
Solution of ordinary differential equations 

(first order, second order and simultaneous) 

by Euler’s, Picard’s and fourth-order Runge-

Kutta methods 
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PRELIMINARIES 

 

= f (x, y) with an initial condition  y = y0 at x  = x0.  

 
dx

dy

Consider 

The function f (x, y) may be linear, nonlinear or 

table of values 

 

When the value of y is given at x = x0 and the 

solution is required for x0 < x < xf then the problem 

is called an initial value problem.   If y is given at x 

= xf and the solution is required for xf > x > x0 then 

the problem is called a boundary value problem. 
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INITIAL VALUE PROBLEMS  

 A Solution is a curve g (x, y) in the xy plane whose 

slope at each point  (x, y) in the specified region is 

     given by         = f (x, y). 

 

 

 The initial point (x0, y0) of the solution curve g(x, y) 

and the slope of the curve at this point is given.  We 

then extrapolate the values of y for the required set of 

values in the range (x0, xf). 

dx

dy
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EULER’S METHOD 

 This method uses the simplest extrapolation 

technique. 

 The slope at (x0, y0) is f (x0, y0). 

 Taking a small step in the direction given by the 

above slope, we get 

 y1 = y (x0 + h) = y0 + hf (x0, y0) 

 Similarly y2 can be obtained from y1 by taking an 

equal step h in the direction given by the slope 

     f(x1, y1). 

 In general yi+1= yi + h f(xi, yi) 
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Modifications 

 Modified Euler Method 

● In this method the average of the slopes at  

   (x0, y0) and (x1, y=1
(1)) is taken instead of the 

slope at (x0, y0) where y1
(1) = y1 + h f (x0, y0). 

● In general, 

 

 

 Improved Modified Euler Method 

● In this method points are averaged instead of 
slopes.                                                           

  

yi+1  =  yi + ½ h [f (xi, yi) + f (xi + h, yi + hf (xi, yi)) ]  

yi+1   =  yi + hf (xi + h
2
,  yi + 

2

h  f (xi, yi) ) 
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Example 

 Find y (0.25) and y (0.5) given that  = 3x2 + 
y, y(0)  = 4  by  

(i) Euler Method  

(ii) Modified Euler Method  

(iii) Improved Euler Method and compare the 
results. 
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Solution 

y - value 
x 

Euler Modified Improved Exact 

0.25 5.0000 5.1484 5.1367 5.1528 

0.50 6.2969 6.7194 6.6913 6.7372 

 

 Applying Formulae 
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TAYLOR SERIES METHOD  

 

= f (x, y) with an initial condition  y = y0 at x  = x0.  

 
dx

dy

Consider 

The solution curve y(x) can be expressed in a Taylor 
series around x = x0 as: 

 
dx

yd
  

!3

h
  

dx

yd
  

!2

h
   

dx

dy
3

33

2

22

 +… 

where x = x0+h. 

 y (x0 + h) = y0 + h  
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Example  

 Using Taylor series find y(0.1), y(0.2) and y(0.3) given 

that  

                         = x2 - y; y(0) =1 
dx

dy

Solution   
Applying formula   

y(0.1) = 0.9052 

y(0.2) = 0.8213  

y(0.3) = 0.7492 
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PICARD’S METHOD  
OF SUCCESSIVE APPROXIMATIONS  

 This is an iterative method. 

 

= f (x, y) with an initial condition  y = y0 at x  = x0.  

 
dx

dy

Consider 

Integrating in (x0, x0 + h) 
  

y(x0 +h) = y(x0) +  
hx

x

0

0

dx)y,x(f

This integral equation is solved by 
successive approximations. 
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After n steps 

 This process is repeated and in the nth 
approximation, we get  

y(n) = y0 +  




hx

x

1)(n
0

0

)dxyf(x,

Example  

Find y(1.1) given that      = x – y,  
 
y(1) = 1, by Picard’s Method. 

dx

dy
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Solution 

 y(1)
1.1 = 1 +   

1.1

1

)1( dxx

=  1.005 

Successive iterations yield  1.0045, 1.0046 , 1.0046  

Exact value is y (1.1) = 1.0048  

Thus y (1.1) = 1.0046 
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RUNGE–KUTTA METHODS  

 Euler Method is not very powerful in practical problems, as it 

requires very small step size h for reasonable accuracy. 

 In Taylor’s method, determination of higher order derivatives are 

involved. 

 The Runge–Kutta methods give greater accuracy without the 

need to calculate higher derivatives. 
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nth order R.K. Method 

 This method  employs the recurrence formula of the form 

yi+1 = yi + a1 k1 + a2 k2 + L + an kn 

 

 

 

 

 

    where            k1 = h f ( xi, yi) 

 

           k2 = h f (xi + p1h, yi + q11 k1) 

 

                       k3 = h f (xi + p2h, yi + q21 k1 + q22 k2) 

kn = h f( xi + pn-1 h, yi + q n-1,1 k1 + qn-2, 2 k2 + L  q(n-1), (n-1)kn) 

…….    ……..     ……… 
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4th
 order R.K. Method 

 Most commonly used method 

 

 yn+1 = yn + (k1 + 2k2 + 2k3 + k4) 

 

where 

k1 = hf(xn, yn) 

 

k2 = hf (xn +    ,   yn +     ) 

 

k3 = hf (xn +    , yn +    )  

 

k4 = h f (xn +h, y3 +k3) 

2

h

2

h

2

k1

2

k
2
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Example 

 Using R.K. Method of 4th order find  y(0.1) and y(0.2).  

 

      Given that         =3x + ½ y, y (0) = 1 taking  h = 0.1. 

Solution 
   

dy

dx

k1 =  h f (x0, y0)          =  0.0500 

k2 =  h f ( x0 + 
2

h ,  y0 + 
2

k1 )        =  0.0663 

k3  =  h f ( x0 + 
2

h ,  y0 + 
2

k 2 )        =  0.0667 

k4  =  h f ( x0 +h,  y0 + k3)        =  0.0833 

y1 = y (0.1) = y0 + 
6

1  ( k1 + 2k2 + 2k3 + k4)   =  1.0674 

By similar procedure y(0.2)                        =  1.1682    

 


