
Unit 2 - Lecture 2

Transformations

 Represent 2D transformation by a matrix

 Multiply matrix by column vector
  apply transformation to point



















y
x

dc
ba

y
x
'
'







dc
ba

dycxy

byaxx





'

'

 Transformations combined by multiplication































y
x

lk

ji

hg

fe
dc
ba

y
x
'
'

Matrices are a convenient and efficient way

to represent a sequence of transformations!

 What types of transformations can be
represented with a 2x2 matrix?

2D Identity?

yy
xx



'
'



















y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy

xsx

y

x

*'

*'































y

x

s

s

y

x

y

x

0

0

'

'

 What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx

*cos*sin'
*sin*cos'


































y

x

y

x

cossin

sincos

'

'

2D Shear?

yxshy

yshxx

y

x





*'

*'



























y

x

sh

sh

y

x

y

x

1

1

'

'

 What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx




'
'





















y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx




'
'
























y
x

y
x

10
01

'
'

 What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

y

x

tyy

txx





'

'

Only linear 2D transformations

can be represented with a 2x2 matrix

NO!

 Linear transformations are combinations of …
 Scale,

 Rotation,

 Shear, and

 Mirror

 Properties of linear transformations:
 Satisfies:

 Origin maps to origin

 Lines map to lines

 Parallel lines remain parallel

 Ratios are preserved

 Closed under composition

)()()(22112211 pppp TsTsssT 



























y

x

dc

ba

y

x

'

'

 Q: How can we represent translation as a 3x3 matrix?

y

x

tyy

txx





'

'

 Homogeneous
coordinates

 represent coordinates in 2
dimensions with a 3-vector

 















 








1

coords shomogeneou y

x

y

x

Homogeneous coordinates seem unintuitive, but they Homogeneous coordinates seem unintuitive, but they

make graphics operations make graphics operations muchmuch easiereasier

Homogeneous coordinates seem unintuitive, but they Homogeneous coordinates seem unintuitive, but they

make graphics operations make graphics operations muchmuch easiereasier

 Q: How can we represent translation as a 3x3 matrix?

 A: Using the rightmost column:



















100

10

01

y

x

t

t

ranslationT

y

x

tyy

txx





'

'

 Example of translation

 









































































11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2

ty = 1

Homogeneous CoordinatesHomogeneous Coordinates Homogeneous CoordinatesHomogeneous Coordinates

 Add a 3rd coordinate to every 2D point
 (x, y, w) represents a point at location (x/w, y/w)

 (x, y, 0) represents a point at infinity

 (0, 0, 0) is not allowed

Convenient coordinate

system to

represent many useful

transformations

1 2

1

2
(2,1,1) or (4,2,2) or (6,3,3)

x

y

 Basic 2D transformations as 3x3 matrices























































1100

0cossin

0sincos

1

'

'

y

x

y

x



















































1100

10

01

1

'

'

y

x

t

t

y

x

y

x



















































1100

01

01

1

'

'

y

x

sh

sh

y

x

y

x

Translate

Rotate Shear



















































1100

00

00

1

'

'

y

x

s

s

y

x

y

x

Scale

 Affine transformations are combinations of …
 Linear transformations, and

 Translations

 Properties of affine transformations:
 Origin does not necessarily map to origin

 Lines map to lines

 Parallel lines remain parallel

 Ratios are preserved

 Closed under composition












































w
y
x

fed
cba

w
y
x

100

'
'

 Projective transformations …
 Affine transformations, and

 Projective warps

 Properties of projective transformations:
 Origin does not necessarily map to origin

 Lines map to lines

 Parallel lines do not necessarily remain parallel

 Ratios are not preserved

 Closed under composition












































w
y
x

ihg
fed
cba

w
y
x

'

'
'

 2D Transformations

 Basic 2D transformations

 Matrix representation

 Matrix composition

 3D Transformations

 Basic 3D transformations

 Same as 2D

 Transformations can be combined by
matrix multiplication
























































































w

y
x

sy
sx

ty
tx

w

y
x

100

00
00

100
0cossin
0sincos

100

10
01

'

'
'

p’ = T(tx,ty) R() S(sx,sy) p

 Matrices are a convenient and efficient way to represent a

sequence of transformations
 General purpose representation

 Hardware matrix multiply

p’ = (T * (R * (S*p)))

p’ = (T*R*S) * p

 Be aware: order of transformations matters
 Matrix multiplication is not commutative

p’ = T * R * S * p

“Global” “Local”

 What if we want to rotate and translate?

 Ex: Rotate line segment by 45 degrees about endpoint
a
 and lengthen

a a

 Our line is defined by two endpoints
 Applying a rotation of 45 degrees, R(45), affects both points

 We could try to translate both endpoints to return endpoint a to its
original position, but by how much?

Wrong Correct

T(-3) R(45) T(3) R(45)

a
a

a

 Isolate endpoint a from rotation effects

 First translate line so a is at origin: T (-3)

 Then rotate line 45 degrees: R(45)

 Then translate back so a is where it was: T(3)

a

a

a

a

Will this sequence of operations work?Will this sequence of operations work?

Will this sequence of operations work?Will this sequence of operations work?

































































 















 

1

'

'

1100

010

301

100

0)45cos()45sin(

0)45sin()45cos(

100

010

301

y

x

y

x

a

a

a

a

 After correctly ordering the matrices

 Multiply matrices together

 What results is one matrix – store it (on stack)!

 Multiply this matrix by the vector of each vertex

 All vertices easily transformed with one matrix
 multiply

 2D Transformations

 Basic 2D transformations

 Matrix representation

 Matrix composition

 3D Transformations

 Basic 3D transformations

 Same as 2D

 Same idea as 2D transformations

 Homogeneous coordinates: (x,y,z,w)

 4x4 transformation matrices



















































w
z

y
x

ponm

lkji

hgfe
dcba

w
z

y
x

'
'

'
'



















































w
z
y
x

w
z
y
x

1000
0100
0010
0001

'
'
'

























































w

z

y

x

t

t

t

w

z

y

x

z

y

x

1000

100

010

001

'

'

'

























































w

z

y

x

s

s

s

w

z

y

x

z

y

x

1000

000

000

000

'

'

'



















































w
z
y
x

w
z
y
x

1000
0100
0010
0001

'
'
'

Identity Scale

Translation Mirror about Y/Z plane





















































w
z
y
x

w
z
y
x

1000
0100
00cossin
00sincos

'
'
'

Rotate around Z axis:





























































w

z

y

x

w

z

y

x

1000

0cos0sin

0010

0sin0cos

'

'

'

Rotate around Y axis:






















































w
z
y
x

w
z
y
x

1000
0cossin0
0sincos0
0001

'
'
'

Rotate around X axis:

 Q: How do you undo a rotation of q, R(q)?

 A: Apply the inverse of the rotation… R-1(q) = R(-q)

 How to construct R-1(q) = R(-q)
 Inside the rotation matrix: cos(q) = cos(-q)

 The cosine elements of the inverse rotation matrix are
unchanged

 The sign of the sine elements will flip

 Therefore… R-1(q) = R(-q) = RT(q)

 Coordinate systems
 World vs. modeling coordinates

 2-D and 3-D transformations
 Trigonometry and geometry

 Matrix representations

 Linear vs. affine transformations

 Matrix operations
 Matrix composition

