
Geometric
primitives and
the rendering

pipepline

Rendering geometric primitives

• Describe objects with points, lines, and
surfaces

– Compact mathematical notation

– Operators to apply to those representations

• Render the objects

– The rendering pipeline

• Appendix A1-A5

H&B Figure 109

Rendering

• Generate an image from geometric primitives

Rendering

Geometric
Primitives

Raster
Image

3D Rendering Example

What issues must be addressed by a

3D rendering system?

Overview

• 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

Overview

• 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

How is the 3D scene

described in a computer?

How is the 3D scene

described in a computer?

3D Scene Representation

• Scene is usually approximated by 3D
primitives
– Point

– Line segment

– Polygon

– Polyhedron

– Curved surface

– Solid object

– etc.

3D Point

• Specifies a location

3D Point

• Specifies a location

– Represented by three coordinates

– Infinitely small

(x,y,z)

3D Vector

• Specifies a direction and a magnitude

3D Vector

• Specifies a direction and a magnitude

– Represented by three coordinates

– Magnitude ||V|| = sqrt(dx dx + dy dy + dz dz)

– Has no location

(dx,dy,dz)

Vector Addition/Subtraction

– operation u + v, with:

• Identity 0 : v + 0 = v

• Inverse - : v + (-v) = 0

– Addition uses the “parallelogram rule”:

u+v

u

v

u-v

u

v

-v

-v

Vector Space

• Vectors define a vector space

– They support vector addition

• Commutative and associative

• Possess identity and inverse

– They support scalar multiplication

• Associative, distributive

• Possess identity

Affine Spaces

– Vector spaces lack position and distance

• They have magnitude and direction but no location

– Combine the point and vector primitives

• Permits describing vectors relative to a common
location

– A point and three vectors define a 3-D coordinate
system

– Point-point subtraction yields a vector

Coordinate Systems

Y

X

Z

Right-handed

coordinate

system
Z

X

Y

Left-handed

coordinate

system

lGrasp z-axis with hand

lThumb points in direction of z-axis

lRoll fingers from positive x-axis towards positive y-

axis

Points + Vectors

• Points support these operations

– Point-point subtraction: Q - P = v

• Result is a vector pointing from P to Q

– Vector-point addition: P + v = Q

• Result is a new point

– Note that the addition of two points is not defined
P

Q

v

3D Line Segment

• Linear path between two points

3D Line Segment

• Use a linear combination of two points

– Parametric representation:

• P = P1 + t (P2 - P1), (0 t 1)

P1

P2

3D Ray

• Line segment with one endpoint at infinity

– Parametric representation:

• P = P1 + t V, (0 <= t <)

P1

V

3D Line

• Line segment with both endpoints at infinity

– Parametric representation:

• P = P1 + t V, (- < t <)

P1
V

3D Line – Slope Intercept

• Slope =m

• = rise / run

• Slope = (y - y1) / (x - x1)
 = (y2 - y1) / (x2 - x1)

• Solve for y:

• y = [(y2 - y1)/(x2 - x1)]x + [-(y2-y1)/(x2 - x1)]x1 + y1

• or: y = mx + b
x

y

P2 = (x2, y2)

P1 = (x1, y1)

P = (x, y)

Euclidean Spaces

• Q: What is the distance function between
points and vectors in affine space?

• A: Dot product

– Euclidean affine space = affine space plus dot
product

– Permits the computation of distance and angles

Dot Product

• The dot product or, more generally, inner product of
two vectors is a scalar:

 v1 • v2 = x1x2 + y1y2 + z1z2 (in 3D)

u θ

v

Dot Product

• Useful for many purposes
– Computing the length (Euclidean Norm) of a vector:

• length(v) = ||v|| = sqrt(v • v)

– Normalizing a vector, making it unit-length: v = v / ||v||

– Computing the angle between two vectors:

• u • v = |u| |v| cos(θ)

– Checking two vectors for orthogonality

• u • v = 0.0

u θ

v

• Projecting one vector onto another

– If v is a unit vector and we have another vector, w

– We can project w perpendicularly onto v

– And the result, u, has length w • v

Dot Product

u

w

v

wv

wv

wv
w

wu

)cos(

Dot Product

• Is commutative

– u • v = v • u

• Is distributive with respect to addition

– u • (v + w) = u • v + u • w

Cross Product

• The cross product or vector product of two vectors is a
vector:

• The cross product of two vectors is orthogonal to both

• Right-hand rule dictates direction of cross product

1221

1221

1221

tdeterminan222

11121)(

y x y x

z x z x

z y z y

zyx

zyx

uuu zyx

vv

Cross Product Right Hand Rule

 See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

 Orient your right hand such that your palm is

at the beginning of A and your fingers point in

the direction of A

 Twist your hand about the A-axis such that B

extends perpendicularly from your palm

 As you curl your fingers to make a fist, your

thumb will point in the direction of the cross

product

http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

Cross Product Right Hand Rule

 See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

 Orient your right hand such that your palm is

at the beginning of A and your fingers point in

the direction of A

 Twist your hand about the A-axis such that B

extends perpendicularly from your palm

 As you curl your fingers to make a fist, your

thumb will point in the direction of the cross

product

http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

Cross Product Right Hand Rule

l See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

l Orient your right hand such that your palm is

at the beginning of A and your fingers point in

the direction of A

l Twist your hand about the A-axis such that B

extends perpendicularly from your palm

l As you curl your fingers to make a fist, your

thumb will point in the direction of the cross

product

http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

Cross Product Right Hand Rule

l See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

l Orient your right hand such that your palm is

at the beginning of A and your fingers point in

the direction of A

l Twist your hand about the A-axis such that B

extends perpendicularly from your palm

l As you curl your fingers to make a fist, your

thumb will point in the direction of the cross

product

http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

Cross Product Right Hand Rule

l See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

l Orient your right hand such that your palm is

at the beginning of A and your fingers point in

the direction of A

l Twist your hand about the A-axis such that B

extends perpendicularly from your palm

l As you curl your fingers to make a fist, your

thumb will point in the direction of the cross

product

http://www.phy.syr.edu/courses/video/RightHandRule/index2.html

Other helpful formulas

• Length = sqrt (x2 - x1)2 + (y2 - y1)2

• Midpoint, p2, between p1 and p3

– p2 = ((x1 + x3) / 2, (y1 + y3) / 2))

• Two lines are perpendicular if:

– M1 = -1/M2

– cosine of the angle between them is 0

– Dot product = 0

3D Plane

• A linear combination of three points

P1

P3 P2

Origin

3D Plane

• A linear combination of three points

– Implicit representation:

• ax + by + cz + d = 0, or

• P·N + d = 0

– N is the plane “normal”

• Unit-length vector

• Perpendicular to plane
P1

N = (a,b,c)

d

P3 P2

3D Sphere

• All points at distance “r” from point “(cx, cy, cz)”

– Implicit representation:

• (x - cx)
2 + (y - cy)

2 + (z - cz)
2 = r 2

– Parametric representation:

• x = r cos() cos() + cx

• y = r cos() sin() + cy

• z = r sin() + cz

r

3D Geometric Primitives

• More detail on 3D modeling later in course

– Point

– Line segment

– Polygon

– Polyhedron

– Curved surface

– Solid object

– etc.

H&B Figure 10.46

