
Unit 2 - Lecture 2 

Transformations 



 Represent 2D transformation by a matrix 
 
 

 

 Multiply matrix by column vector 
  apply transformation to point 
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 Transformations combined by multiplication 
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Matrices are a convenient and efficient way  

to represent a sequence of transformations! 



 What types of transformations can be  
represented with a 2x2 matrix? 

2D Identity? 
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2D Scale around (0,0)? 

ysy

xsx

y

x

*'

*'































y

x

s

s

y

x

y

x

0

0

'

'



 What types of transformations can be  
represented with a 2x2 matrix? 

2D Rotate around (0,0)? 
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2D Shear? 
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 What types of transformations can be  
represented with a 2x2 matrix? 

2D Mirror about Y axis? 
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2D Mirror over (0,0)? 
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 What types of transformations can be  
represented with a 2x2 matrix? 

2D Translation? 
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Only linear 2D transformations  

can be represented with a 2x2 matrix 

NO! 



 Linear transformations are combinations of … 
 Scale, 

 Rotation, 

 Shear, and 

 Mirror 

 Properties of linear transformations: 
 Satisfies: 

 Origin maps to origin 

 Lines map to lines 

 Parallel lines remain parallel 

 Ratios are preserved 

 Closed under composition 
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 Q: How can we represent translation as a 3x3 matrix? 
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 Homogeneous 
coordinates 

 represent coordinates in 2 
dimensions with a 3-vector 
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 Q: How can we represent translation as a 3x3 matrix? 

 

 

 A: Using the rightmost column: 
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 Example of translation 

  
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 Add a 3rd coordinate to every 2D point 
 (x, y, w) represents a point at location (x/w, y/w) 

 (x, y, 0) represents a point at infinity 

 (0, 0, 0) is not allowed 

Convenient coordinate 

system to  

represent many useful 

transformations 
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(2,1,1) or (4,2,2) or (6,3,3) 
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 Basic 2D transformations as 3x3 matrices 
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 Affine transformations are combinations of … 
 Linear transformations, and 

 Translations 

 Properties of affine transformations: 
 Origin does not necessarily map to origin 

 Lines map to lines 

 Parallel lines remain parallel 

 Ratios are preserved 

 Closed under composition 
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 Projective transformations … 
 Affine transformations, and 

 Projective warps 

 Properties of projective transformations: 
 Origin does not necessarily map to origin 

 Lines map to lines 

 Parallel lines do not necessarily remain parallel 

 Ratios are not preserved 

 Closed under composition 
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 2D Transformations 

 Basic 2D transformations 

 Matrix representation 

 Matrix composition 

 3D Transformations 

 Basic 3D transformations 

 Same as 2D 



 Transformations can be combined by  
matrix multiplication 
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p’   =      T(tx,ty)                 R()                     S(sx,sy)          p 



 Matrices are a convenient and efficient way to represent a 

sequence of transformations  
 General purpose representation 

 Hardware matrix multiply 

 

p’ = (T * (R * (S*p)  )  ) 

p’ = (T*R*S) * p 



 Be aware: order of transformations matters 
 Matrix multiplication is not commutative 

 

p’ = T * R * S * p 

“Global” “Local” 



 What if we want to rotate and translate? 

 Ex: Rotate line segment by 45 degrees about endpoint 
a 
      and lengthen 

a a 



 Our line is defined by two endpoints 
 Applying a rotation of 45 degrees, R(45), affects both points 

 We could try to translate both endpoints to return endpoint a to its 
original position, but by how much? 

Wrong Correct 

T(-3) R(45) T(3) R(45) 
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 Isolate endpoint a from rotation effects 

 

 First translate line so a is at origin: T (-3) 

 

 Then rotate line 45 degrees: R(45) 

 

 Then translate back so a is where it was: T(3) 
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Will this sequence of operations work?Will this sequence of operations work?  
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 After correctly ordering the matrices 

 Multiply matrices together 

 What results is one matrix – store it (on stack)! 

 Multiply this matrix by the vector of each vertex 

 All vertices easily transformed with one matrix 
 multiply 



 2D Transformations 

 Basic 2D transformations 

 Matrix representation 

 Matrix composition 

 3D Transformations 

 Basic 3D transformations 

 Same as 2D 



 Same idea as 2D transformations 

 Homogeneous coordinates: (x,y,z,w)  

 4x4 transformation matrices 
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Identity Scale 

Translation Mirror about Y/Z plane 
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Rotate around Z axis: 
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Rotate around Y axis: 
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Rotate around X axis: 



 Q: How do you undo a rotation of q, R(q)? 

 A: Apply the inverse of the rotation…    R-1(q) = R(-q)  

 

 How to construct R-1(q) = R(-q)  
 Inside the rotation matrix: cos(q) = cos(-q) 

 The cosine elements of the inverse rotation matrix are 
unchanged 

 The sign of the sine elements will flip 

 Therefore…  R-1(q) = R(-q) = RT(q) 



 Coordinate systems 
 World vs. modeling coordinates 

 2-D and 3-D transformations 
 Trigonometry and geometry 

 Matrix representations 

 Linear vs. affine transformations 

 Matrix operations 
 Matrix composition 


