3D Clipping \&

Viewing process

3D Cohen-Sutherland Algorithm

- A line is trivially accepted if both endpoints have a code of all zeros.
- A line is trivially rejected if the bit-by-bit logical AND of the codes is not all zeros.
- Otherwise Calculate intersections.

On the $y=z$ plane from parametric equation of the line:

$$
y_{0}+t\left(y_{1}-y_{0}\right)=z_{0}+t\left(z_{1}-z_{0}\right)
$$

Solve for t and calculate x and y. Already know $z=y$

3D Cohen-Sutherland Algorithm

- If t not between $[0,1]$, then the intersection in not between P0 and P1

$$
-t=(z 0-y 0) /[(y 1-y 0)-(z 1-z 0)]
$$

- If t between $[0,1]$, then use t to find x and y

$$
\begin{aligned}
& -x=x 0+[(x 1-x 0)(z 0-y 0)] /[(y 1-y 0)-(z 1-z 0)] \\
& -y=y 0+[(y 1-y 0)(z 0-y 0)] /[(y 1-y 0)-(z 1-z 0)]
\end{aligned}
$$

3D viewing process

- Specify a 3D view volume
- Nper = [Sper][SHper][T(-PRP)][R][T(-VRP)]
- Clip against view volume
- Project onto a 2D viewing plane
- Mper : d = -PRPn
- Apply 2D viewing transformations to map window contents into 2D-image viewport
$-\mathrm{V}=\left[\mathrm{T}^{-1}\right][\mathrm{S}][\mathrm{T}]$

3D viewing Transformation 3D to 2D

3D to 2D $P^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, w\right)=[$ Mper $][\operatorname{Nper}][P(x, y, z, 1)]$

2D to Image
$\mathbf{P}^{\prime \prime}(x, y, 1)=[V]\left[P\left(x^{\prime} / w, y^{\prime} / w, 1\right)\right]$

