
Composite Transformations

Unit 2-Lecture 3

Composite Transformations

• Composite 2D Translation

),(

),(),(

2121

2211

yyxx

yxyx

tttt

ttttT

T

TT

100

10

01

100

10

01

100

10

01

21

21

1

1

2

2

yy

xx

y

x

y

x

tt

tt

t

t

t

t

Composite Transformations

• Composite 2D Scaling

),(

),(),(

2121

2211

yyxx

yxyx

ssss

ssssT

S

SS

100

00

00

100

00

00

100

00

00

21

21

1

1

2

2

yy

xx

y

x

y

x

ss

ss

s

s

s

s

Composite Transformations

• Composite 2D Rotation

)(

)()(

12

12

R

RRT

100

0)cos()sin(

0)sin()cos(

100

0cossin

0sincos

100

0cossin

0sincos

1212

1212

11

11

22

22

Composing Transformations

• Suppose we want,

• We have to compose two transformations

)90(R)3,(xT

Composing Transformations

• Matrix multiplication is not commutative

)3,()90()90()3,(xx TRRT

Translation

followed by

rotation

Translation

followed by

rotation

Composing Transformations

– R-to-L : interpret operations w.r.t. fixed coordinates

– L-to-R : interpret operations w.r.t local coordinates

)90()3,(RT xT

)90(R)3,(xT

)90(R)3,(xT

(Column major convention)

Pivot-Point Rotation

• Rotation with respect to a pivot point (x,y)

100

sin)cos1(cossin

sin)cos1(sincos

100

10

01

100

0cossin

0sincos

100

10

01

),()(),(

xy

yx

y

x

y

x

yxTRyxT

Fixed-Point Scaling

• Scaling with respect to a fixed point (x,y)

100

)1(0

)1(0

100

10

01

100

00

00

100

10

01

),(),(),(

yss

xss

y

x

s

s

y

x

yxTssSyxT

yy

xx

y

x

yx

Scaling Direction

• Scaling along an arbitrary axis

)(),()(1 RssSR yx

)(1 R),(yx ssS)(R

Properties of Affine Transformations

• Any affine transformation between 3D spaces can be

represented as a combination of a linear transformation

followed by translation

• An affine transf. maps lines to lines

• An affine transf. maps parallel lines to parallel lines

• An affine transf. preserves ratios of distance along a line

• An affine transf. does not preserve absolute distances

and angles

Review of Affine Frames

• A frame is defined as a set of vectors {vi | i=1, …, N}

and a point o

– Set of vectors {vi} are bases of the associate vector

space

– o is an origin of the frame

– N is the dimension of the affine space

– Any point p can be written as

– Any vector v can be written as

NNccc vvvop 2211

NNccc vvvv 2211

Changing Frames

• Affine transformations as a change of frame

 yx,

0v

1v

11

1010

1010

y

x

y

x

yxyx

ovvovv

ovvovv

0v

1v

o

o

Changing Frames

• Affine transformations as a change of frame

ovvo

vvv

vvv

100

11001

11000

cc

bb

aa

11001

11001

111

000

111

000

1010

y

x

cba

cba

y

x

y

x

cba

cba

y

x

ovvovv

 yx,

0v

1v
0v

1v

o

o

Changing Frames

• In case the xyz system has standard bases

Rigid Transformations

• A rigid transformation T is a mapping between

affine spaces

– T maps vectors to vectors, and points to points

– T preserves distances between all points

– T preserves cross product for all vectors (to avoid

reflection)

• In 3-spaces, T can be represented as

1det and

 where,)(131333

RIRRRR

TpRp

TT

T

Rigid Body Rotation

• Rigid body transformations allow only rotation

and translation

• Rotation matrices form SO(3)

– Special orthogonal group

IRRRR TT

1det R

(Distance preserving)

(No reflection)

Rigid Body Rotation

• R is normalized
– The squares of the elements in any row or column

sum to 1

• R is orthogonal
– The dot product of any pair of rows or any pair

columns is 0

• The rows (columns) of R correspond to the
vectors of the principle axes of the rotated
coordinate frame

IRRRR TT

3D Rotation About Arbitrary Axis

3D Rotation About Arbitrary Axis

1. Translation : rotation axis passes through the
origin

2. Make the rotation axis on the z-axis

3. Do rotation

4. Rotation & translation

),,(111 zyxT

)()(yx RR

)(zR

)()(
111

 xy RRT

3D Rotation About Arbitrary Axis

• Rotate u onto the z-axis

3D Rotation About Arbitrary Axis

• Rotate u onto the z-axis

– u’: Project u onto the yz-plane to compute angle

– u’’: Rotate u about the x-axis by angle

– Rotate u’’ onto the z-axis

3D Rotation About Arbitrary Axis

• Rotate u’ about the x-axis onto the z-axis

– Let u=(a,b,c) and thus u’=(0,b,c)

– Let uz=(0,0,1)

22
cos

cb

c

z

z

uu

uu

bx

zxz

u

uuuuu sin
22

sin
cb

bb

z

uu

3D Rotation About Arbitrary Axis

• Rotate u’ about the x-axis onto the z-axis
– Since we know both cos and sin , the rotation

matrix can be obtained

– Or, we can compute the signed angle

– Do not use acos() since its domain is limited to [-1,1]

1000

00

00

0001

)(

2222

2222

cb

c

cb

b
cb

b

cb

c

x R

),(atan2
2222 cb

b

cb

c

Euler angles

• Arbitrary orientation can be represented by three

rotation along x,y,z axis

1000

0

0

0CS-SSCCC

)()()(),,(

CCSCS

SCCSSCCSSSCS

SSCSC

RRRR xyzXYZ

Gimble

• Hardware implementation of Euler angles

• Aircraft, Camera

Euler Angles

• Rotation about three
orthogonal axes
– 12 combinations

• XYZ, XYX, XZY, XZX

• YZX, YZY, YXZ, YXY

• ZXY, ZXZ, ZYX, ZYZ

• Gimble lock

– Coincidence of inner most
and outmost gimbles’ rotation
axes

– Loss of degree of freedom

Euler Angles

• Euler angles are ambiguous

– Two different Euler angles can represent the same

orientation

– This ambiguity brings unexpected results of animation

where frames are generated by interpolation.

),
2

,0 and)0,
2

, 21

 (R(θ),r,r(rR zyx

Taxonomy of Transformations

• Linear transformations
– 3x3 matrix

– Rotation + scaling + shear

• Rigid transformations
– SO(3) for rotation

– 3D vector for translation

• Affine transformation
– 3x3 matrix + 3D vector or 4x4 homogenous matrix

– Linear transformation + translation

• Projective transformation
– 4x4 matrix

– Affine transformation + perspective projection

Taxonomy of Transformations

Projective

Affine

Rigid

Composition of Transforms

• What is the composition of linear/affine/rigid

transformations ?

• What is the linear (or affine) combination of

linear (or affine) transformations ?

• What is the linear (or affine) combination of rigid

transformations ?

OpenGL Geometric Transformations

• glMatrixMode(GL_MODELVIEW);

OpenGL Geometric Transformations

• Construction

– glLoadIdentity();

– glTranslatef(tx, ty, tz);

– glRotatef(theta, vx, vy, vz);

• (vx, vy, vz) is automatically normalized

– glScalef(sx, sy, sz);

– glLoadMatrixf(Glfloat elems[16]);

• Multiplication

– glMultMatrixf(Glfloat elems[16]);

– The current matrix is postmultiplied by the matrix

– Row major

Hierarchical Modeling

• A hierarchical model is created by nesting the

descriptions of subparts into one another to form a tree

organization

OpenGL Matrix Stacks

• Four matrix modes

– Modelview, projection, texture, and color

– glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH,
stackSize);

• Stack processing

– The top of the stack is the “current” matrix

– glPushMatrix(); // Duplicate the current matrix at the top

– glPopMatrix(); // Remove the matrix at the top

Programming Assignment #1

• Create a hierarchical model using matrix stacks

• The model should consists of three-dimensional
primitives such as polygons, boxes, cylinders,
spheres and quadrics.

• The model should have a hierarchy of at least
three levels

• Animate the model to show the hierarchical
structure
– Eg) a car driving with rotating wheels

– Eg) a runner with arms and legs swing

• Make it aesthetically pleasing or technically
illustrative

