{2}, \mathbf{y}_{\mathrm{i}}+\frac{\mathrm{h}}{2} \mathbf{f}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathrm{i}}\right)\right)
$$

Example

Find y (0.25) and y (0.5) given that $=3 x_{2}+$ $y, y(0)=4$ by
(i) Euler Method
(ii) Modified Euler Method
(iii) Improved Euler Method and compare the results.

Solution

- Applying Formulae

\mathbf{x}	\mathbf{y} - value			
	Euler	Modified	Improved	Exact
0.25	5.0000	5.1484	5.1367	5.1528
0.50	6.2969	6.7194	6.6913	6.7372

TAYLOR SERIES METHOD

Consider
$\frac{d y}{d x}=f(x, y)$ with an initial condition $y=y_{0}$ at $x=x_{0}$.
The solution curve $\mathrm{y}(\mathrm{x})$ can be expressed in a Taylor series around $\mathrm{x}=\mathrm{x}_{0}$ as:

$$
\begin{gathered}
y\left(x_{0}+h\right)=y_{0}+h \\
\frac{d y}{d x}+\frac{h^{2}}{2!} \frac{d^{2} y}{d x^{2}}+\frac{h^{3}}{3!} \frac{d^{3} y}{d x^{3}}+\ldots
\end{gathered}
$$

where $x=x_{0}+h$.

Example

\square Using Taylor series find $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $\mathrm{y}(0.3)$ given that

$$
\frac{d y}{d x}=x^{2}-y ; y(0)=1
$$

Solution

Applying formula

$$
\begin{aligned}
& y(0.1)=0.9052 \\
& y(0.2)=0.8213 \\
& y(0.3)=0.7492
\end{aligned}
$$

PICARD'S METHOD OF SUCCESSIVE APPROXIMATIONS

- This is an iterative method.

Consider
$\frac{d y}{d x}=f(x, y)$ with an initial condition $y=y_{0}$ at $x=x_{0}$.
Integrating in ($x_{0}, x_{0}+h$)
$y\left(x_{0}+h\right)=y\left(x_{0}\right)+\int^{x_{0}+h} f(x, y) d x$
This integral equation is solved by successive approximations.

After n steps

This process is repeated and in the $\mathrm{n}^{\text {th }}$ approximation, we get

$$
y^{(n)}=y_{0}+\int_{x_{0}}^{x_{0}+h} f\left(x, y^{(n-1)}\right) d x
$$

Example

Find $y(1.1)$ given that $\frac{d y}{d x}=x-y$,
$y(1)=1$, by Picard's Method.

Solution

$$
\begin{aligned}
\mathrm{y}^{(1)}{ }_{1.1} & =1+\int_{1}^{1}(x-1) d x \\
& =1.005
\end{aligned}
$$

Successive iterations yield $1.0045,1.0046$, 1.0046

Thus y (1.1) $=1.0046$
Exact value is $\mathbf{y}(\mathbf{1 . 1})=\mathbf{1 . 0 0 4 8}$

RUNGE-KUTTA METHODS

- Euler Method is not very powerful in practical problems, as it requires very small step size h for reasonable accuracy.
- In Taylor's method, determination of higher order derivatives are involved.
- The Runge-Kutta methods give greater accuracy without the need to calculate higher derivatives.

$\mathrm{n}^{\text {th }}$ order R.K. Method

- This method employs the recurrence formula of the form

$$
\begin{aligned}
& y_{i+1}=y_{i}+a_{1} k_{1}+a_{2} k_{2}+\Lambda+a_{n} k_{n} \\
& \text { where } \\
& \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \\
& \mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{p}_{1} \mathrm{~h}, \mathrm{y}_{\mathrm{i}}+\mathrm{q}_{11} \mathrm{k}_{1}\right) \\
& \mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{i}}+\mathrm{p}_{2} \mathrm{~h}, \mathrm{y}_{\mathrm{i}}+\mathrm{q}_{21} \mathrm{k}_{1}+\mathrm{q}_{22} \mathrm{k}_{2}\right) \\
& k_{n}=h f\left(x_{i}+p_{n-1} h, y_{i}+q_{n-1,1} k_{1}+q_{n-2,2} k_{2}+\Lambda q_{(n-1),(n-1)} k_{n}\right)
\end{aligned}
$$

$4^{\text {th }}$ order R.K. Method

Most commonly used method

$$
y_{n+1}=y_{n}+\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

where

$$
\begin{aligned}
& \mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \\
& \mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{xn}+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{n}}+\frac{\mathrm{k}_{1}}{2}\right) \\
& \mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{xn}+\frac{\mathrm{h}}{2}, \mathrm{y}_{\mathrm{n}}+\frac{\mathrm{k}_{2}}{2}\right) \\
& \mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{\mathrm{n}}+\mathrm{h}, \mathrm{y}_{3}+\mathrm{k}_{3}\right)
\end{aligned}
$$

Example

- Using R.K. Method of 4th order find $y(0.1)$ and $y(0.2)$.

Given that $\frac{d y}{d x}=3 x+1 / 2 y, y(0)=1$ taking $h=0.1$. Solution

$$
\begin{array}{ll}
\mathrm{k}_{1}=\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) & =0.0500 \\
\mathrm{k}_{2}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{\mathrm{k}_{1}}{2}\right) & =0.0663 \\
\mathrm{k}_{3}=\mathrm{hf}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{y}_{0}+\frac{\mathrm{k}_{2}}{2}\right) & =0.0667 \\
\mathrm{k}_{4}=\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{3}\right) & =0.0833 \\
\mathrm{y}_{1}=\mathrm{y}(0.1)=\mathrm{y}_{0}+\frac{1}{6}\left(\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right) & =1.0674 \\
\text { By similar procedure } y(0.2) & =1.1682
\end{array}
$$

