
Composite Transformations 

Unit 2-Lecture 3 



Composite Transformations 

• Composite 2D Translation 
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Composite Transformations 

• Composite 2D Scaling 
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Composite Transformations 

• Composite 2D Rotation 
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Composing Transformations 

• Suppose we want, 

 

 

 

 

• We have to compose two transformations 

)90( R )3,(xT



Composing Transformations 

• Matrix multiplication is not commutative 

)3,()90()90()3,( xx TRRT 

Translation 

followed by 

rotation 

Translation 

followed by 

rotation 



Composing Transformations 

 

 

– R-to-L : interpret operations w.r.t. fixed coordinates 

 

 

 

 

– L-to-R : interpret operations w.r.t local coordinates 

)90()3,(  RT xT

)90( R )3,(xT

)90( R)3,(xT

(Column major convention) 



Pivot-Point Rotation 

• Rotation with respect to a pivot point (x,y) 
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Fixed-Point Scaling 

• Scaling with respect to a fixed point (x,y) 
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Scaling Direction 

• Scaling along an arbitrary axis 
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Properties of Affine Transformations 

• Any affine transformation between 3D spaces can be 

represented as a combination of a linear transformation 

followed by translation 

 

• An affine transf. maps lines to lines 

 

• An affine transf. maps parallel lines to parallel lines 

 

• An affine transf. preserves ratios of distance along a line 

 

• An affine transf. does not preserve absolute distances 

and angles 



Review of Affine Frames 

• A frame is defined as a set of vectors {vi | i=1, …, N} 

and a point o 

– Set of vectors {vi} are bases of the associate vector 

space 

– o is an origin of the frame 

– N is the dimension of the affine space 

– Any point p can be written as 

 

 

– Any vector v can be written as 

NNccc vvvop  2211

NNccc vvvv  2211



Changing Frames 

• Affine transformations as a change of frame 
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Changing Frames 

• Affine transformations as a change of frame 
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Changing Frames 

• In case the xyz system has standard bases 



Rigid Transformations 

• A rigid transformation T is a mapping between 

affine spaces 

– T maps vectors to vectors, and points to points 

– T preserves distances between all points 

– T preserves cross product for all vectors (to avoid 

reflection) 

• In 3-spaces, T can be represented as 
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Rigid Body Rotation 

• Rigid body transformations allow only rotation 

and translation 

 

• Rotation matrices form SO(3) 

– Special orthogonal group 

IRRRR  TT

1det R

(Distance preserving) 

(No reflection) 



Rigid Body Rotation 

• R is normalized 
– The squares of the elements in any row or column 

sum to 1 

 

• R is orthogonal 
– The dot product of any pair of rows or any pair 

columns is 0 

 

• The rows (columns) of R correspond to the 
vectors of the principle axes of the rotated 
coordinate frame 
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3D Rotation About Arbitrary Axis 



3D Rotation About Arbitrary Axis 

1. Translation : rotation axis passes through the 
origin 

 

2. Make the rotation axis on the z-axis 

 

 

3. Do rotation 

 

4. Rotation & translation 
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3D Rotation About Arbitrary Axis 

• Rotate u onto the z-axis 



3D Rotation About Arbitrary Axis 

• Rotate u onto the z-axis 

– u’: Project u onto the yz-plane to compute angle  

– u’’: Rotate u about the x-axis by angle  

– Rotate u’’ onto the z-axis 



3D Rotation About Arbitrary Axis 

• Rotate u’ about the x-axis onto the z-axis 

– Let u=(a,b,c) and thus u’=(0,b,c) 

– Let uz=(0,0,1)  
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3D Rotation About Arbitrary Axis 

• Rotate u’ about the x-axis onto the z-axis 
– Since we know both cos  and sin , the rotation 

matrix can be obtained 

 

 

 

 

 

– Or, we can compute the signed angle   

 

 

– Do not use acos() since its domain is limited to [-1,1] 
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Euler angles 

• Arbitrary orientation can be represented by three 

rotation along x,y,z axis 
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Gimble 

• Hardware implementation of Euler angles 

• Aircraft, Camera 



Euler Angles 

• Rotation about three 
orthogonal axes 
– 12 combinations 

• XYZ, XYX, XZY, XZX 

• YZX, YZY, YXZ, YXY 

• ZXY, ZXZ, ZYX, ZYZ 

 

• Gimble lock 

– Coincidence of inner most 
and outmost gimbles’ rotation 
axes 

– Loss of degree of freedom 



Euler Angles 

• Euler angles are ambiguous 

– Two different Euler angles can represent the same 

orientation 

 

 

 

– This ambiguity brings unexpected results of animation 

where frames are generated by interpolation. 
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Taxonomy of Transformations 

• Linear transformations 
– 3x3 matrix 

– Rotation + scaling + shear 

• Rigid transformations 
– SO(3) for rotation 

– 3D vector for translation 

• Affine transformation 
– 3x3 matrix + 3D vector or 4x4 homogenous matrix 

– Linear transformation + translation 

• Projective transformation 
– 4x4 matrix 

– Affine transformation + perspective projection 



Taxonomy of Transformations 

Projective  

Affine  

Rigid  



Composition of Transforms 

• What is the composition of linear/affine/rigid 

transformations ? 

 

• What is the linear (or affine) combination of 

linear (or affine) transformations ? 

 

• What is the linear (or affine) combination of rigid 

transformations ? 



OpenGL Geometric Transformations 

• glMatrixMode(GL_MODELVIEW); 



OpenGL Geometric Transformations 

• Construction 

– glLoadIdentity(); 

– glTranslatef(tx, ty, tz); 

– glRotatef(theta, vx, vy, vz); 

• (vx, vy, vz) is automatically normalized 

– glScalef(sx, sy, sz); 

– glLoadMatrixf(Glfloat elems[16]); 

• Multiplication 

– glMultMatrixf(Glfloat elems[16]); 

– The current matrix is postmultiplied by the matrix  

– Row major 



Hierarchical Modeling 

• A hierarchical model is created by nesting the 

descriptions of subparts into one another to form a tree 

organization 



OpenGL Matrix Stacks 

• Four matrix modes 

– Modelview, projection, texture, and color 

– glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH, 
stackSize); 

 

• Stack processing 

– The top of the stack is the “current” matrix 

– glPushMatrix(); // Duplicate the current matrix at the top 

– glPopMatrix();  // Remove the matrix at the top 



Programming Assignment #1 

• Create a hierarchical model using matrix stacks 

• The model should consists of three-dimensional 
primitives such as polygons, boxes, cylinders, 
spheres and quadrics. 

• The model should have a hierarchy of at least 
three levels 

• Animate the model to show the hierarchical 
structure 
– Eg) a car driving with rotating wheels 

– Eg) a runner with arms and legs swing 

• Make it aesthetically pleasing or technically 
illustrative 


