

View Transformation

View Transformation

Transform (i.e., express) geometry into coordinates that are well-suited to (simple) clipping and projection hardware

Positioning Synthetic Camero

What are our "degrees of freedom" in camera positioning?
To achieve effective visual simulation, we want:

1) the eye point to be in proximity of modeled scene
2) the view to be directed toward region of interest, and
3) the image plane to have a reasonable "twist"

Eye Coordinates

Eyepoint at origin u axis toward "right" of image plane v axis toward "top" of image plane view direction along negative n axis

Transformation to Eye Coordinates

Our task: construct the transformation M that re-expresses world coordinates in the viewer frame

Machinery: Changing Orthobases

Suppose you are given an orthobasis $\mathbf{u}, \mathbf{v}, \mathbf{n}$
What is the action of the matrix M with

$$
\mathbf{M}=\left(\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
n_{x} & n_{y} & n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

rows \mathbf{u}, \mathbf{v}, and \mathbf{n} as below?

Applying M to u, v, n

Two equally valid interpretations, depending on reference frame:
1: Think of uvn basis as a rigid object in a fixed world space
Then \mathbf{M} "rotates" uvn basis into xyz basis
2: Think of a fixed axis triad, with "labels" from xyz space
Then \mathbf{M} "reexpresses" an xyz point p in uvn coords!
It is this second interpretation that we use today to "relabel" world-space geometry with eye space coordinates

Positioning Synthetic Camera

Given eyepoint \mathbf{e}, basis ${ }^{\mathbf{u}} \mathbf{u},{ }^{\wedge} \mathbf{v},{ }^{\wedge} \mathbf{n}$ Deduce \mathbf{M} that expresses world in eye coordinates: Overlay origins, then change bases:

$\mathrm{M}=\mathrm{RT}$

Positioning Synthetic Camera

$\mathbf{M}\left(\begin{array}{c}e_{x} \\ e_{y} \\ e_{z} \\ 1\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 1\end{array}\right) ; \quad \mathbf{M}\left(\begin{array}{c}e_{x}-\hat{n}_{x} \\ e_{y}-\hat{n}_{y} \\ e_{z}-\hat{n}_{z} \\ 1\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ -1 \\ 1\end{array}\right) ;$

Check: does \mathbf{M} re-express world geometry in eye coordinates?

Positioning Synthetic Camera

Camera specification must include:
World-space eye position e

World-space "lookat direction" -n
Are e and $-n$ enough to determine the camera DOFs (degrees of freedom)?

Positioning Synthetic Camera

Are e and -n enough to determine the camera DOFs?
No. Note that we were not given u and v !
(Why not simply require the user to specify them?)

We must also determine u and v, i.e., camera "twist" about n. Typically done by specification of a world-space "up vector" provided by user interface, e.g., using gluLookat (e, c, up) "Twist" constraint: Align v with world up vector (How?)

Positioning Synthetic Camera

Trick: construct \mathbf{u} and \mathbf{v} from available information! "Twist" constraint: Align v with world up vector

Given: eyepoint \mathbf{e}, view direction \mathbf{n}, and world up vector:

1. Compute $\mathbf{u}=-\mathbf{n} \times \mathbf{u p}$
2. Compute $\mathbf{v}=\mathbf{u} \times-\mathbf{n}$
3. Construct \mathbf{M} as above from $\mathbf{u}, \mathbf{v}, \mathbf{n}$, and \mathbf{e}

Where are we?

We've re-expressed world geometry in eye's frame of reference:

right-handed; view is along -z axis

left-handed; \mathbf{z} increases into display

Next we must transform to NDC (Normalized Device Coordinates) to prepare for (simple) clipping and projection
For that, we need the Perspective Transformation
We'll study Perspective Projection first, then generalize

What is Projection?

Any operation that reduces dimension (e.g., 3D to 2D)

Orthographic Projection Perspective Projection

Orthographic Projection

- focal point at infinity
- rays are parallel and orthogonal to the image plane

World

Comparison

Simple Perspective Camera

- camera looks along z-axis
- focal point is the origin
- image plane is parallel to $x y$-plane at distance d
- d is call focal length

- Similar situation with x-coordinate
- Similar Triangles:
point $[x, y, z]$ projects to $[(d / z) x,(d / z) y, d]$

Projection Matrix

Projection using homogeneous coordinates:

- transform $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ to $[(\mathrm{d} / \mathrm{z}) \mathrm{x},(\mathrm{d} / \mathrm{z}) \mathrm{y}, \mathrm{d}]$

$$
\left[\begin{array}{llll|l}
d & 0 & 0 & 0 & x \\
0 & d & 0 & 0 & y \\
0 & 0 & d & 0 & z \\
0 & 0 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
d x & d y & d z & z
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
\frac{d}{z} x & \frac{d}{z} y & \mathrm{~d}
\end{array}\right]
$$

-2-D image point:

- discard third coordinate
- apply viewport transformation to obtain physical pixel coordinates

Perspective Projection

What are coordinates of projected point x_{p}, y_{p}, z_{p} ?
By similar triangles,

$$
\frac{x_{p}}{d}=\frac{x}{z} \quad \frac{y_{p}}{d}=\frac{y}{z}
$$

Multiplying through by d yields

$$
x_{p}=\frac{d \cdot x}{z}=\frac{x}{z / d} \quad y_{p}=\frac{d \cdot y}{z}=\frac{y}{z / d} \quad z_{p}=d
$$

Perspective Projection

What are coordinates of projected point x_{p}, y_{p}, z_{p} ?
By similar triangles,

$$
\frac{x_{p}}{d}=\frac{x}{z} \quad \frac{y_{p}}{d}=\frac{y}{z}
$$

Multiplying through by d yields

$$
x_{p}=\frac{d \cdot x}{z}=\frac{x}{z / d} \quad y_{p}=\frac{d \cdot y}{z}=\frac{y}{z / d} \quad z_{p}=d
$$

$z=0$ not allowed (what happens to points on plane $z=0$?) Operation well-defined for all other points

Perspective Projection

Matrix formulation using "homogeneous 4-vectors":

$$
\begin{aligned}
\mathbf{M} & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right) \\
\left(\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right) & =\mathbf{M}\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right)
\end{aligned}
$$

Finally, recover projected point using homogenous convention: Divide by 4 th element to convert 4 -vector to 3-vector:

$$
\left(\begin{array}{l}
X / W \\
Y / W \\
Z / W
\end{array}\right)=\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=\left(\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d
\end{array}\right)
$$

Are we ready to rasterize? Not yet.

- It is difficult to do clipping directly in the viewing frustum

The View Frustum

defined by 6 parameters: left, right, bottom, top, near, far

right-handed; view is along $-z$ axis

Canonical View Volume

Right parallelepiped bounded by $x= \pm 1, y= \pm 1, z= \pm 1$
Called NDC, or sometimes Clip Coordinates

right-handed; view is along -z axis

left-handed; z increases into display

Where is the image plane in NDC?
Our goal: construct a perspective transformation M that transforms view frustum into the canonical view volume, while preserving depth order

Matrix Formulation

(This is the OpenGL form; several variations exist)
Check action of M:

$$
\mathbf{M}\left(\begin{array}{c}
l \\
b \\
-n \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right) ; \quad \mathbf{M}\left(\begin{array}{c}
r \frac{f}{n} \\
t \frac{f}{n} \\
-f \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) ; \quad \mathbf{M}\left(\begin{array}{c}
(l+r) / 2 \\
(b+t) / 2 \\
-n \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right)
$$

Often we set $l=-r$ and $b=-t$ (why?), so that:

Perspective Projection

Suppose we have transformed from World to Eye to Canonical coordinates
How do we project onto "image plane"?

Normalized Device Coordinates

Simply ignore z coordinate!

Qualitative Features of Perspective Projection

Equal-sized objects at different depths project to different sizes!

Perspective projection does not preserve shape of planar figures!

Families of parallel lines have "vanishing points" projection of point at infinity in direction of lines

