2D Clipping Algorithm

Outline

> Review

- Clipping Basics
- Cohen-Sutherland Line Clipping
- Clipping Polygons
- Sutherland-Hodgman Clipping
- Perspective Clipping

Recap: Homogeneous Coords

- Intuitively:
- The w coordinate of a homogeneous point is typically 1
- Decreasing w makes the point "bigger", meaning further from the origin
- Homogeneous points with $w=0$ are thus "points at infinity", meaning infinitely far away in some direction. (What direction?)
- To help illustrate this, imagine subtracting two homogeneous points: the result is (as expected) a vector

Recap: Perspective Projection

- When we do 3-D graphics, we think of the screen as a 2-D window onto the 3-D world:

Recap: Perspective Projection

- The geometry of the situation:

result:

$$
x^{\prime}=\frac{d \cdot x}{z}=\frac{x}{z / d}, \quad y^{\prime}=\frac{d \cdot y}{z}=\frac{y}{z / d}, \quad z=d
$$

Recap: Perspective Projection Matrix

- Example:

$$
\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Or, in 3-D coordinates:

$$
\left(\frac{x}{z / d}, \frac{y}{z / d}, \quad d\right)
$$

Recap: OpenGL's Persp. Proj. Matrix

- OpenGL's gluPerspective () command generates a slightly more complicated matrix:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\frac{f}{\text { aspect }} & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & \left(\frac{\boldsymbol{Z}_{\text {far }}+\boldsymbol{Z}_{\text {near }}}{\boldsymbol{Z}_{\text {near }}-\boldsymbol{Z}_{\text {far }}}\right) & \left(\frac{2 \times \boldsymbol{Z}_{\text {far }} \times \boldsymbol{Z}_{\text {near }}}{\boldsymbol{Z}_{\text {near }}-\boldsymbol{Z}_{\text {far }}}\right) \\
0 & 0 & -1 & 0
\end{array}\right]} \\
& \text { where }
\end{aligned} \boldsymbol{f}=\cot \left(\frac{f o v_{y}}{2}\right) .
$$

- Can you figure out what this matrix does?

Projection Matrices

- Now that we can express perspective foreshortening as a matrix, we can composite it onto our other matrices with the usual matrix multiplication
- End result: can create a single matrix encapsulating modeling, viewing, and projection transforms
- Though you will recall that in practice OpenGL separates the modelview from projection matrix (why?)

Outline

- Review
, Clipping Basics
- Cohen-Sutherland Line Clipping
- Clipping Polygons
- Sutherland-Hodgman Clipping
- Perspective Clipping

Next Topic: Clipping

- We've been assuming that all primitives (lines, triangles, polygons) lie entirely within the viewport
- In general, this assumption will not hold

Clipping

- Analytically calculating the portions of primitives within the viewport

Why Clip?

- Bad idea to rasterize outside of framebuffer bounds
- Also, don't waste time scan converting pixels outside window

Clipping

- The naïve approach to clipping lines:
for each line segment for each edge of viewport find intersection points pick "nearest" point if anything is left, draw it
- What do we mean by "nearest"?
- How can we optimize this?

Trivial Accepts

- Big optimization: trivial accept/rejects
- How can we quickly determine whether a line segment is entirely inside the viewport?
- A: test both endpoints.

Trivial Rejects

- How can we know a line is outside viewport?
- A: if both endpoints on wrong side of same edge, can trivially reject line

Outline

- Review
- Clipping Basics
> Cohen-Sutherland Line Clipping
- Clipping Polygons
- Sutherland-Hodgman Clipping
- Perspective Clipping

Cohen-Sutherland Line Clipping

- Divide viewplane into regions defined by viewport edges
- Assign each region a 4-bit outcode:

Cohen-Sutherland Line Clipping

- To what do we assign outcodes?
- How do we set the bits in the outcode?
- How do you suppose we use them?

Cohen-Sutherland Line Clipping

- Set bits with simple tests

$$
\mathrm{x}>\mathrm{x}_{\max } \quad \mathrm{y}<\mathrm{y}_{\min } \quad \text { etc. }
$$

- Assign an outcode to each vertex of line
- If both outcodes = 0, trivial accept
- bitwise AND vertex outcodes together
- If result $\neq 0$, trivial reject
- As those lines lie on one side of the boundary lines

1001	1000	1010
$y_{\text {max }}$		
0001	0000	0010
$y_{\text {min }}$		
0101	0100	0110

Cohen-Sutherland Line Clipping

- If line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- Pick an edge that the line crosses (how?)
- Intersect line with edge (how?)
- Discard portion on wrong side of edge and assign outcode to new vertex
- Apply trivial accept/reject tests; repeat if necessary

Cohen-Sutherland Line Clipping

- Outcode tests and line-edge intersects are quite fast (how fast?)
- But some lines require multiple iterations:
- Clip top
- Clip left
- Clip bottom
- Clip right

- Fundamentally more efficient algorithms:
- Cyrus-Beck uses parametric lines
- Liang-Barsky optimizes this for upright volumes

Outline

- Review
- Clipping Basics
- Cohen-Sutherland Line Clipping
> Clipping Polygons
- Sutherland-Hodgman Clipping
- Perspective Clipping

Clipping Polygons

- We know how to clip a single line segment
- How about a polygon in 2D?
- How about in 3D?
- Clipping polygons is more complex than clipping the individual lines
- Input: polygon
- Output: polygon, or nothing
- When can we trivially accept/reject a polygon as opposed to the line segments that make up the polygon?

Why Is Clipping Hard?

- What happens to a triangle during clipping?
- Possible outcomes:

Triangle \rightarrow triangle

Triangle \rightarrow quad

Triangle $\rightarrow 5$-gon

- How many sides can a clipped triangle have?

Why Is Clipping Hard?

- A really tough case:

Why Is Clipping Hard?

- A really tough case:

concave polygon \rightarrow multiple polygons

Outline

- Review
- Clipping Basics
- Cohen-Sutherland Line Clipping
- Clipping Polygons
> Sutherland-Hodgman Clipping
- Perspective Clipping

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped

Sutherland-Hodgman Clipping

- Basic idea:
- Consider each edge of the viewport individually
- Clip the polygon against the edge equation
- After doing all planes, the polygon is fully clipped
- Will this work for non-rectangular clip regions?
- What would

3-D clipping
involve?

Sutherland-Hodgman Clipping

- Input/output for algorithm:
- Input: list of polygon vertices in order
- Output: list of clipped polygon vertices consisting of old vertices (maybe) and new vertices (maybe)
- Note: this is exactly what we expect from the clipping operation against each edge
- This algorithm generalizes to 3-D
- Show movie...

Sutherland-Hodgman Clipping

- We need to be able to create clipped polygons from the original polygons
- Sutherland-Hodgman basic routine:
- Go around polygon one vertex at a time
- Current vertex has position p
- Previous vertex had position s, and it has been added to the output if appropriate

Sutherland-Hodgman Clipping

- Edge from s to p takes one of four cases:
(Purple line can be a line or a plane)

Sutherland-Hodgman Clipping

- Four cases:
- s inside plane and p inside plane
- Add p to output
- Note: s has already been added
- s inside plane and p outside plane
- Find intersection point i
- Add i to output
- s outside plane and p outside plane
- Add nothing
- s outside plane and p inside plane
- Find intersection point i
- Add i to output, followed by p

Point-to-Plane test

- A very general test to determine if a point p is "inside" a plane \boldsymbol{P}, defined by q and n :

$$
\begin{array}{ll}
(p-q) \cdot n<0: & p \text { inside } P \\
(p-q) \cdot n=0: & p \text { on } P \\
(p-q) \cdot n>0: & p \text { outside } P
\end{array}
$$

Point-to-Plane Test

- Dot product is relatively expensive
- 3 multiplies
- 5 additions
- 1 comparison (to 0 , in this case)
- Think about how you might optimize or specialcase this

Finding Line-Plane Intersections

- Use parametric definition of edge:
$\boldsymbol{E}(t)=\boldsymbol{s}+t(\boldsymbol{p}-\boldsymbol{s})$
- If $\mathrm{t}=0$ then $\boldsymbol{E}(\mathrm{t})=\boldsymbol{s}$
- If $\mathrm{t}=1$ then $\boldsymbol{E}(\mathrm{t})=\boldsymbol{p}$
- Otherwise, $E(t)$ is part way from \boldsymbol{s} to \boldsymbol{p}

Finding Line-Plane Intersections

- Edge intersects plane \boldsymbol{P} where $\boldsymbol{E}(t)$ is on \boldsymbol{P}
- \boldsymbol{q} is a point on \boldsymbol{P}
- \boldsymbol{n} is normal to \boldsymbol{P}

$$
\begin{gathered}
(E(t)-\boldsymbol{q}) \cdot \boldsymbol{n}=0 \\
(\boldsymbol{s}+t(\boldsymbol{p}-\boldsymbol{s})-\boldsymbol{q}) \cdot \boldsymbol{n}=0 \\
t=[(\boldsymbol{q}-\boldsymbol{s}) \cdot \boldsymbol{n}] /[(\boldsymbol{p}-\boldsymbol{s}) \cdot \boldsymbol{n}]
\end{gathered}
$$

- The intersection point $i=E(t)$ for this value of t

Line-Plane Intersections

- Note that the length of \boldsymbol{n} doesn't affect result:

$$
t=[(\boldsymbol{q}-\boldsymbol{s}) \cdot \boldsymbol{n}] /[(\boldsymbol{p}-\boldsymbol{s}) \cdot \boldsymbol{n}]
$$

- Again, lots of opportunity for optimization

Outline

- Review
- Clipping Basics
- Cohen-Sutherland Line Clipping
- Clipping Polygons
- Sutherland-Hodgman Clipping
> Perspective Clipping

