
2D Clipping Algorithm

2

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

3

Recap: Homogeneous Coords

 Intuitively:

 The w coordinate of a homogeneous point is

typically 1

 Decreasing w makes the point “bigger”, meaning

further from the origin

 Homogeneous points with w = 0 are thus “points at

infinity”, meaning infinitely far away in some direction.

(What direction?)

 To help illustrate this, imagine subtracting two

homogeneous points: the result is (as expected) a

vector

4

Recap: Perspective Projection

 When we do 3-D graphics, we think of the

screen as a 2-D window onto the 3-D world:

How tall should

this bunny be?

5

Recap: Perspective Projection

 The geometry of the situation:

 Desired

result:

P (x, y, z) X

Z

View

plane

d

(0,0,0) x’ = ?

' , ' ,
d x x d y y

x y z d
z z d z z d

6

Recap: Perspective Projection Matrix

 Example:

 Or, in 3-D coordinates:

10100

0100

0010

0001

z

y

x

ddz

z

y

x

d

dz

y

dz

x
,,

7

Recap: OpenGL’s Persp. Proj. Matrix

 OpenGL’s gluPerspective() command

generates a slightly more complicated matrix:

 Can you figure out what this matrix does?

2
cotwhere

0100

2
00

000

000

y

farnear

nearfar

farnear

nearfar

fov
f

ZZ

ZZ

ZZ

ZΖ

f

aspect

f

8

Projection Matrices

 Now that we can express perspective

foreshortening as a matrix, we can composite it

onto our other matrices with the usual matrix

multiplication

 End result: can create a single matrix

encapsulating modeling, viewing, and projection

transforms

 Though you will recall that in practice OpenGL
separates the modelview from projection matrix

(why?)

9

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

10

Next Topic: Clipping

 We’ve been assuming that all primitives (lines,

triangles, polygons) lie entirely within the viewport

 In general, this assumption will not hold

11

Clipping

 Analytically calculating the portions of primitives

within the viewport

12

Why Clip?

 Bad idea to rasterize outside of framebuffer

bounds

 Also, don’t waste time scan converting pixels

outside window

13

Clipping

 The naïve approach to clipping lines:

for each line segment

 for each edge of viewport

 find intersection points

 pick “nearest” point

 if anything is left, draw it

 What do we mean by “nearest”?

 How can we optimize this?

14

Trivial Accepts

 Big optimization: trivial accept/rejects

 How can we quickly determine whether a line

segment is entirely inside the viewport?

 A: test both endpoints.
xmin xmax

ymax

ymin

15

Trivial Rejects

 How can we know a line is outside viewport?

 A: if both endpoints on wrong side of same edge,

can trivially reject line

xmin xmax

ymax

ymin

16

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

17

Cohen-Sutherland Line Clipping

 Divide viewplane into regions defined by viewport

edges

 Assign each region a 4-bit outcode:

0000 0010 0001

1001

0101 0100

1000 1010

0110

xmin xmax

ymax

ymin

18

Cohen-Sutherland Line Clipping

 To what do we assign outcodes?

 How do we set the bits in the outcode?

 How do you suppose we use them?

 xmin xmax

0000 0010 0001

1001

0101 0100

1000 1010

0110

ymax

ymin

19

Cohen-Sutherland Line Clipping

 Set bits with simple tests

x > xmax y < ymin etc.

 Assign an outcode to each vertex of line

 If both outcodes = 0, trivial accept

 bitwise AND vertex outcodes together

 If result 0, trivial reject

 As those lines lie on one

side of the boundary lines

0000 0010 0001

1001

0101 0100

1000 1010

0110

ymax

ymin

20

Cohen-Sutherland Line Clipping

 If line cannot be trivially accepted or rejected,

subdivide so that one or both segments can be

discarded

 Pick an edge that the line crosses (how?)

 Intersect line with edge (how?)

 Discard portion on wrong side of edge and assign

outcode to new vertex

 Apply trivial accept/reject tests; repeat if necessary

21

 Outcode tests and line-edge intersects are quite

fast (how fast?)

 But some lines require multiple iterations:

 Clip top

 Clip left

 Clip bottom

 Clip right

 Fundamentally more efficient algorithms:

 Cyrus-Beck uses parametric lines

 Liang-Barsky optimizes this for upright volumes

Cohen-Sutherland Line Clipping

22

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

23

Clipping Polygons

 We know how to clip a single line segment

 How about a polygon in 2D?

 How about in 3D?

 Clipping polygons is more complex than clipping

the individual lines

 Input: polygon

 Output: polygon, or nothing

 When can we trivially accept/reject a polygon as

opposed to the line segments that make up the

polygon?

24

 What happens to a triangle during clipping?

 Possible outcomes:

Triangletriangle

Why Is Clipping Hard?

Trianglequad Triangle5-gon

 How many sides can a clipped triangle have?

25

 A really tough case:

Why Is Clipping Hard?

26

 A really tough case:

Why Is Clipping Hard?

concave polygonmultiple polygons

27

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

28

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

29

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

30

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

31

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

32

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

33

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

34

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

35

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

36

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

37

Sutherland-Hodgman Clipping

 Basic idea:

 Consider each edge of the viewport individually

 Clip the polygon against the edge equation

 After doing all planes, the polygon is fully clipped

 Will this work for non-rectangular clip regions?

 What would

3-D clipping

involve?

38

Sutherland-Hodgman Clipping

 Input/output for algorithm:

 Input: list of polygon vertices in order

 Output: list of clipped polygon vertices consisting of

old vertices (maybe) and new vertices (maybe)

 Note: this is exactly what we expect from the

clipping operation against each edge

 This algorithm generalizes to 3-D

 Show movie…

39

Sutherland-Hodgman Clipping

 We need to be able to create clipped polygons

from the original polygons

 Sutherland-Hodgman basic routine:

 Go around polygon one vertex at a time

 Current vertex has position p

 Previous vertex had position s, and it has been added to

the output if appropriate

40

Sutherland-Hodgman Clipping

 Edge from s to p takes one of four cases:
(Purple line can be a line or a plane)

inside outside

s

p

p output

inside outside

s

p

no output

inside outside

s
p

i output

inside outside

s p

i output

p output

41

Sutherland-Hodgman Clipping

 Four cases:
 s inside plane and p inside plane

 Add p to output

 Note: s has already been added

 s inside plane and p outside plane
 Find intersection point i

 Add i to output

 s outside plane and p outside plane
 Add nothing

 s outside plane and p inside plane
 Find intersection point i

 Add i to output, followed by p

42

Point-to-Plane test

 A very general test to determine if a point p is

“inside” a plane P, defined by q and n:

 (p - q) • n < 0: p inside P

 (p - q) • n = 0: p on P

 (p - q) • n > 0: p outside P

P

n
p

q

P

n

p

q

P

n
p

q

43

Point-to-Plane Test

 Dot product is relatively expensive

 3 multiplies

 5 additions

 1 comparison (to 0, in this case)

 Think about how you might optimize or special-

case this

44

Finding Line-Plane Intersections

 Use parametric definition of edge:

 E(t) = s + t(p - s)

 If t = 0 then E(t) = s

 If t = 1 then E(t) = p

 Otherwise, E(t) is part way from s to p

45

Finding Line-Plane Intersections

 Edge intersects plane P where E(t) is on P

 q is a point on P

 n is normal to P

(E(t) - q) • n = 0

(s + t(p - s) - q) • n = 0

t = [(q - s) • n] / [(p - s) • n]

 The intersection point i = E(t) for this value of t

46

Line-Plane Intersections

 Note that the length of n doesn’t affect result:

t = [(q - s) • n] / [(p - s) • n]

 Again, lots of opportunity for optimization

47

Outline

 Review

 Clipping Basics

 Cohen-Sutherland Line Clipping

 Clipping Polygons

 Sutherland-Hodgman Clipping

 Perspective Clipping

