Composite Transformations

Unit 2-Lecture 3

Composite Transformations

- Composite 2D Translation

$$
\begin{aligned}
& T=\mathbf{T}\left(t_{x 1}, t_{y 1}\right) \cdot \mathbf{T}\left(t_{x 2}, t_{y 2}\right) \\
&=\mathbf{T}\left(t_{x 1}+t_{x 2}, t_{y 1}+t_{y 2}\right) \\
&\left(\begin{array}{ccc}
1 & 0 & t_{x 2} \\
0 & 1 & t_{y 2} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & t_{x 1} \\
0 & 1 & t_{y 1} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & t_{x 1}+t_{x 2} \\
0 & 1 & t_{y 1}+t_{y 2} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Composite Transformations

- Composite 2D Scaling

$$
\begin{aligned}
T & =\mathbf{S}\left(s_{x 1}, s_{y 1}\right) \cdot \mathbf{S}\left(s_{x 2}, s_{y 2}\right) \\
& =\mathbf{S}\left(s_{x 1} s_{x 2}, s_{y 1} s_{y 2}\right)
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
s_{x 2} & 0 & 0 \\
0 & s_{y 2} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
s_{x 1} & 0 & 0 \\
0 & s_{y 1} & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
s_{x 1} \cdot s_{x 2} & 0 & 0 \\
0 & s_{y 1} \cdot s_{y 2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Composite Transformations

- Composite 2D Rotation

$$
\begin{aligned}
T & =\mathbf{R}\left(\theta_{2}\right) \cdot \mathbf{R}\left(\theta_{1}\right) \\
& =\mathbf{R}\left(\theta_{2}+\theta_{1}\right)
\end{aligned}
$$

$\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}\cos \left(\theta_{2}+\theta_{1}\right) & -\sin \left(\theta_{2}+\theta_{1}\right) & 0 \\ \sin \left(\theta_{2}+\theta_{1}\right) & \cos \left(\theta_{2}+\theta_{1}\right) & 0 \\ 0 & 0 & 1\end{array}\right)$

Composing Transformations

- Suppose we want,

- We have to compose two transformations

Composing Transformations

- Matrix multiplication is not commutative

$$
\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right) \neq \mathbf{R}\left(-90^{\circ}\right) \mathbf{T}(x, 3)
$$

Translation followed by rotation

Composing Transformations

$$
T=\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right)
$$

(Column major convention)

- R-to-L : interpret operations w.r.t. fixed coordinates

- L-to-R : interpret operations w.r.t local coordinates

Pivot-Point Rotation

- Rotation with respect to a pivot point (x, y)

$$
\begin{aligned}
& T(x, y) \cdot R(\theta) \cdot T(-x,-y) \\
& =\left(\begin{array}{ccc}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & -x \\
0 & 1 & -y \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & x(1-\cos \theta)+y \sin \theta \\
\sin \theta & \cos \theta & y(1-\cos \theta)-x \sin \theta \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(a)

(b)

(c)

(d)

Fixed-Point Scaling

- Scaling with respect to a fixed point (x,y)

$$
\begin{aligned}
& T(x, y) \cdot S\left(s_{x}, s_{y}\right) \cdot T(-x,-y) \\
& =\left(\begin{array}{ccc}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & -x \\
0 & 1 & -y \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
s_{x} & 0 & \left(1-s_{x}\right) \cdot x \\
0 & s_{y} & \left(1-s_{y}\right) \cdot y \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(a)

(b)

(c)

(d)

Scaling Direction

- Scaling along an arbitrary axis

$$
R^{-1}(\theta) \cdot S\left(s_{x}, s_{y}\right) \cdot R(\theta)
$$

$R(\theta)$

$$
S\left(s_{x}, s_{y}\right)
$$

$R^{-1}(\theta)$

Properties of Affine Transformations

- Any affine transformation between 3D spaces can be represented as a combination of a linear transformation followed by translation
- An affine transf. maps lines to lines
- An affine transf. maps parallel lines to parallel lines
- An affine transf. preserves ratios of distance along a line
- An affine transf. does not preserve absolute distances and angles

Review of Affine Frames

- A frame is defined as a set of vectors $\left\{\mathbf{v}_{i} \mid i=1, \ldots, N\right\}$ and a point 0
- Set of vectors $\{\mathbf{v}\}$ are bases of the associate vector space
- \mathbf{o} is an origin of the frame
$-N$ is the dimension of the affine space
- Any point \mathbf{p} can be written as

$$
\mathbf{p}=\mathbf{0}+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{N} \mathbf{v}_{N}
$$

- Any vector \mathbf{v} can be written as

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{N} \mathbf{v}_{N}
$$

Changing Frames

- Affine transformations as a change of frame

Changing Frames

- Affine transformations as a change of frame

$$
\begin{aligned}
& \mathbf{v}_{1 \uparrow}(x, y) \xrightarrow[\mathbf{o}^{\prime}]{\mathbf{v}_{1}^{\prime}} \mathbf{v}_{0}^{\prime} \\
& \mathbf{v}_{0}=a_{0} \mathbf{v}_{0}^{\prime}+a_{1} \mathbf{v}_{1}^{\prime} \\
& \mathbf{v}_{1}=b_{0} \mathbf{v}_{0}^{\prime}+b_{1} \mathbf{v}_{1}^{\prime} \\
& \mathbf{0}=c_{0} \mathbf{v}_{0}^{\prime}+c_{1} \mathbf{v}^{\prime}+\mathbf{o}^{\prime} \\
& \left(\begin{array}{lll}
\mathbf{v}_{0}^{\prime} & \mathbf{v}_{1}^{\prime} & 0
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
\mathbf{v}_{0}^{\prime} & \mathbf{v}_{1}^{\prime} & \mathbf{o}
\end{array}\right)\left(\begin{array}{ccc}
a_{0} & b_{0} & c_{0} \\
a_{1} & b_{1} & c_{1} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \\
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
a_{0} & b_{0} & c_{0} \\
a_{1} & b_{1} & c_{1} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
\end{aligned}
$$

Changing Frames

- In case the xyz system has standard bases

FIGURE 5-54 An $x^{\prime} y^{\prime} z^{\prime}$ coordinate system defined within an $x y z$ system. A scene description is transferred to the new coordinate reference using a transformation sequence that superimposes the $x^{\prime} y^{\prime} z^{\prime}$ frame on the $x y z$ axes.

Rigid Transformations

- A rigid transformation T is a mapping between affine spaces
- T maps vectors to vectors, and points to points
- T preserves distances between all points
- T preserves cross product for all vectors (to avoid reflection)
- In 3-spaces, T can be represented as

$$
\begin{gathered}
T(\mathbf{p})=\mathbf{R}_{3 \times 3} \mathbf{p}_{3 \times 1}+\mathbf{T}_{3 \times 1}, \quad \text { where } \\
\mathbf{R R}^{T}=\mathbf{R}^{T} \mathbf{R}=\mathbf{I} \quad \text { and } \quad \operatorname{det} \mathbf{R}=1
\end{gathered}
$$

Rigid Body Rotation

- Rigid body transformations allow only rotation and translation
- Rotation matrices form $\mathrm{SO}(3)$
- Special orthogonal group

(Distance preserving)
(No reflection)

Rigid Body Rotation

- R is normalized
- The squares of the elements in any row or column sum to 1
- \mathbf{R} is orthogonal $\mathbf{R R}^{T}=\mathbf{R}^{T} \mathbf{R}=\mathbf{I}$
- The dot product of any pair of rows or any pair columns is 0
- The rows (columns) of R correspond to the vectors of the principle axes of the rotated coordinate frame

3D Rotation About Arbitrary Axis

Step 4
Rotate the Axis to its Original Orientation

Step 5
Translate the
Rotation Axis to its Original

Position

3D Rotation About Arbitrary Axis

1. Translation : rotation axis passes through the origin

$$
T\left(-x_{1},-y_{1},-z_{1}\right)
$$

2. Make the rotation axis on the z-axis

$$
R_{x}(\alpha) \cdot R_{y}(\beta)
$$

3. Do rotation $R_{z}(\theta)$
4. Rotation \& translation

$$
T^{-1} \cdot R_{y}^{-1}(\beta) \cdot R_{x}^{-1}(\alpha)
$$

3D Rotation About Arbitrary Axis

- Rotate u onto the z-axis

(a)

(b)

FIGURE 5-45 Unit vector \mathbf{u} is rotated about the x axis to bring it into the $x z$ plane (a), then it is rotated around the y axis to align it with the z axis (b).

3D Rotation About Arbitrary Axis

- Rotate u onto the z-axis
- u': Project \mathbf{u} onto the yz-plane to compute angle α
- u": Rotate u about the x-axis by angle α
- Rotate u'" onto the z-axis

FIGURE 5-46 Rotation of \mathbf{u} around the x axis into the $x z$ plane is accomplished by rotating \mathbf{u}^{\prime} (the projection of \mathbf{u} in the $y z$ plane) through angle α onto the z axis.

FIGURE 5 -47 Rotation of unit vector $\mathbf{u}^{\prime \prime}$ (vector \mathbf{u} after rotation into the $x z$ plane) about the y axis. Positive rotation angle β aligns $\mathbf{u}^{\prime \prime}$ with vector \mathbf{u}_{z}.

3D Rotation About Arbitrary Axis

- Rotate u' about the x-axis onto the z-axis
- Let $\mathbf{u}=(a, b, c)$ and thus $\mathbf{u}^{\prime}=(0, b, c)$
- Let $\mathbf{u}_{\mathbf{z}}=(0,0,1)$

$$
\cos \alpha=\frac{\mathbf{u}^{\prime} \cdot \mathbf{u}_{z}}{\left\|\mathbf{u}^{\prime}\right\|\left\|\mathbf{u}_{z}\right\|}=\frac{c}{\sqrt{b^{2}+c^{2}}}
$$

$\begin{aligned} \mathbf{u}^{\prime} \times \mathbf{u}_{z} & =\mathbf{u}_{x}\left\|\mathbf{u}^{\prime}\right\|\left\|\mathbf{u}_{z}\right\| \sin \alpha \longrightarrow \sin \alpha=\frac{b}{\left\|\mathbf{u}^{\prime}\right\|\left\|\mathbf{u}_{z}\right\|}=\frac{b}{\sqrt{b^{2}+c^{2}}} \\ & =\mathbf{u}_{x} \cdot b\end{aligned}$

3D Rotation About Arbitrary Axis

- Rotate u' about the x-axis onto the z-axis
- Since we know both $\cos \alpha$ and $\sin \alpha$, the rotation matrix can be obtained

$$
\mathbf{R}_{x}(\alpha)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{c}{\sqrt{b^{2}+c^{2}}} & \frac{-b}{\sqrt{b^{2}+c^{2}}} & 0 \\
0 & \frac{b}{\sqrt{b^{2}+c^{2}}} & \frac{c}{\sqrt{b^{2}+c^{2}}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Or, we can compute the signed angle α

$$
\operatorname{atan} 2\left(\frac{c}{\sqrt{b^{2}+c^{2}}}, \frac{b}{\sqrt{b^{2}+c^{2}}}\right)
$$

- Do not use $\operatorname{acos()}$ since its domain is limited to $[-1,1]$

Euler angles

- Arbitrary orientation can be represented by three rotation along x, y, z axis

$$
\begin{aligned}
& R_{X Y Z}(\gamma, \beta, \alpha)=R_{z}(\alpha) R_{y}(\beta) R_{x}(\gamma) \\
& \quad=\left[\begin{array}{cccc}
\mathrm{C} \alpha \mathrm{C} \beta & \mathrm{C} \alpha \mathrm{~S} \beta \mathrm{~S} \gamma-\mathrm{S} \alpha \mathrm{C} \gamma & C \alpha S \beta C \gamma+S \alpha S \gamma & 0 \\
S \alpha C \beta & S \alpha S \beta S \gamma+C \alpha C \gamma & S \alpha S \beta C \gamma-C \alpha S \gamma & 0 \\
-S \beta & C \beta S \gamma & C \beta C \gamma & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Gimble

- Hardware implementation of Euler angles
- Aircraft, Camera

Figure 2.1-24. IMU Gimbal Assembly

Euler Angles

- Rotation about three orthogonal axes
- 12 combinations
- XYZ, XYX, XZY, XZX
- YZX, YZY, YXZ, YXY
- ZXY, ZXZ, ZYX, ZYZ
- Gimble lock
- Coincidence of inner most and outmost gimbles' rotation axes
- Loss of degree of freedom

Euler Angles

- Euler angles are ambiguous
- Two different Euler angles can represent the same orientation

$$
R_{1}=\left(r_{x}, r_{y}, r_{z}\right)=\left(\theta, \frac{\pi}{2}, 0\right) \quad \text { and } \quad R_{2}=\left(0, \frac{\pi}{2},-\theta\right)
$$

- This ambiguity brings unexpected results of animation where frames are generated by interpolation.

Taxonomy of Transformations

- Linear transformations
- 3×3 matrix
- Rotation + scaling + shear
- Rigid transformations
- SO(3) for rotation
- 3D vector for translation
- Affine transformation
-3×3 matrix $+3 D$ vector or 4×4 homogenous matrix
- Linear transformation + translation
- Projective transformation
-4×4 matrix
- Affine transformation + perspective projection

Taxonomy of Transformations

Rigid

Affine

Projective

Composition of Transforms

- What is the composition of linear/affine/rigid transformations ?
- What is the linear (or affine) combination of linear (or affine) transformations ?
- What is the linear (or affine) combination of rigid transformations?

OpenGL Geometric Transformations

- glMatrixMode(GL_MODELVIEW);

OpenGL Geometric Transformations

- Construction
- glLoadIdentity();
- glTranslatef(tx, ty, tz);
- glRotatef(theta, vx, vy, vz);
- (vx, vy, vz) is automatically normalized
- glScalef(sx, sy, sz);
- glLoadMatrixf(Glfloat elems[16]);
- Multiplication
- glMultMatrixf(Glfloat elems[16]);
- The current matrix is postmultiplied by the matrix
- Row major

Hierarchical Modeling

- A hierarchical model is created by nesting the descriptions of subparts into one another to form a tree organization

[^0]
OpenGL Matrix Stacks

- Four matrix modes
- Modelview, projection, texture, and color
- glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH, stackSize);
- Stack processing
- The top of the stack is the "current" matrix
- glPushMatrix(); // Duplicate the current matrix at the top
- glPopMatrix(); // Remove the matrix at the top

Programming Assignment \#1

- Create a hierarchical model using matrix stacks
- The model should consists of three-dimensional primitives such as polygons, boxes, cylinders, spheres and quadrics.
- The model should have a hierarchy of at least three levels
- Animate the model to show the hierarchical structure
- Eg) a car driving with rotating wheels
- Eg) a runner with arms and legs swing
- Make it aesthetically pleasing or technically illustrative

[^0]: FIGURE 14-4
 An object hierarchy generated using the PHIGS Toolkit package developed at the University of Manchester. The displayed object tree is itself a PHIGS structure. (Courtesy of T. L. J. Howard, J. G. Williams, and W. T. Hewitt, Department of Computer Science, University of Manchester, United Kingdom.)

