
Geometric 
primitives and 
the rendering 

pipepline 



Rendering geometric primitives 

• Describe objects with points, lines, and 
surfaces  

– Compact mathematical notation 

– Operators to apply to those representations 

• Render the objects 

– The rendering pipeline 

 

• Appendix A1-A5 

H&B Figure 109 



Rendering 

• Generate an image from geometric primitives 

Rendering 

Geometric  
Primitives 

Raster  
Image 



3D Rendering Example 

What issues must be addressed by a  

3D rendering system? 



Overview 

• 3D scene representation 

• 3D viewer representation 

• Visible surface determination 

• Lighting simulation 
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3D Scene Representation 

• Scene is usually approximated by 3D 
primitives 
– Point 

– Line segment 

– Polygon 

– Polyhedron 

– Curved surface 

– Solid object  

– etc. 

 



3D Point 

• Specifies a location 



3D Point 

• Specifies a location 

– Represented by three coordinates 

– Infinitely small 

(x,y,z) 



3D Vector 

• Specifies a direction and a magnitude 

 

 

 

 

 



3D Vector 

• Specifies a direction and a magnitude 

– Represented by three coordinates 

– Magnitude ||V|| = sqrt(dx dx + dy dy + dz dz) 

– Has no location 

(dx,dy,dz) 



Vector Addition/Subtraction 

– operation u + v, with: 

• Identity 0 : v + 0 = v 

• Inverse - : v + (-v) = 0 

– Addition uses the “parallelogram rule”: 

u+v 

u 

v 

u-v 

u 

v 

-v 

-v 



Vector Space 

• Vectors define a vector space 

– They support vector addition 

• Commutative and associative 

• Possess identity and inverse 

– They support scalar multiplication 

• Associative, distributive 

• Possess identity 



Affine Spaces 

– Vector spaces lack position and distance 

• They have magnitude and direction but no location 

– Combine the point and vector primitives 

• Permits describing vectors relative to a common 
location 

– A point and three vectors define a 3-D coordinate 
system  

– Point-point subtraction yields a vector 



Coordinate Systems 

Y 

X 

Z 

Right-handed

coordinate

system 
Z 

X 

Y 

Left-handed 

coordinate 

system 

lGrasp z-axis with hand 

lThumb points in direction of z-axis  

lRoll fingers from positive x-axis towards positive y-

axis 



Points + Vectors 

• Points support these operations 

– Point-point subtraction:  Q - P = v 

• Result is a vector pointing from P to Q 

– Vector-point addition:  P + v = Q 

• Result is a new point 

– Note that the addition of two points is not defined 
P 

Q 

v 



3D Line Segment 

• Linear path between two points 



3D Line Segment 

• Use a linear combination of two points 

– Parametric representation: 

• P = P1 + t (P2 - P1),    (0  t  1) 

P1 

P2 



3D Ray 

• Line segment with one endpoint at infinity 

– Parametric representation:  

• P = P1 + t V,    (0 <= t < ) 

 

P1 

V 



3D Line 

• Line segment with both endpoints at infinity 

– Parametric representation:  

• P = P1 + t V,    (- < t < ) 

 

 

 
 

P1 
V 



3D Line – Slope Intercept 

• Slope   =m  

•    = rise / run 

• Slope  = (y - y1) / (x - x1)  
  = (y2 - y1) / (x2 - x1) 

 

• Solve for y: 

• y = [(y2 - y1)/(x2 - x1)]x + [-(y2-y1)/(x2 - x1)]x1 + y1 

• or: y = mx + b 
x 

y 

P2 = (x2, y2) 

P1 = (x1, y1) 

P = (x, y) 



Euclidean Spaces 

• Q: What is the distance function between 
points and vectors in affine space? 

• A: Dot product 

– Euclidean affine space = affine space plus dot 
product 

– Permits the computation of distance and angles 

 



Dot Product 

• The dot product or, more generally, inner product of 
two vectors is a scalar: 

   v1 • v2 = x1x2 + y1y2 + z1z2   (in 3D) 

u θ 

v 



Dot Product 

• Useful for many purposes 
– Computing the length (Euclidean Norm) of a vector:  

• length(v) = ||v|| = sqrt(v • v) 

– Normalizing a vector, making it unit-length: v = v / ||v|| 

– Computing the angle between two vectors: 

• u • v = |u| |v| cos(θ) 

– Checking two vectors for orthogonality 

• u • v = 0.0 

u θ 

v 



• Projecting one vector onto another 

– If v is a unit vector and we have another vector, w 

– We can project w perpendicularly onto v 

 

 

 

– And the result, u, has length w • v 

Dot Product 
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Dot Product 

• Is commutative 

– u • v = v • u 

• Is distributive with respect to addition 

– u • (v + w) = u • v + u • w 



Cross Product 

• The cross product or vector product of two vectors is a 
vector: 

 

 

 

• The cross product of two vectors is orthogonal to both 

• Right-hand rule dictates direction of cross product 
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Cross Product Right Hand Rule 

 See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html 

 Orient your right hand such that your palm is 

at the beginning of A and your fingers point in 

the direction of A 

 Twist your hand about the A-axis such that B 

extends perpendicularly from your palm 

 As you curl your fingers to make a fist, your 

thumb will point in the direction of the cross 

product 

http://www.phy.syr.edu/courses/video/RightHandRule/index2.html
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Other helpful formulas 

• Length = sqrt (x2 - x1)2 + (y2 - y1)2 

• Midpoint, p2, between p1 and p3 

– p2 = ((x1 + x3) / 2, (y1 + y3) / 2)) 

• Two lines are perpendicular if: 

– M1 = -1/M2 

– cosine of the angle between them is 0 

– Dot product = 0 



3D Plane 

• A linear combination of three points 

P1 

P3 P2 



Origin 

3D Plane 

• A linear combination of three points 

– Implicit representation:  

• ax + by + cz + d = 0, or  

• P·N + d = 0 

– N is the plane “normal” 

• Unit-length vector 

• Perpendicular to plane 
P1 

N = (a,b,c) 

d 

P3 P2 



3D Sphere 

• All points at distance “r” from point “(cx, cy, cz)” 

– Implicit representation: 

• (x - cx)
2 + (y - cy)

2 + (z - cz)
2 = r 2 

– Parametric representation: 

• x = r cos() cos() + cx 

• y = r cos() sin() + cy 

• z = r sin() + cz 

r 



3D Geometric Primitives 

• More detail on 3D modeling later in course  

– Point 

– Line segment 

– Polygon 

– Polyhedron 

– Curved surface 

– Solid object  

– etc. 

 
H&B Figure 10.46 


