3-D Object representation \& 3-D Transformation

Rendering 3D Scenes

Model \& Camera Parameters

Rendering Pipeline Framebuffer
Display

Camera Models

- The most common model is pin-hole camera
- All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)
- Sensor response proportional to radiance

Other models consider ...
Depth of field
Motion blur
Lens distortion

Camera Parameters

- What are the parameters of a camera?

Camera Parameters

- Position
- Eye position (px, py, pz)
- Orientation
- View direction ($\mathrm{dx}, \mathrm{dy}, \mathrm{dz}$)
- Up direction (ux, uy, uz)
- Aperture
- Field of view (xfov, yfov)
- Film plane
- "Look at" point
- View plane normal

Moving the camera

The Rendering Pipeline

Rendering: Transformations

- We've learned about transformations
- But they are used in three ways:
- Modeling transforms
- Viewing transforms (Move the camera)
- Projection transforms (Change the type of camera)

The Rendering Pipeline: 3-D

The Rendering Pipeline: 3-D

Scene graph
Object geometry
Modeling
Transforms

Result:

- All vertices of scene in shared 3-D "world" coordinate system

Rendering: Transformations

- Modeling transforms
- Size, place, scale, and rotate objects and parts of the model w.r.t. each other
- Object coordinates -> world coordinates

The Rendering Pipeline: 3-D

Modeling
Transforms

Result:
-All geometric primitives are illuminated

Lighting Simulation

- Lighting parameters
- Light source emission
- Surface reflectance
- Atmospheric attenuation
- Camera response

Lighting Simulation

- Direct illumination
- Ray casting
- Polygon shading
- Global illumination
- Ray tracing
- Monte Carlo methods
- Radiosity methods

The Rendering Pipeline: 3-D

Result:

- Scene vertices in 3-D "view" or "camera" coordinate system

Rendering: Transformations

- Viewing transform
- Rotate \& translate the world to lie directly in front of the camera
- Typically place camera at origin
- Typically looking down -Z axis
- World coordinates \Rightarrow view coordinates

The Rendering Pipeline: 3-D

Result:

- Remove geometry that is out of view

Assignment 2

- Due two and a half weeks from today
- Project description available online
- We'll discuss details in class on Monday

The Rendering Pipeline: 3-D

Result:

- 2-D screen coordinates of clipped vertices

Rendering: Transformations

- Projection transform
- Apply perspective foreshortening
- Distant = small: the pinhole camera model
- View coordinates \Rightarrow screen coordinates

Rendering: Transformations

- Perspective Camera
- Orthographic Camera

Rendering 3D Scenes

Model \& Camera Parameters

Rendering Pipeline Framebuffer
Display

Rasterize

- Convert screen coordinates to pixel colors

Summary

- Geometric primitives
- Points, vectors
- Operators on these primitives
- Dot product, cross product, norm
- The rendering pipeline
- Move models, illuminate, move camera, clip, project to display, rasterize

