

# MATRIX REPRESENTATION \& HOMOGENEOUS COORDINATES 

Unit 2 - Lecture 2
Transformations

## Matrix Representation

- Represent 2D transformation by a matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

- Multiply matrix by column vector
$\Leftrightarrow$ apply transformation to point

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\begin{aligned}
& x^{\prime}=a x+b y \\
& y^{\prime}=c x+d y
\end{aligned}
$$

## Matrix Representation

- Transformations combined by multiplication

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Matrices are a convenient and efficient way to represent a sequence of transformations!

## 2x2 Matrices

- What types of transformations can be represented with a $2 \times 2$ matrix?

2D Identity?

$$
\begin{aligned}
& x^{\prime}=x \\
& y^{\prime}=y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around $(0,0)$ ?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

## 2x2 Matrices

$\square$ What types of transformations can be represented with a $2 \times 2$ matrix?

2D Rotate around ( 0,0 )?

$$
\begin{aligned}
& x^{\prime}=\cos \Theta * x-\sin \Theta * y \\
& y^{\prime}=\sin \Theta * x+\cos \Theta^{*} y
\end{aligned}
$$

$\left[\begin{array}{l}\boldsymbol{x}^{\prime} \\ \boldsymbol{y}^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta\end{array}\right]\left[\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y}\end{array}\right]$

2D Shear?

$$
\begin{aligned}
& x^{\prime}=x+s \boldsymbol{h}_{x} * y \\
& y^{\prime}=s \boldsymbol{h}_{\boldsymbol{y}} * x+y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

## 2x2 Matrices

- What types of transformations can be represented with a $2 \times 2$ matrix?

2D Mirror about $Y$ axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over $(0,0) ?$

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

## 2x2 Matrices

- What types of transformations can be represented with a $2 \times 2$ matrix?

2D Translation?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

NO!

Only linear 2D transformations can be represented with a $2 \times 2$ matrix

## Linear Transformations

- Linear transformations are combinations of ...
- Scale,
- Rotation,
- Shear, and
- Mirror
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
- Properties of linear transformations:
- Satisfies:
- Origin maps to orioin

Lines mar $T\left(s_{1} \mathbf{p}_{1}+s_{2} \mathbf{p}_{2}\right)=s_{1} T\left(\mathbf{p}_{1}\right)+s_{2} T\left(\mathbf{p}_{2}\right)$

- Parallel lines rentant pananet
- Ratios are preserved
- Closed under composition


## Homogeneous Coordinates

- Q: How can we represent translation as a 3x3 matrix?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

## Homogeneous Coordinates

- Homogeneous coordinates
r represent coordinates in 2 dimensions with a 3-vector


Homogeneous coordinates seem unintuitive, but they make graphics operations much easier

## Homogeneous Coordinates

- Q: How can we represent translation as a $3 \times 3$ matrix?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- A: Using une rightmost column:



## Translation

- Example of translation

■ $\alpha$
Homogeneous Coordinates

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\
0 & 1 & \boldsymbol{t}_{\boldsymbol{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{x}+\boldsymbol{t}_{\boldsymbol{x}} \\
\boldsymbol{y}+\boldsymbol{t}_{\boldsymbol{y}} \\
1
\end{array}\right]
$$



## Homogeneous Coordinates

- Add a 3rd coordinate to every 2D point
- $(x, y, w)$ represents a point at location $(x / w, y / w)$
- ( $\mathrm{x}, \mathrm{y}, 0$ ) represents a point at infinity
- $(0,0,0)$ is not allowed

Convenient coordinate system to represent many useful transformations


## Basic 2D Transformations

- Basic 2D transformations as $3 \times 3$ matrices

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\
0 & 1 & \boldsymbol{t}_{\boldsymbol{y}} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]
$$

Translate

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]
$$

Scale
$\left[\begin{array}{c}\boldsymbol{x}^{\prime} \\ \boldsymbol{y}^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}1 & \boldsymbol{s} \boldsymbol{h}_{\boldsymbol{x}} & 0 \\ \boldsymbol{s} \boldsymbol{h}_{\boldsymbol{y}} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}\boldsymbol{x} \\ \boldsymbol{y} \\ 1\end{array}\right]$

Shear

## Affine Transformations

- Affine transformations are combinations of ...
- Linear transformations, and
- Translations
- Properties of affine transformatioi $\left[\begin{array}{l}x^{\prime} \\ w\end{array}\right]$
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition


## Projective Transformations

■ Projective transformations ...

- Affine transformations, and
- Projective warps
- Properties of projective transformruvis.
- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition

```
Overview
```

- 2D Transformations
- Basic 2D transformati
- Matrix representation
- Matrix composition
- 3D Transformations
- Basic 3D transformations
- Same as 2D


## Matrix Composition

- Transformations can be combined by matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]}
\end{gathered}=\left(\left[\begin{array}{llc}
1 & 0 & t x \\
0 & 1 & t y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
s x & 0 & 0 \\
0 & s y & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

## Matrix Composition

- Matrices are a convenient and efficient way to represent a sequence of transformations
- General purpose representation
- Hardware matrix multiply

$$
\begin{aligned}
& p^{\prime}=\left(T^{*}\left(R^{*}\left(S^{*} p\right)\right)\right) \\
& p^{\prime}=\left(T^{*} R^{*} S\right)^{*} p
\end{aligned}
$$

## Matrix Composition

- Be aware: order of transformations matters
- Matrix multiplication is not commutative

$$
\begin{aligned}
& p^{\prime}=T^{*} R^{*} S^{*} p \\
& \text { "Global" "Local" }
\end{aligned}
$$

## Matrix Composition

- What if we want to rotate and translate?
- Ex: Rotate line segment by 45 degrees about endpoint a
and lengthen




## Multiplication Order - Wrong Way

- Our line is defined by two endpoints
- Applying a rotation of 45 degrees, $\mathrm{R}(45)$, affects both points
- We could try to translate both endpoints to return endpoint $a$ to its original position, but by how much?



Wrong
R(45)


## Multiplication Order - Correct

- Isolate endpoint a from rotation effects
- First translate line so $a$ is at origin: $\mathrm{T}(-3)$
- Then rotate line 45 degrees: $R(45)$


Then translate back so $a$ is where it was: $\mathrm{T}(3)$


## Matrix Composition

## Whill this sequence of operations work?

$\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos (45) & -\sin (45) & 0 \\ \sin (45) & \cos (45) & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}a_{x} \\ a_{y} \\ 1\end{array}\right]=\left[\begin{array}{c}a_{x}^{\prime} \\ a^{\prime}{ }_{y} \\ 1\end{array}\right]$

## Matrix Composition

- After correctly ordering the matrices
- Multiply matrices together
- What results is one matrix - store it (on stack)!
- Multiply this matrix by the vector of each vertex
- All vertices easily transformed with one matrix multiply

> Overview

- 2D Transformatioı
- Basic 2D transformati
- Matrix representation
- Matrix cor
- 3D Transformations
- Basic 3D transformations
- Same as 2D


## 3D Transformations

- Same idea as 2D transformations
- Homogeneous coordinates: $(x, y, z, w)$
- $4 \times 4$ transformation matrices
$\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$


## Basic 3D Transformations

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$

## Identity

$\left[\begin{array}{c}\boldsymbol{x}^{\prime} \\ \boldsymbol{y}^{\prime} \\ \boldsymbol{z}^{\prime} \\ \boldsymbol{w}\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & \boldsymbol{t}_{\boldsymbol{x}} \\ 0 & 1 & 0 & \boldsymbol{t}_{\boldsymbol{y}} \\ 0 & 0 & 1 & \boldsymbol{t}_{\boldsymbol{z}} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{w}\end{array}\right]$
ranslation
$\left[\begin{array}{c}\boldsymbol{x}^{\prime} \\ \boldsymbol{y}^{\prime} \\ \boldsymbol{z}^{\prime} \\ \boldsymbol{w}\end{array}\right]=\left[\begin{array}{cccc}\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 & 0 \\ 0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 & 0 \\ 0 & 0 & \boldsymbol{s}_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z} \\ \boldsymbol{w}\end{array}\right]$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

Mirror about Y/Z plane

## Basic 3D Transformations

Rotate around $Z$ axis: $\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}\cos \Theta & -\sin \Theta & 0 & 0 \\ \sin \Theta & \cos \Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$
Rotate around $Y$ axis: $\left[\begin{array}{c}\boldsymbol{x}^{\prime} \\ \boldsymbol{y}^{\prime} \\ \boldsymbol{z}^{\prime} \\ \boldsymbol{w}\end{array}\right]=\left[\begin{array}{cccc}\cos \Theta & 0 & \sin \Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \Theta & 0 & \cos \Theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z} \\ \boldsymbol{w}\end{array}\right]$
Rotate around $X$ axis: $\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \Theta & -\sin \Theta & 0 \\ 0 & \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$

## Reverse Rotations

- Q : How do you undo a rotation of $\theta, \mathrm{R}(\theta)$ ?
- A: Apply the inverse of the rotation... $\quad R^{-1}(\theta)=R(-\theta)$
- How to construct $\mathrm{R}-1(\theta)=\mathrm{R}(-\theta)$
- Inside the rotation matrix: $\cos (\theta)=\cos (-\theta)$
- The cosine elements of the inverse rotation matrix are unchanged
- The sign of the sine elements will flip
- Therefore... $\mathrm{R}^{-1}(\theta)=\mathrm{R}(-\theta)=\mathrm{R}^{\mathrm{T}}(\theta)$


## Summary

- Coordinate systems
- World vs. modeling coordinates
- 2-D and 3-D transformations
- Trigonometry and geometry
- Matrix representations
- Linear vs. affine transformations
- Matrix operations
- Matrix composition

