
2D Clipping Algorithm

2

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

3

Recap: Homogeneous Coords

 Intuitively:

 The w coordinate of a homogeneous point is

typically 1

 Decreasing w makes the point “bigger”, meaning

further from the origin

 Homogeneous points with w = 0 are thus “points at

infinity”, meaning infinitely far away in some direction.

(What direction?)

 To help illustrate this, imagine subtracting two

homogeneous points: the result is (as expected) a

vector

4

Recap: Perspective Projection

 When we do 3-D graphics, we think of the

screen as a 2-D window onto the 3-D world:

How tall should

this bunny be?

5

Recap: Perspective Projection

 The geometry of the situation:

 Desired

result:

P (x, y, z) X

Z

View

plane

d

(0,0,0) x’ = ?

' , ' ,
d x x d y y

x y z d
z z d z z d

 
    

6

Recap: Perspective Projection Matrix

 Example:

 Or, in 3-D coordinates:

























































10100

0100

0010

0001

z

y

x

ddz

z

y

x









d

dz

y

dz

x
,,

7

Recap: OpenGL’s Persp. Proj. Matrix

 OpenGL’s gluPerspective() command

generates a slightly more complicated matrix:

 Can you figure out what this matrix does?









































































2
cotwhere

0100

2
00

000

000

y

farnear

nearfar

farnear

nearfar

fov
f

ZZ

ZZ

ZZ

ZΖ

f

aspect

f

8

Projection Matrices

 Now that we can express perspective

foreshortening as a matrix, we can composite it

onto our other matrices with the usual matrix

multiplication

 End result: can create a single matrix

encapsulating modeling, viewing, and projection

transforms

 Though you will recall that in practice OpenGL
separates the modelview from projection matrix

(why?)

9

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

10

Next Topic: Clipping

 We’ve been assuming that all primitives (lines,

triangles, polygons) lie entirely within the viewport

 In general, this assumption will not hold

11

Clipping

 Analytically calculating the portions of primitives

within the viewport

12

Why Clip?

 Bad idea to rasterize outside of framebuffer

bounds

 Also, don’t waste time scan converting pixels

outside window

13

Clipping

 The naïve approach to clipping lines:

for each line segment

 for each edge of viewport

 find intersection points

 pick “nearest” point

 if anything is left, draw it

 What do we mean by “nearest”?

 How can we optimize this?

14

Trivial Accepts

 Big optimization: trivial accept/rejects

 How can we quickly determine whether a line

segment is entirely inside the viewport?

 A: test both endpoints.
xmin xmax

ymax

ymin

15

Trivial Rejects

 How can we know a line is outside viewport?

 A: if both endpoints on wrong side of same edge,

can trivially reject line

xmin xmax

ymax

ymin

16

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

17

Cohen-Sutherland Line Clipping

 Divide viewplane into regions defined by viewport

edges

 Assign each region a 4-bit outcode:

0000 0010 0001

1001

0101 0100

1000 1010

0110

xmin xmax

ymax

ymin

18

Cohen-Sutherland Line Clipping

 To what do we assign outcodes?

 How do we set the bits in the outcode?

 How do you suppose we use them?

 xmin xmax

0000 0010 0001

1001

0101 0100

1000 1010

0110

ymax

ymin

19

Cohen-Sutherland Line Clipping

 Set bits with simple tests

x > xmax y < ymin etc.

 Assign an outcode to each vertex of line

 If both outcodes = 0, trivial accept

 bitwise AND vertex outcodes together

 If result  0, trivial reject

 As those lines lie on one

side of the boundary lines

0000 0010 0001

1001

0101 0100

1000 1010

0110

ymax

ymin

20

Cohen-Sutherland Line Clipping

 If line cannot be trivially accepted or rejected,

subdivide so that one or both segments can be

discarded

 Pick an edge that the line crosses (how?)

 Intersect line with edge (how?)

 Discard portion on wrong side of edge and assign

outcode to new vertex

 Apply trivial accept/reject tests; repeat if necessary

21

 Outcode tests and line-edge intersects are quite

fast (how fast?)

 But some lines require multiple iterations:

 Clip top

 Clip left

 Clip bottom

 Clip right

 Fundamentally more efficient algorithms:

 Cyrus-Beck uses parametric lines

 Liang-Barsky optimizes this for upright volumes

Cohen-Sutherland Line Clipping

22

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

23

Clipping Polygons

 We know how to clip a single line segment

 How about a polygon in 2D?

 How about in 3D?

 Clipping polygons is more complex than clipping

the individual lines

 Input: polygon

 Output: polygon, or nothing

 When can we trivially accept/reject a polygon as

opposed to the line segments that make up the

polygon?

24

 What happens to a triangle during clipping?

 Possible outcomes:

Triangletriangle

Why Is Clipping Hard?

Trianglequad Triangle5-gon

 How many sides can a clipped triangle have?

25

 A really tough case:

Why Is Clipping Hard?

26

 A really tough case:

Why Is Clipping Hard?

concave polygonmultiple polygons

27

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

28

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

29

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

30

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

31

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

32

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

33

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

34

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

35

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

36

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

37

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

 Will this work for non-rectangular clip regions?

 What would

3-D clipping

involve?

38

Sutherland-Hodgman Clipping

 Input/output for algorithm:

 Input: list of polygon vertices in order

 Output: list of clipped polygon vertices consisting of

old vertices (maybe) and new vertices (maybe)

 Note: this is exactly what we expect from the

clipping operation against each edge

 This algorithm generalizes to 3-D

 Show movie…

39

Sutherland-Hodgman Clipping

 We need to be able to create clipped polygons

from the original polygons

 Sutherland-Hodgman basic routine:

 Go around polygon one vertex at a time

 Current vertex has position p

 Previous vertex had position s, and it has been added to

the output if appropriate

40

Sutherland-Hodgman Clipping

 Edge from s to p takes one of four cases:
(Purple line can be a line or a plane)

inside outside

s

p

p output

inside outside

s

p

no output

inside outside

s
p

i output

inside outside

s p

i output

p output

41

Sutherland-Hodgman Clipping

 Four cases:
 s inside plane and p inside plane

 Add p to output

 Note: s has already been added

 s inside plane and p outside plane
 Find intersection point i

 Add i to output

 s outside plane and p outside plane
 Add nothing

 s outside plane and p inside plane
 Find intersection point i

 Add i to output, followed by p

42

Point-to-Plane test

 A very general test to determine if a point p is

“inside” a plane P, defined by q and n:

 (p - q) • n < 0: p inside P

 (p - q) • n = 0: p on P

 (p - q) • n > 0: p outside P

P

n
p

q

P

n

p

q

P

n
p

q

43

Point-to-Plane Test

 Dot product is relatively expensive

 3 multiplies

 5 additions

 1 comparison (to 0, in this case)

 Think about how you might optimize or special-

case this

44

Finding Line-Plane Intersections

 Use parametric definition of edge:

 E(t) = s + t(p - s)

 If t = 0 then E(t) = s

 If t = 1 then E(t) = p

 Otherwise, E(t) is part way from s to p

45

Finding Line-Plane Intersections

 Edge intersects plane P where E(t) is on P

 q is a point on P

 n is normal to P

(E(t) - q) • n = 0

(s + t(p - s) - q) • n = 0

t = [(q - s) • n] / [(p - s) • n]

 The intersection point i = E(t) for this value of t

46

Line-Plane Intersections

 Note that the length of n doesn’t affect result:

t = [(q - s) • n] / [(p - s) • n]

 Again, lots of opportunity for optimization

47

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

