
Points & Lines: Line drawing Algorithm

Unit 1 – Lecture 4

Points, P (x, y, z)

 Gives us a position in relation to the origin of our
coordinate. system for a 3D graphics.

Points, P (x, y)
 Gives us a position in relation to the origin of our

coordinate system for a 2D graphics

2D Graphics Pipeline

 Object
World Coordinates

Object
subset

window to
viewport
mapping

 Object
Screen coordinates

Rasterization Display

Applying
world window

Clipping

Simple 2D Drawing Pipeline

Rasterization (Scan Conversion)

 Convert high-level geometry description to pixel colors
in the frame buffer

 Example: given vertex x,y coordinates determine pixel
colors to draw line

 Two ways to create an image:

 Scan existing photograph

 Procedurally compute values (rendering)

Viewport
Transformation

Rasterization

Rasterization

 A fundamental computer graphics function

 Determine the pixels’ colors, illuminations, textures, etc.

 Implemented by graphics hardware

 Rasterization algorithms

 Lines

 Circles

 Triangles

 Polygons

Rasterization Operations

 Drawing lines on the screen

 Manipulating pixel maps (pixmaps): copying, scaling,
rotating, etc

 Compositing images, defining and modifying regions

 Drawing and filling polygons

 Previously glBegin(GL_POLYGON), etc

 Aliasing and antialiasing methods

Line drawing algorithm

 Programmer specifies (x,y) values of end pixels

 Need algorithm to figure out which intermediate pixels
are on line path

 Pixel (x,y) values constrained to integer values

 Actual computed intermediate line values may be floats

 Rounding may be required. E.g. computed point

 (10.48, 20.51) rounded to (10, 21)

 Rounded pixel value is off actual line path (jaggy!!)

 Sloped lines end up having jaggies

 Vertical, horizontal lines, no jaggies

Line Drawing Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12

8
7
6
5
4
3
2
1

Line: (3,2) -> (9,6)

?
Which intermediate
pixels to turn on?

Line Drawing Algorithm

 Slope-intercept line equation

 y = mx + b

 Given two end points (x0,y0), (x1, y1), how to compute m
and b?

(x0,y0)

(x1,y1)

dx

dy

01

01

xx

yy

dx

dy
m

 0*0 xmyb

Line Drawing Algorithm

 Numerical example of finding slope m:

 (Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

5392.0
102

55

23125

4196

AxBx

AyBy
m

Digital Differential Analyzer (DDA): Line Drawing
Algorithm

(x0,y0)

(x1,y1)

dx

dy

Walk through the line, starting at (x0,y0)
Constrain x, y increments to values in [0,1] range
Case a: x is incrementing faster (m < 1)

Step in x=1 increments, compute and round y
Case b: y is incrementing faster (m > 1)

Step in y=1 increments, compute and round x

DDA Line Drawing Algorithm (Case a: m < 1)

(x0, y0)

x = x0 + 1 y = y0 + 1 * m

Illuminate pixel (x, round(y))

x = x + 1 y = y + 1 * m

Illuminate pixel (x, round(y))

…

Until x == x1

(x1,y1)

x = x0 y = y0

Illuminate pixel (x, round(y))

myy kk 1

DDA Line Drawing Algorithm (Case b: m > 1)

y = y0 + 1 x = x0 + 1 * 1/m

Illuminate pixel (round(x), y)

y = y + 1 x = x + 1 /m

Illuminate pixel (round(x), y)

…

Until y == y1

x = x0 y = y0

Illuminate pixel (round(x), y)
(x1,y1)

(x0,y0)

m
xx kk

1
1

DDA Line Drawing Algorithm Pseudocode

compute m;

if m < 1:

{

 float y = y0; // initial value

 for(int x = x0;x <= x1; x++, y += m)

 setPixel(x, round(y));

}

else // m > 1

{

 float x = x0; // initial value

 for(int y = y0;y <= y1; y++, x += 1/m)

 setPixel(round(x), y);

}

 Note: setPixel(x, y) writes current color into pixel in column x and

row y in frame buffer

Line Drawing Algorithm Drawbacks

 DDA is the simplest line drawing algorithm

 Not very efficient

 Round operation is expensive

 Optimized algorithms typically used.

 Integer DDA

 E.g.Bresenham algorithm (Hill, 10.4.1)

 Bresenham algorithm

 Incremental algorithm: current value uses previous value

 Integers only: avoid floating point arithmetic

 Several versions of algorithm: we’ll describe midpoint
version of algorithm

Bresenham’s Line-Drawing Algorithm

 Problem: Given endpoints (Ax, Ay) and (Bx, By) of a line,
want to determine best sequence of intervening pixels

 First make two simplifying assumptions (remove later):

 (Ax < Bx) and

 (0 < m < 1)

 Define

 Width W = Bx – Ax

 Height H = By - Ay

Bresenham’s Line-Drawing Algorithm

 Based on assumptions:

 W, H are +ve

 H < W

 As x steps in +1 increments, y incr/decr by <= +/–1

 y value sometimes stays same, sometimes increases by 1

 Midpoint algorithm determines which happens

Bresenham’s Line-Drawing Algorithm

 Using similar triangles:

 H(x – Ax) = W(y – Ay)

 -W(y – Ay) + H(x – Ax) = 0

 Above is ideal equation of line through (Ax, Ay) and (Bx, By)

 Thus, any point (x,y) that lies on ideal line makes eqn = 0

 Doubling expression and giving it a name,

 F(x,y) = -2W(y – Ay) + 2H(x – Ax)

W

H

Axx

Ayy

Bresenham’s Line-Drawing Algorithm

 So, F(x,y) = -2W(y – Ay) + 2H(x – Ax)

 Algorithm, If:

 F(x, y) < 0, (x, y) above line

 F(x, y) > 0, (x, y) below line

 Hint: F(x, y) = 0 is on line

 Increase y keeping x constant, F(x, y) becomes more
negative

Bresenham’s Line-Drawing Algorithm

 Example: to find line segment between (3, 7) and (9, 11)

 F(x,y) = -2W(y – Ay) + 2H(x – Ax)

 = (-12)(y – 7) + (8)(x – 3)

 For points on line. E.g. (7, 29/3), F(x, y) = 0

 A = (4, 4) lies below line since F = 44

 B = (5, 9) lies above line since F = -8

Bresenham’s Line-Drawing Algorithm

(x0, y0)

M = (x0 + 1, Y0 + ½)

If F(Mx,My) < 0, M lies above line,
 shade lower pixel

…

(x1,y1)
What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My)

M(Mx,My)

If F(Mx,My) > 0, M lies above line,
 shade upper pixel(same y as before)

Bresenham’s Line-Drawing Algorithm

 Algorithm: // loop till you get to ending x

 Set pixel at (x, y) to desired color value

 x++

• if F < 0

• F = F + 2H

• else

• Y++, F = F - 2(W – H)

 Recall: F is equation of line

Bresenham’s Line-Drawing Algorithm

 Final words: we developed algorithm with restrictions

 Can add code to remove restrictions

 To get the same line when Ax > Bx (swap and draw)

 Lines having slope greater than unity (interchange x with y)

 Lines with negative slopes (step x++, decrement y not incr)

 Horizontal and vertical lines (pretest a.x = b.x and skip tests)

 Important: Read Hill 10.4.1

References

 Hill, chapter 10

