Rendering 3D Scenes

Model \& Camera Parameters

Rendering Pipeline
Framebuffer
Displazisty oVIRGINIA

Camera Models

The most common model is pin-hole camera

- All captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)
- Sensor response proportional to radiance

Other models consider ... Depth of field Motion blur Lens distertion

Camera Parameters

What are the parameters of a camera?

Camera Parameters

Position

- Eye position (px, py, pz)

Orientation

- View direction (dx, dy, dz)
- Up direction (ux, uy, uz)

Aperture

- Field of view (xfov, yfov)

Film plane

- "Look at" point

- View plane normal

Moving the camera

View Frustum
UNIVERSITY のIIRGINIA

The Rendering Pipeline

Rendering: Transformations

We've learned about transformations
But they are used in three ways:

- Modeling transforms
- Viewing transforms (Move the camera)
- Projection transforms (Change the type of camera)

The Rendering Pipeline: 3-D

UNIVERSITY VIRGINIA

The Rendering Pipeline: 3-D

Scene graph Object geometry

Modeling Transforms

Lighting Calculations

Result:

- All vertices of scene in shared 3-D "world" coordinate system

Rendering: Transformations

Modeling transforms

- Size, place, scale, and rotate objects and parts of the model w.r.t. each other
- Object coordinates -> world coordinates

The Rendering Pipeline: 3-D

Modeling
Transforms
Lighting
Calculations
Viewing
Transform

Projection Transform

Result:

-All geometric primitives are illuminated

Lighting Simulation

Lighting parameters

Lighting Simulation

Direct illumination

Light
Source

- Ray casting
- Polygon shading

Global illumination

- Ray tracing
- Monte Carlo methods
- Radiosity methods

More on these methods later!

Surface

Camera

UNIVERSITY 9 VIRGINIA

The Rendering Pipeline: 3-D

Scene graph Object geometry

Modeling Transforms

Lighting Calculations

Viewing Transform

Clipping

Projection Transform

Result:

- Scene vertices in 3-D "view" or "camera" coordinate system

Rendering: Transformations

Viewing transform

- Rotate \& translate the world to lie directly in front of the camera
- Typically place camera at origin
- Typically looking down -Z axis
- World coordinates \Rightarrow view coordinates

The Rendering Pipeline: 3-D

Scene graph
Object geometry
Modeling Transforms

Lighting Calculations

Viewing
Transform

Clipping

Projection Transform

Result:

- Remove geometry that is out of view

Assignment 2

Due two and a half weeks from today

- Project description available online
- We'll discuss details in class on Monday

The Rendering Pipeline: 3-D

Scene graph
Object geometry
Modeling Transforms

Lighting Calculations

Viewing
Transform

Clipping

Projection Transform

Result:

-2-D screen coordinates of clipped vertices

Rendering: Transformations

Projection transform

- Apply perspective foreshortening
-Distant = small: the pinhole camera model
- View coordinates \Rightarrow screen coordinates

Rendering: Transformations

Perspective Camera

Orthographic Camera

Rendering 3D Scenes

Model \& Camera Parameters

Rendering Pipeline
Framebuffer
Displazisty oVIRGINIA

Rasterize

Convert screen coordinates to pixel colors

UNIVERSITY
${ }^{\circ}$ VIRGINIA

Summary

Geometric primitives

- Points, vectors

Operators on these primitives

- Dot product, cross product, norm

The rendering pipeline

- Move models, illuminate, move camera, clip, project to display, rasterize

