Points \& Lines: Line drawing Algorithm

Unit 1 - Lecture 4

Points, $\mathbf{P}(\mathbf{x}, \mathrm{y}, \mathrm{z})$

- Gives us a position in relation to the origin of our coordinate. system for a 3D graphics.

Points, $\mathbf{P}(\mathbf{x}, \mathrm{y})$

- Gives us a position in relation to the origin of our coordinate system for a 2D graphics

2D Graphics Pipeline

Rasterization (Scan Conversion)

- Convert high-level geometry description to pixel colors in the frame buffer
- Example: given vertex x,y coordinates determine pixel colors to draw line
- Two ways to create an image:
- Scan existing photograph
- Procedurally compute values (rendering)

Rasterization

- A fundamental computer graphics function
- Determine the pixels' colors, illuminations, textures, etc.
- Implemented by graphics hardware
- Rasterization algorithms
- Lines
- Circles
- Triangles
- Polygons

Rasterization Operations

- Drawing lines on the screen
- Manipulating pixel maps (pixmaps): copying, scaling, rotating, etc
- Compositing images, defining and modifying regions
- Drawing and filling polygons
- Previously glBegin(GL_POLYGON), etc
- Aliasing and antialiasing methods

Line drawing algorithm

- Programmer specifies (x, y) values of end pixels
- Need algorithm to figure out which intermediate pixels are on line path
- Pixel (x, y) values constrained to integer values
- Actual computed intermediate line values may be floats
- Rounding may be required. E.g. computed point $(10.48,20.51)$ rounded to $(10,21)$
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies

Line Drawing Algorithm

Line: $(3,2)$-> $(9,6)$

Which intermediate pixels to turn on?

Line Drawing Algorithm

- Slope-intercept line equation
- $y=m x+b$
- Given two end points ($x 0, y 0$), ($x 1, y 1$), how to compute m and b ?

$$
m=\frac{d y}{d x}=\frac{y 1-y 0}{x 1-x 0} \quad b=y 0-m * x 0
$$

Line Drawing Algorithm

- Numerical example of finding slope m:
- $(A x, A y)=(23,41),(B x, B y)=(125,96)$

$$
m=\frac{B y-A y}{B x-A x}=\frac{96-41}{125-23}=\frac{55}{102}=0.5392
$$

Digital Differential Analyzer (DDA): Line Drawing Algorithm

-Walk through the line, starting at ($x 0, y 0$)
-Constrain x, y increments to values in [0,1] range
-Case a: x is incrementing faster $(m<1)$
-Step in $x=1$ increments, compute and round y
-Case b : y is incrementing faster ($\mathrm{m}>1$)
-Step in $y=1$ increments, compute and round x

DDA Line Drawing Algorithm (Case a: m < 1)

$$
y_{k+1}=y_{k}+m
$$

(x0, y0)

$$
x=x 0 \quad y=y 0
$$

Illuminate pixel (x, round (y))

$$
x=x 0+1 \quad y=y 0+1 * m
$$

Illuminate pixel (x, round (y))

$$
x=x+1 \quad y=y+1 * m
$$

Illuminate pixel (x, round (y))

Until $\mathrm{x}==\mathrm{x} 1$

DDA Line Drawing Algorithm (Case b: m > 1)

$$
x=x 0 \quad y=y 0
$$

Illuminate pixel (round $(x), y)$

$$
y=y 0+1 \quad x=x 0+1 * 1 / m
$$

Illuminate pixel (round $(x), y)$

$$
y=y+1
$$

$$
x=x+1 / m
$$

Illuminate pixel (round(x), y)

Until $y==y 1$

DDA Line Drawing Algorithm Pseudocode

compute m;

if $m<1:$

$\{$

```
float y = y0; // initial value
for(int x = x0;x <= x1; x++, y += m)
    setPixel(x, round(y));
```

\}
else // m > 1
\{

$$
\begin{aligned}
\text { float } x= & x 0 ; \quad / / \text { initial value } \\
\text { for (int } y= & y 0 ; y<= \\
& \text { setPixel }(\text { round }(x), y)
\end{aligned}
$$

\}

- Note: setPixel (x, y) writes current color into pixel in column x and row y in frame buffer

Line Drawing Algorithm Drawbacks

- DDA is the simplest line drawing algorithm
- Not very efficient
- Round operation is expensive
- Optimized algorithms typically used.
- Integer DDA
- E.g.Bresenham algorithm (Hill, 10.4.1)
- Bresenham algorithm
- Incremental algorithm: current value uses previous value
- Integers only: avoid floating point arithmetic
- Several versions of algorithm: we'll describe midpoint version of algorithm

Bresenham's Line-Drawing Algorithm

- Problem: Given endpoints (Ax, Ay) and (Bx, By) of a line, want to determine best sequence of intervening pixels
- First make two simplifying assumptions (remove later):
- (Ax $<B x)$ and
- ($0<m<1$)
- Define
- Width $\mathrm{W}=\mathrm{Bx}-\mathrm{Ax}$
- Height H = By - Ay

Bresenham's Line-Drawing Algorithm

- Based on assumptions:
- W, H are + ve
- $\mathrm{H}<\mathrm{W}$
- As x steps in +1 increments, y incr/decr by $<=+/-1$
- y value sometimes stays same, sometimes increases by 1
- Midpoint algorithm determines which happens

Bresenham's Line-Drawing Algorithm

- Using similar triangles:

$$
\begin{gathered}
\frac{y-A y}{x-A x}=\frac{H}{W} \\
H(x-A x)=W(y-A y) \\
-W(y-A y)+H(x-A x)=0
\end{gathered}
$$

- Above is ideal equation of line through (Ax, Ay) and (Bx, By)
- Thus, any point (x, y) that lies on ideal line makes eqn $=0$
- Doubling expression and giving it a name,

$$
F(x, y)=-2 W(y-A y)+2 H(x-A x)
$$

Bresenham's Line-Drawing Algorithm

- So, $F(x, y)=-2 W(y-A y)+2 H(x-A x)$
- Algorithm, If:
- $F(x, y)<0,(x, y)$ above line
- $F(x, y)>0,(x, y)$ below line
- Hint: $F(x, y)=0$ is on line

■ Increase y keeping x constant, $F(x, y)$ becomes more negative

Bresenham's Line-Drawing Algorithm

- Example: to find line segment between $(3,7)$ and $(9,11)$

$$
\begin{aligned}
F(x, y) & =-2 W(y-A y)+2 H(x-A x) \\
& =(-12)(y-7)+(8)(x-3)
\end{aligned}
$$

- For points on line. E.g. (7, 29/3), $F(x, y)=0$
- $A=(4,4)$ lies below line since $F=44$
- $B=(5,9)$ lies above line since $F=-8$

Bresenham's Line-Drawing Algorithm

What Pixels to turn on or off?
Consider pixel midpoint $M(M x, M y)$
$M=(x 0+1, Y 0+1 / 2)$
If $F(M x, M y)<0, M$ lies above line, shade lower pixel

If $\mathrm{F}(\mathrm{Mx}, \mathrm{My})>0, \mathrm{M}$ lies above line, shade upper pixel(same y as before)

Bresenham's Line-Drawing Algorithm

- Algorithm: // loop till you get to ending x
- Set pixel at (x,y) to desired color value

■ $\mathrm{X}++$

- if $F<0$
- $F=F+2 H$
- else
- $\mathrm{Y}++\mathrm{F}, \mathrm{F}=\mathrm{F}-2(\mathrm{~W}-\mathrm{H})$
- Recall: F is equation of line

Bresenham's Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions
- Can add code to remove restrictions
- To get the same line when $A x>B x$ (swap and draw)
- Lines having slope greater than unity (interchange x with y)
- Lines with negative slopes (step x++, decrement y not incr)
- Horizontal and vertical lines (pretest a.x = b.x and skip tests)
- Important: Read Hill 10.4.1

References

- Hill, chapter 10

