Rendering 3D Scenes

Model & Camera
Parameters

Rendering Pipeline

Framebuffer

The most common model is pin-hole camera

All captured light rays arrive along paths toward focal point

without lens distortion (everything is in focus)

 Sensor response proportional to radiance

Other models consider ...

Depth of field

Motion blur

Lens distortion

What are the parameters of a camera?

Camera Parameters

Position

Eye position (px, py, pz)

Orientation

- View direction (dx, dy, dz)
- Up direction (ux, uy, uz)

Aperture

Field of view (xfov, yfov)

Film plane

- "Look at" point
- View plane normal

The Rendering Pipeline

Transform

Illuminate

Transform

Clip

Project

Rasterize

Display

Model & Camera Parameters

Rendering Pipeline

Framebuffer

We've learned about transformations But they are used in three ways:

- Modeling transforms
- Viewing transforms (Move the camera)
- Projection transforms (Change the type of camera)

The Rendering Pipeline: 3-D

Scene graph
Object geometry

Modeling Transforms

Lighting Calculations

Viewing Transform

Clipping

Projection Transform

Scene graph
Object geometry

Modeling Transforms

Lighting Calculations

Viewing Transform

Clipping

Projection Transform

Result:

• All vertices of scene in shared 3-D "world" coordinate system

Modeling transforms

- Size, place, scale, and rotate objects and parts of the model w.r.t. each other
- Object coordinates -> world coordinates

Scene graph
Object geometry

Modeling Transforms

Lighting Calculations

Viewing Transform

Clipping

Projection Transform

Result:

•All geometric primitives are illuminated

Lighting Simulation

Lighting parameters

- Light source emission
- Surface reflectance
- Atmospheric attenuation
- Camera response

Lighting Simulation

Direct illumination

- Ray casting
- Polygon shading

Global illumination

- Ray tracing
- Monte Carlo methods
- Radiosity methods

More on these methods later!

The Rendering Pipeline: 3-D

Scene graph
Object geometry

Modeling Transforms

Lighting Calculations

Viewing Tra<mark>nsf</mark>orm

Clipping

Projection Transform

Result:

• Scene vertices in 3-D "view" or "camera" coordinate system

Viewing transform

- Rotate & translate the world to lie directly in front of the camera
 - Typically place camera at origin
 - Typically looking down -Z axis
- World coordinates ⇒ view coordinates

The Rendering Pipeline: 3-D

Scene graph
Object geometry

Modeling Transforms

Lighting Calculations

Viewing Transform

Clipping

Projection Transform

Result:

Remove geometry that is out of view

Due two and a half weeks from today

- Project description available online
- We'll discuss details in class on Monday

The Rendering Pipeline: 3-D

Scene graph
Object geometry

Modeling Transforms

Lighting Calculations

Viewing Tra<u>nsf</u>orm

Clipping

Projection Transform

Result:

2-D screen coordinates of clipped vertices

Projection transform

- Apply perspective foreshortening
 - Distant = small: the pinhole camera model
- View coordinates ⇒ screen coordinates

Rendering: Transformations

Perspective Camera

Orthographic Camera

Rendering 3D Scenes

Model & Camera
Parameters

Rendering Pipeline

Framebuffer

Convert screen coordinates to pixel colors

Geometric primitives

Points, vectors

Operators on these primitives

Dot product, cross product, norm

The rendering pipeline

 Move models, illuminate, move camera, clip, project to display, rasterize

