
Circle Midpoint Algorithm

draw pixels in this octant
(draw others using symmetry)

(0,R)

(0,-R)

(R,0) (-R,0)

222),(RyxyxF
Implicit function for circle

0),(yxF

0),(yxF

0),(yxF

on circle

inside

outside

x+

y+

Choosing the Next Pixel

M

(x, y) (x+1, y)

(x+1, y+1)

E

SE

0)2/1,1(yxF

0)2/1,1(yxF

choose E

choose SE

)2/1,1()(yxFMFd
decision variable d

Change of d when E is chosen

Mold

(x, y) (x+1, y)

(x+1, y+1)

E

SE

(x+2, y)

(x+2, y+1)

Mnew

32

)2/1()1(

)2/1()2(

222

222

xddd

Ryxd

Ryxd

oldnew

old

new

Change of d when SE is chosen

Mold

(x, y) (x+1, y)

E

SE

(x+1, y+2) (x+2, y+2)

Mnew

522

)2/1()1(

)2/3()2(

222

222

yxddd

Ryxd

Ryxd

oldnew

old

new

Initial value of d

Rd

RRd

RFd

MFd

4/5

)2/1()1(

)2/1,1(

)(

0

222

0

0

00

(0,-R)

M0

(1,-R)

(1,-R+1)

Midpoint Circle Algo
x = 0;
y = -R;
d = 5/4 – R; /* real */
setPixel(x,y);
while (y > x) {
 if (d > 0) { /* E chosen */
 d += 2*x + 3;
 x++;
 } else { /* SE chosen */
 d += 2*(x+y) + 5;
 x++; y++;
 }
 setPixel(x,y);
}

New Decision Variable

• Our circle algorithm requires arithmetic

with real numbers.

• Let’s create a new decision variable h

h=d-1/4

• Substitute h+1/4 for d in the code.

• Note h > -1/4 can be replaced with h > 0

since h will always have an integer value.

New Circle Algorithm
x = 0;
y = -R;
h = 1 – R;
setPixel(x,y);
while (y > x) {
 if (h > 0) { /* E chosen */
 h += 2*x + 3;
 x++;
 } else { /* SE chosen */
 h += 2*(x+y) + 5;
 x++; y++;
 }
 setPixel(x,y);
}

Second-Order Differences

• Note that d is incremented by a linear

expression each time through the

loop.

– We can speed things up a bit by tracking

how these linear expressions change.

– Not a huge improvement since

multiplication by 2 is just a left-shift by 1

(e.g. 2*x = x<<1).

2nd Order Difference when E

chosen

• When E chosen, we move from pixel

(x,y) to (x+1,y).

2

3)1(2

32

oldnew

new

old

EE

xE

xE

2

5)1(2

5)(2

oldnew

new

old

SESE

yxSE

yxSE

2nd Order Difference when SE

chosen

• When SE chosen, we move from pixel

(x,y) to (x+1,y+1).

2

3)1(2

32

oldnew

new

old

EE

xE

xE

4

5)11(2

5)(2

oldnew

new

old

SESE

yxSE

yxSE

New and Improved Circle

Algorithm
x = 0; y = -R;
h = 1 – R;
dE = 3; dSE = -2*R + 5;
setPixel(x,y);
while (y > x) {
 if (h > 0) { /* E chosen */
 h += dE;
 dE += 2; dSE += 2;
 x++;
 } else { /* SE chosen */
 h += dSE;
 dE += 2; dSE += 4;
 X++; y++;
 }
 setPixel(x,y);
}

Filling Primitives

• We want to be able to fill rectangles,

circles, polygons, pie-slices, etc…

• Deciding which pixels to fill is not trivial.

• We also want to fill shapes with patterns.

• We want to exploit spatial coherence

– Neighboring pixels within primitive are the

same.

– e.g. span, scan-line, edge coherence

Filling Rectangles
which pixels are “inside”?

How do we handle edge pixels?

Raster Operations

• Usually you are just overwriting pixels

when rasterizing a shape.

destination pixel = source pixel

• Sometimes you want to combine the

source and destination pixel in an

interesting way:

dest. pixel = source pixel XOR dest. pixel

0101 = (1100) XOR (1001)

XOR Animation Hack

• Quick way to animate a small object
(e.g. a ball) moving across the screen.

– “Move” ball to next location

– Draw ball using XOR

– Draw ball again using XOR (erases ball)

– repeat

• Does not require entire screen to be
redrawn.

• A = (A XOR B) XOR B

Other Ways to Combine Pixels

Name Value written to destination

OR S OR D

AND S AND D

INVERT NOT D

NOR NOT (S OR D)

NAND NOT (S AND D)

More pixel combining tricks later…

…back to filling primitives

• How do we handle edge pixels?

• What if we want to tile to primitives

together without creating any seams?

– Remember, any pixels that are drawn

twice in XOR mode will disappear!

don’t fill these pixels twice!

Rule for Boundary Pixels

• If a pixel lies on an edge…

– The pixel is part of the primitive if it lies

on the left boundary (or bottom boundary

for horizontal edges).

– Otherwise, the pixel is not part of the

primitive.

Using Rule to Fill Adjacent

Rectangles

