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View Transformation

Scene . Camera, Viewport
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Transform (i.e., express) geometry into coordinates that are
well-suited to (simple) clipping and projection hardware
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Positioning Synthetic Camer
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What are our "degrees of freedom" in camera
positioning?

To achieve effective visual simulation, we want:

1) the eye point to be in proximity of modeled scene
2) the view to be directed toward region of interest,
and

3) the image plane to have a reasonable "twist"




Eye Coordinates
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as viewed from eye

Eyepoint at origin

u axis toward "right" of image plane
v axis foward "top” of image plane
view direction along negative n axis




Transformation to Eye
Coordinates
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Our task: construct the transformation M
that re-expresses world coordinates in the
viewer frame




Machinery: Changing
Orthobases
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Suppose you are given an

X - orthobasis u, v, n
* What is the action of the
matrix M with
.. .. rows u, v, and n as below?
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Applying M to u, v, n
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Two equally valid interpretations, depending on
reference frame:

1: Think of uvn basis as a rigid object in a fixed
world space

Then M "rotates” uvn basis into xyz basis

2: Think of a fixed axis triad, with “labels” from
Xyz space

Then M "reexpresses” an xyz point p in uvn
coords!

It is this second interpretation that we use today
to "relabel” world-space geometry with eye space
coordinates



Positioning Synthetic Camera
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as viewed from eye

Given eyepoint e, basis “u, “v, “n
Deduce M that expresses world in eye coordinates:
Overlay origins, then change bases:
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Positioning Synthetic Camera
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Check: does M re-express world geometry in eye coordinates?



Positioning Synthetic Camera
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Camera specification must include:
World-space eye position e
World-space “lookat direction” -n

Are e and -n enough to determine the camera DOFs
(degrees of freedom)?




Positioning Synthetic
Camera

Are e and -n enough to determine the camera DOFs?
No. Note that we were not given u and v!
(Why not simply require the user to specify them?)
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We must also determine u and v, i.e., camera "twist" about n.
Typically done by specification of a world-space "up vector”
provided by user interface, e.g., using gluLookat(e, c, up)
“Twist" constraint: Align v with world up vector (How?)




Positioning Synthetic
Camera

Trick: construct u and v from available information!
“Twist” constraint: Align v with world up vector
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Given: eyepoint e, view direction n, and world up vector:

1. Compute u = —n x up
2. Compute v=u x —n
“ 3. Construct M as above from u. v, n. and e
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Where are we?

We've re-expressed world geometry in eye's frame of reference:

[right = fin, top = fin, —far]
L. /

L

- z

(1.1, 1)

iright, fop, —near)

projection plane
Z=-near

(left, bottom, —near)

(—1.-1.-1)
right-handed; view is along -z axis lefi-handed; z increases into display

Next we must transform to NDC { Normalized Device Coordinates)
to prepare for (simple) clipping and projection

For that, we need the Perspective Transformation
We'll study Perspective Projection first, then generalize




What is Projection?
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Any operation that reduces dimension (e.g., 3D to 2D)

Orthographic Projection
Perspective Projection




Orthographic Projectio

e focal point at infinity
e rays are parallel and orthogonal to the image plane

/.




Comparison




Simple Perspective Camera

e camera looks along zaxis

e focal point is the origin

e image plane is parallel to xy~plane at distance d
e dis call focal length




Similar Triangles

A IV, Z]

[(d/Z)Y, d]

[0, 0] [0, d]

e Similar situation with x-coordinate

e Similar Triangles:
point [X,y,z] projects to [(d/z)x, (d/z)y, d]




Projection Matrix

Projection using homogeneous coordinates:
— transform [X, vy, z] to [(d/z)x, (d/z)y, d]

d 0 0 Ofx

0 d 0 0y {d d }
=ldx dy d = —-x —y d

0 0 g ofz|TH W dzl= Ty Y

0 0 1 Ol1_ Divide by 4th coordinate

(the “w” coordinate)

e 2-D image point:
e discard third coordinate

e apply viewport transformation to obtain
physical pixel coordinates




Perspective Projection
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What are coordinates of projected point xp, yp, 2p!
By similar triangles,

Ip T Up Y
d 2 d =z
Multiplying through by d vields
d-r =z d-y vy
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Perspective Projection
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What are coordinates of projected point xp, yp, 2p!
By similar triangles,

m_ T WY
d =z d =z
Multiplying through by d vields
d-r =z d-y vy
T /d =TT /d p=d

z= 0 not allowed (what happens to points on plane z= 0?)
Operation well-defined for all other points




Perspective Projection

Matrix formulation using "homogeneous 4-vectors":
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Finally, recover projected point using Aomogenous convention.
Divide by 4 74 element to convert 4-vector to 3-vector:
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Are we ready to
rasterize? Not yet.

» It is difficult to do clipping directly
in the viewing frustum




The View Frustum

defined by 6 parameters: left, right, bottom, top, near, far

(right = f'n, top ~ fin, —far)

(right, top, —near)
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rojection plane

far clip plane = _near

Z = —far

(left, bottom, —near)

right—handed; view is along —z axis




Canonical View Volume

Right parallelepiped bounded by » = +1, y = £1, z = £1
Called NDC, or sometimes Clip Coordinates

\

(right = f/n, top * f'n, —far)
(1,1, 1)

(nght, top, —near)

projection plane
Z=-near vy
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{left, bottom, —near)

(=1, =1,=1)
right-handed; view is along -z axis left-handed; z increases into display
Where is the image plane in NDC?
@ Our goal: construct a perspective transformation M that transforms
view frustum into the canonical view volume, while preserving depth order
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Matrix Formulation

(This is the OpenGL form; several variations exist ]
Check action of M:
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Perspective Projection

Suppose we have transformed from World to Eye to Canonical
coordinates
How do we project onto "image plane"?

(1,1, 1)

yT Image plane z = -1

|

£

(—1, =1, —1)

Mormalized Device Coordinates

Simply ighore z coordinate!




Qualitative Features of
Perspective Projection

Equal-sized objects at different depths project to different
sizes!

Perspective projection does not preserve shape of planar figur




Families of parallel lines
have "vanishing points”
projection of point at
infinity in direction of lines




