Projections and Perspectives

Projections and Perspectives

- We have to display our 3D model
- Screen is 2D
- Transformation from 3D model coordinates to 2D pixels coordinates.

Projections

- Representation of a 3D scene, for a virtual observer
- One viewpoint:
- position of the observer
- One direction of view:
- direction where the observer is looking
- One "up vector":
- vertical for the observer

Different projections

- Parallel projections:
- no shortening due to distance
- several kinds, depending on orientation:
- isometric, cavalier,...
- Perspective projections:
- shortening of objects in the distance
- several kind, depending on orientation:
- one, two, three vanishing points

Parallel Projection Matrix

- Parallel projection onto $z=0$ plane: $x^{\prime}=x, y^{\prime}=y, w^{\prime}=w$
- Matrix for this projection:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Perspective Projection Matrix

- Projection onto plane $z=0$, with center of projection at $z=-d$:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 1
\end{array}\right]
$$

Distance to projection plane

Center of Projection

Plane

Field of view

- Distance to projection plane not intuitive
- Easier notion: field of view
- FOV = angle, in degrees
- Expresses how wide is my vision

Field of view

Homogeneous coordinates

- Essential for perspective projection
- Note the shortening of distances uses w

$$
\begin{aligned}
& w^{\prime}=\frac{z}{d}+w \\
& \frac{x^{\prime}}{w^{\prime}}=\frac{x}{\frac{z}{d}+w}
\end{aligned}
$$

- Impossible to do without homogeneous

Other viewpoints

- If we are viewing from another point?
- Translations:
- until viewpoint is at origin
- Rotations:
- until direction of viewing is on z-axis
- Back to the previous case

Canonical Coordinates

- After translation, before projection: canonical 3D coordinates.

Projections: discussion

- Projections have several goals:
- exactitude (e.g. plans for architects)
- realism (view of a scene, VR)
- visualization
- artistic view: non-linear perspectives (e.g. Rubber Soul)
- An important part of realism in 3D rendering

