

Geometric primitives and the rendering pipepline

Rendering geometric primitives

- Describe objects with points, lines, and surfaces
- Compact mathematical notation
- Operators to apply to those representations
- Render the objects
- The rendering pipeline
- Appendix A1-A5

Rendering

- Generate an image from geometric primitives

Geometric
Primitives
Raster
Image

3D Rendering Example

What issues must be addressed by a 3D rendering system?

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

3D Scene Representation

- Scene is usually approximated by 3D primitives
- Point
- Line segment
- Polygon
- Polyhedron
- Curved surface
- Solid object
- etc.

3D Point

- Specifies a location

3D Point

- Specifies a location
- Represented by three coordinates
- Infinitely small

$$
\boldsymbol{\eta}_{(x, y 2)}
$$

3D Vector

- Specifies a direction and a magnitude

3D Vector

- Specifies a direction and a magnitude
- Represented by three coordinates
- Magnitude ||V||=sqrt(dx dx + dy dy $+d z d z$)
- Has no location

Vector Addition/Subtraction

- operation $\mathbf{u}+\mathbf{v}$, with:
- Identity $\mathbf{0}$: $\mathbf{v}+\mathbf{0}=\mathbf{v}$
- Inverse -: $\quad \mathbf{V}+(-\mathbf{v})=\mathbf{0}$
- Addition uses the "parallelogram rule":

Vector Space

- Vectors define a vector space
- They support vector addition
- Commutative and associative
- Possess identity and inverse
- They support scalar multiplication
- Associative, distributive
- Possess identity

Affine Spaces

- Vector spaces lack position and distance
- They have magnitude and direction but no location
- Combine the point and vector primitives
- Permits describing vectors relative to a common location
- A point and three vectors define a 3-D coordinate system
- Point-point subtraction yields a vector

Coordinate Systems

Grasp z-axis with hand
Thumb points in direction of z-axis
${ }_{1}$ Roll fingers from positive x-axis towards positive y axis

Points + Vectors

- Points support these operations
- Point-point subtraction: $Q-P=\mathbf{v}$
- Result is a vector pointing from P to Q
- Vector-point addition: $\quad P+\mathbf{v}=Q$
- Result is a new point
- Note that the addition of two points is not defined

3D Line Segment

- Linear path between two points

3D Line Segment

- Use a linear combination of two points
- Parametric representation:
- $P=P_{1}+t\left(P_{2}-P_{1}\right), \quad(0 \leq t \leq 1)$

3D Ray

- Line segment with one endpoint at infinity
- Parametric representation:
- $P=P_{1}+t V, \quad(0<=t<\infty)$

3D Line

- Line segment with both endpoints at infinity
- Parametric representation:
- $P=P_{1}+t V, \quad(-\infty<t<\infty)$

3D Line - Slope Intercept

- Slope =m $=$ rise $/$ rur ${ }^{y}$
- Slope

$$
\begin{aligned}
& =(y-y 1) /(x-x 1) \\
& =(y 2-y 1) /(x 2-x 1)
\end{aligned}
$$

$$
\mathrm{P} 2=(\mathrm{x} 2, \mathrm{y} 2)
$$

- Solve for y :
- $y=[(y 2-y 1) /(x 2-x 1)] x+[-(y 2-y 1) /(x 2-x 1)] \times 1+y 1 \quad x$
- or: $y=m x+b$

Euclidean Spaces

- Q : What is the distance function between points and vectors in affine space?
- A: Dot product
- Euclidean affine space = affine space plus dot product
- Permits the computation of distance and angles

Dot Product

- The dot product or, more generally, inner product of two vectors is a scalar:

$$
\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{y}_{1} \mathbf{y}_{2}+\mathbf{z}_{1} \mathbf{z}_{2} \quad \text { (in 3D) }
$$

Dot Product

- Useful for many purposes
- Computing the length (Euclidean Norm) of a vector:
- length($\mathbf{v})=\|\mathbf{v}\|=\operatorname{sqrt}(\mathbf{v} \cdot \mathbf{v})$
- Normalizing a vector, making it unit-length: $\mathbf{v}=\mathbf{v} /\|\mathbf{v}\|$
- Computing the angle between two vectors:
- $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos (\theta)$
- Checking two vectors for orthogonality
- $\mathbf{u} \cdot \mathbf{v}=\mathbf{0 . 0}$

Dot Product

- Projecting one vector onto another
- If \mathbf{v} is a unit vector and we have another vector, \mathbf{w}
- We can project \mathbf{w} perpendicularly onto \mathbf{v}

- And the result, \mathbf{u}, has length $\mathbf{w} \cdot \mathbf{v}$

Dot Product

- Is commutative

$$
-u \bullet v=v \bullet u
$$

- Is distributive with respect to addition
$-u \bullet(v+w)=u \bullet v+u \bullet w$

Cross Product

- The cross product or vector product of two vectors is a vector:

- Right-hand rule dictates direction of cross product

Cross Product Right Hand Rule

λ See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html
λ Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
λ Twist your hand about the A-axis such that B extends perpendicularly from your palm
λ As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

Cross Product Right Hand Rule

λ See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html
λ Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
λ Twist your hand about the A-axis such that B extends perpendicularly from your palm
λ As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

Cross Product Right Hand Rule

1 See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html
${ }_{1}$ Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
${ }_{1}$ Twist your hand about the A -axis such that B extends perpendicularly from your palm
${ }_{1}$ As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

Cross Product Right Hand Rule

1 See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html
${ }_{1}$ Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
${ }_{1}$ Twist your hand about the A -axis such that B extends perpendicularly from your palm
${ }_{1}$ As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

Cross Product Right Hand Rule

1 See: http://www.phy.syr.edu/courses/video/RightHandRule/index2.html
${ }_{1}$ Orient your right hand such that your palm is at the beginning of A and your fingers point in the direction of A
${ }_{1}$ Twist your hand about the A -axis such that B extends perpendicularly from your palm
${ }_{1}$ As you curl your fingers to make a fist, your thumb will point in the direction of the cross product

Other helpful formulas

- Length $=$ sqrt $(x 2-x 1)^{2}+(y 2-y 1)^{2}$
- Midpoint, p2, between p1 and p3

$$
-p 2=((x 1+x 3) / 2,(y 1+y 3) / 2))
$$

- Two lines are perpendicular if:
$-\mathrm{M} 1=-1 / \mathrm{M} 2$
- cosine of the angle between them is 0
- Dot product $=0$

3D Plane

- A linear combination of three points

3D Plane

- A linear combination of three points
- Implicit representation:
- $a x+b y+c z+d=0$, or
- $\mathrm{P} \cdot \mathrm{N}+\mathrm{d}=0$
$-N$ is the plane "normal"
- Unit-length vector
- Perpendicular to plane

3D Sphere

- All points at distance " r " from point " $\left(c_{x}, c_{y}, c_{z}\right)$ "
- Implicit representation:
- $\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2}=r^{2}$
- Parametric representation:
- $x=r \cos (\phi) \cos (\Theta)+c_{x}$
- $y=r \cos (\phi) \sin (\Theta)+c_{y}$
- $z=r \sin (\phi)+c_{z}$

3D Geometric Primitives

- More detail on 3D modeling later in course
- Point
- Line segment
- Polygon
- Polyhedron
- Curved surface
- Solid object
- etc.

