

Geometric primitives and the rendering pipepline

Rendering geometric primitives

- Describe objects with points, lines, and surfaces
 - Compact mathematical notation
 - Operators to apply to those representations
- Render the objects
 - The rendering pipeline
- Appendix A1-A5

Rendering

• Generate an image from geometric primitives

3D Rendering Example

What issues must be addressed by a 3D rendering system?

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

How is the 3D scene described in a computer?

3D Scene Representation

- Scene is usually approximated by 3D primitives
 - Point
 - Line segment
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.

3D Point

• Specifies a location

3D Point

- Specifies a location
 - Represented by three coordinates
 - Infinitely small

3D Vector

• Specifies a direction and a magnitude

3D Vector

- Specifies a direction and a magnitude
 - Represented by three coordinates
 - Magnitude ||V|| = sqrt(dx dx + dy dy + dz dz)
 - Has no location

(dx,dy,dz)

Vector Addition/Subtraction

– operation **u** + **v**, with:

- Identity $\mathbf{0}$: $\mathbf{V} + \mathbf{0} = \mathbf{V}$
- Inverse : V + (-V) = 0
- Addition uses the "parallelogram rule":

Vector Space

- Vectors define a vector space
 - They support vector addition
 - Commutative and associative
 - Possess identity and inverse
 - They support scalar multiplication
 - Associative, distributive
 - Possess identity

Affine Spaces

- Vector spaces lack position and distance
 - They have magnitude and direction but no location
- Combine the point and vector primitives
 - Permits describing vectors relative to a common location
- A point and three vectors define a 3-D coordinate system
- Point-point subtraction yields a vector

Coordinate Systems

1 Grasp z-axis with hand

1 Thumb points in direction of z-axis

IRoll fingers from positive x-axis towards positive yaxis

Points + Vectors

- Points support these operations
 - Point-point subtraction: Q P = v
 - Result is a vector pointing from P to Q
 - Vector-point addition: P + v = Q
 - Result is a new point

- Note that the addition of two points is not defined

3D Line Segment

• Linear path between two points

3D Line Segment

• Use a linear combination of two points

- Parametric representation:

•
$$P = P_1 + t (P_2 - P_1), (0 \le t \le 1)$$

3D Ray

• Line segment with one endpoint at infinity

- Parametric representation:

•
$$P = P_1 + t V$$
, $(0 \le t \le \infty)$

3D Line

• Line segment with both endpoints at infinity

- Parametric representation:

•
$$P = P_1 + t V$$
, $(-\infty < t < \infty)$

3D Line – Slope Intercept

• Slope =m
• rise / run
• Slope = (y - y1) / (x - x1)
= (y2 - y1) / (x2 - x1)
• Solve for y:
•
$$y = [(y2 - y1)/(x2 - x1)]x + [-(y2 - y1)/(x2 - x1)]x1 + y1$$

• or: $y = mx + b$

Euclidean Spaces

- Q: What is the distance function between points and vectors in affine space?
- A: Dot product
 - Euclidean affine space = affine space plus dot product
 - Permits the computation of distance and angles

• The dot product or, more generally, inner product of two vectors is a scalar:

$$v_1 \bullet v_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$$
 (in 3D)

- Useful for many purposes
 - Computing the length (Euclidean Norm) of a vector:
 - length(\mathbf{v}) = $||\mathbf{v}||$ = sqrt($\mathbf{v} \cdot \mathbf{v}$)
 - Normalizing a vector, making it unit-length: v = v / ||v||
 - Computing the angle between two vectors:
 - $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$
 - Checking two vectors for orthogonality

•
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{0.0}$$

- Projecting one vector onto another
 - If ${\bf v}$ is a unit vector and we have another vector, ${\bf w}$
 - We can project ${\bf w}$ perpendicularly onto ${\bf v}$

– And the result, u, has length w • v

• Is commutative

 $-u \bullet v = v \bullet u$

• Is distributive with respect to addition

 $-u \bullet (v + w) = u \bullet v + u \bullet w$

Cross Product

• The cross product or vector product of two vectors is a vector:

• Right-hand rule dictates direction of cross product

- λ See: <u>http://www.phy.syr.edu/courses/video/RightHandRule/index2.html</u>
- λ Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
- λ Twist your hand about the A-axis such that B extends perpendicularly from your palm
- λ As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

- λ See: <u>http://www.phy.syr.edu/courses/video/RightHandRule/index2.html</u>
- λ Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
- λ Twist your hand about the A-axis such that B extends perpendicularly from your palm
- λ As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

- 1 See: <u>http://www.phy.syr.edu/courses/video/RightHandRule/index2.html</u>
- Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
- 1 Twist your hand about the A-axis such that B extends perpendicularly from your palm
- As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

- 1 See: <u>http://www.phy.syr.edu/courses/video/RightHandRule/index2.html</u>
- Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
- 1 Twist your hand about the A-axis such that B extends perpendicularly from your palm
- As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

- 1 See: <u>http://www.phy.syr.edu/courses/video/RightHandRule/index2.html</u>
- Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
- 1 Twist your hand about the A-axis such that B extends perpendicularly from your palm
- As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

Other helpful formulas

- Length = sqrt $(x^2 x^1)^2 + (y^2 y^1)^2$
- Midpoint, p2, between p1 and p3
 p2 = ((x1 + x3) / 2, (y1 + y3) / 2))
- Two lines are perpendicular if:
 - -M1 = -1/M2
 - cosine of the angle between them is 0
 - Dot product = 0

3D Plane

• A linear combination of three points

3D Plane

- A linear combination of three points
 - Implicit representation:
 - ax + by + cz + d = 0, or
 - $P \cdot N + d = 0$
 - N is the plane "normal"
 - Unit-length vector
 - Perpendicular to plane

N = (a,b,c)

 P_2

 P_1

P₃

d

3D Sphere

- All points at distance "r" from point "(c_x, c_y, c_z)"
 - Implicit representation:
 - $(x c_x)^2 + (y c_y)^2 + (z c_z)^2 = r^2$
 - Parametric representation:
 - $x = r \cos(\phi) \cos(\Theta) + c_x$
 - $y = r \cos(\phi) \sin(\Theta) + c_y$
 - $z = r sin(\phi) + c_z$

3D Geometric Primitives

- More detail on 3D modeling later in course
 - Point
 - Line segment
 - Polygon
 - Polyhedron
 - Curved surface
 - Solid object
 - etc.

H&B Figure 10.46