
Viewing pipeline

Unit 2 – Lecture 5

The Story So Far ...Lecture 2

• We have seen how we can model objects, by
transforming them from their local colocal co--
ordinate representation ordinate representation into a world coworld co--
ordinate systemordinate system

modelling

co-ordinates

world

co-ordinates MODELLING

TRANSFORMATION

The Story So Far...Lecture 3

• And we have seen how we can transform from
a special viewing cospecial viewing co--ordinate system ordinate system (camera
on z-axis pointing along the axis) into a
projection coprojection co--ordinate systemordinate system

viewing

co-ordinates

projection

co-ordinates PROJECTION

TRANSFORMATION

Completing the Pipeline - Lecture 4

• We now need to fill in the missing part

to get

world

co-ordinates

viewing
co-ordinates VIEWING

TRANSFORMATION

mod’g
co-ords

world
co-ords

view’g
co-ords

proj’n
co-ords

Viewing Coordinate System - View
Reference Point

• In our world co-ordinate
system, we need to specify a
view reference point view reference point -- this will
become the origin of the view
co-ordinate system

• This can be any convenient
point, along the camera
direction from the camera
position
– indeed one possibility is the

camera position camera position itself

xW

yW

zW

P0

Viewing Coordinate System -
View Plane Normal

Viewing Coordinate System -
View Plane Normal

xW

yW

zW

P0

N

xW

yW

zW

P0

Q

 Next we need to specify the
view plane normal, N view plane normal, N - this
will give the camera
direction, or z-axis direction

 Some graphics systems
require you to specify N ...

 ... others (including OpenGL)
allow you to specify a ‘look look
atat’ point, Q, from which N is
calculated as direction to
the ‘look at’ point from the
view reference point

Viewing Coordinate System -
View Up Direction

Viewing Coordinate System -
View Up Direction

 Finally we need to specify
the viewview--up direction, V up direction, V -
this will give the y-axis
direction

xW

yW

zW

P0

N

V

Viewing Co-ordinate System

• This gives us a view reference
point P0,and vectors N
(corresponding to zV) and V
(corresponding to yV)

• We can construct a vector U
perpendicular to both V and N,
and this will correspond to the xV
axis

• How?

xW

yW

zW

P0

N

V

U

Transformation from World to Viewing
Co-ordinates

• Given an object with positions defined in
world co-ordinates, we need to calculate the
transformation to viewing co-ordinates

• The view reference point must be transformed
to the origin, and lines along the U, V, N
directions must be transformed to lie along
the x, y, z directions

Transformation from World to Viewing
Co-ordinates

• Translate so that P0 lies at the origin

xW

yW

zW

P0

- apply translation by (-x0, -y0, -z0)

(x0, y0, z0)

T =

1 0 0 -x0
0 1 0 -y0

0 0 1 -z0

0 0 0 1

V

U

N

Transformation from World to Viewing
Co-ordinates

• Apply rotations so that the U, V and N axes are
aligned with the xW, yW and zW directions

• This involves three rotations Rx, then Ry, then
Rz
– first rotate around xW to bring N into the xW-zW

plane

– second, rotate around yW to align N with zW

– third, rotate around zW to align V with yW

• Composite rotation R = Rz. Ry. Rx

Rotation Matrix

• Fortunately there is an easy way to calculate
R, from U, V and N:

R = u1 u2 u3 0

v1 v2 v3 0

n1 n2 n3 0

0 0 0 1

where U = (u1 u2 u3)
T etc

Viewing Transformation

• Thus the viewing transformation is:

M = R . T

• This transforms object positions in world co-
ordinates to positions in the viewing co-
ordinate system..

.. with camera pointing along negative z-axis at a
view plane parallel to x-y plane

• We can then apply the projection
transformation

Viewing Pipeline So Far

• We now should understand this viewing
pipeline

mod’g

co-ords

world

co-ords

view’g

co-ords

proj’n

co-ords

Clipping

• Next we need to understand how the clipping
to the view volume is performed

• Recall that with perspective projection we
defined a view frustum outside of which we
wanted to clip points and lines, etc

• The next slide is from lecture 3 ...

View Frustum - Perspective
Projection

View Frustum - Perspective
Projection

view window

back

plane

front

plane

camera

view frustum

zV

Clipping to View Frustum

• It is quite easy to clip lines to the front and
back planes (just clip in z)..

• .. but it is difficult to clip to the sides
because they are ‘sloping’ planes

• Instead we carry out the projection first
which converts the frustum to a
rectangular parallelepiped (ie a cuboid)

Clipping for Parallel Projection

• In the parallel projection case, the viewing
volume is already a rectangular parallelepiped

view window

back

plane

front

plane
zV

view volume

Normalized Projection
Co-ordinates

• Final step before clipping is to normalizenormalize the
co-ordinates of the rectangular parallelepiped
to some standard shape

– for example, in some systems, it is the cube with
limits +1 and -1 in each direction

• This is just a scalescale transformation

• Clipping is then carried out against this
standard shape

Viewing Pipeline So Far

• Our pipeline now looks like:

mod’g

co-ords

world

co-ords

view’g

co-ords

proj’n

co-ords

normalized

projection

co-ordinates NORMALIZATION

TRANSFORMATION

And finally...

• The last step is to position the picture on the
display surface

• This is done by a viewport transformation viewport transformation
where the normalized projection co-ordinates
are transformed to display co-ordinates, ie
pixels on the screen

Viewing Pipeline - The End

• A final viewing pipeline is therefore:

mod’g

co-ords

world

co-ords

view’g

co-ords

proj’n

co-ords

normalized

projection

co-ordinates

device

co-ordinates

DEVICE

TRANSFORMATION

