Viewing pipeline

Unit 2 - Lecture 5

The Story So Far ...Lecture 2

- We have seen how we can model objects, by transforming them from their local coordinate representation into a world coordinate system

The Story So Far...Lecture 3

- And we have seen how we can transform from a special viewing co-ordinate system (camera on z -axis pointing along the axis) into a projection co-ordinate system

Completing the Pipeline - Lecture 4

- We now need to fill in the missing part

to get

Viewing Coordinate System - View Reference Point

- In our world co-ordinate system, we need to specify a view reference point - this will become the origin of the view co-ordinate system
- This can be any convenient point, along the camera direction from the camera position
- indeed one possibility is the camera position itself

Viewing Coordinate System View Plane Normal

- Next we need to specify the view plane normal, \mathbf{N} - this will give the camera direction, or z-axis direction
■ Some graphics systems require you to specify N ...
- ... others (including OpenGL) allow you to specify a 'look at' point, \mathbf{Q}, from which \mathbf{N} is calculated as direction to the 'look at' point from the view reference point

Viewing Coordinate System View Up Direction

Finally we need to specify the view-up direction, V this will give the y-axis direction

Viewing Co-ordinate System

- This gives us a view reference point P_{0}, and vectors N (corresponding to z_{V}) and V (corresponding to y_{V})
- We can construct a vector U perpendicular to both V and N , and this will correspond to the X_{V} axis

- How?

Transformation from World to Viewing Co-ordinates

- Given an object with positions defined in world co-ordinates, we need to calculate the transformation to viewing co-ordinates
- The view reference point must be transformed to the origin, and lines along the $\mathrm{U}, \mathrm{V}, \mathrm{N}$ directions must be transformed to lie along the x, y, z directions

Transformation from World to Viewing Co-ordinates

- Translate so that P_{0} lies at the origin

- apply translation by $\left(-x_{0},-y_{0},-z_{0}\right) \quad T=\left[\begin{array}{cccc}1 & 0 & 0 & -x_{0} \\ 0 & 1 & 0 & -y_{0} \\ 0 & 0 & 1 & -z_{0} \\ 0 & 0 & 0 & 1\end{array}\right]$

Transformation from World to Viewing Co-ordinates

- Apply rotations so that the U, V and N axes are aligned with the x_{w}, y_{w} and z_{w} directions
- This involves three rotations $R x$, then $R y$, then Rz
- first rotate around x_{w} to bring N into the $x_{w}-z_{w}$ plane
- second, rotate around y_{w} to align N with z_{w}
- third, rotate around z_{w} to align V with y_{w}
- Composite rotation $\mathrm{R}=\mathrm{Rz}$. Ry. Rx

Rotation Matrix

- Fortunately there is an easy way to calculate R, from U, V and N :

$$
R=\left[\begin{array}{llll}
u_{1} & u_{2} & u_{3} & 0 \\
v_{1} & v_{2} & v_{3} & 0 \\
n_{1} & n_{2} & n_{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

where $U=\left(\begin{array}{lll}U_{1} & U_{2} & U_{3}\end{array}\right)^{\top}$ etc

Viewing Transformation

- Thus the viewing transformation is:

$$
\mathrm{M}=\mathrm{R} \cdot \mathrm{~T}
$$

- This transforms object positions in world coordinates to positions in the viewing coordinate system..
.. with camera pointing along negative z-axis at a view plane parallel to $x-y$ plane
- We can then apply the projection transformation

Viewing Pipeline So Far

- We now should understand this viewing pipeline

Clipping

- Next we need to understand how the clipping to the view volume is performed
- Recall that with perspective projection we defined a view frustum outside of which we wanted to clip points and lines, etc
- The next slide is from lecture 3 ...

View Frustum - Perspective Projection

Clipping to View Frustum

- It is quite easy to clip lines to the front and back planes (just clip in z)..
- .. but it is difficult to clip to the sides because they are 'sloping' planes
- Instead we carry out the projection first which converts the frustum to a rectangular parallepiped (ie a cuboid)

Clipping for Parallel Projection

- In the parallel projection case, the viewing volume is already a rectangular parallelepiped

Normalized Projection Co-ordinates

- Final step before clipping is to normalize the co-ordinates of the rectangular parallelepiped to some standard shape
- for example, in some systems, it is the cube with limits +1 and -1 in each direction
- This is just a scale transformation
- Clipping is then carried out against this standard shape

Viewing Pipeline So Far

- Our pipeline now looks like:

And finally...

- The last step is to position the picture on the display surface
- This is done by a viewport transformation where the normalized projection co-ordinates are transformed to display co-ordinates, ie pixels on the screen

Viewing Pipeline - The End

- A final viewing pipeline is therefore:

