Quadric Surfaces

Quadric Surfaces

The fourth basic type of surface in space is a quadric surface. Quadric surfaces are the three-dimensional analogs of conic sections.

Quadric Surface

The equation of a quadric surface in space is a second-degree equation in three variables. The general form of the equation is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0 .
$$

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and hyperbolic paraboloid.

Quadric Surfaces

The intersection of a surface with a plane is called the trace of the surface in the plane. To visualize a surface in space, it is helpful to determine its traces in some wellchosen planes.

The traces of quadric surfaces are conics. These traces, together with the standard form of the equation of each quadric surface, are shown in the following table.

Quadric Surfaces

	Ellipsoid$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$Trace Plane Ellipse Parallel to $x y$-plane Ellipse Parallel to $x z$-plane Ellipse Parallel to $y z$-plane The surface is a sphere when $a=b=c \neq 0 .$	
	Hyperboloid of One Sheet$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$Trace Plane Ellipse Parallel to $x y$-plane Hyperbola Parallel to $x z$-plane Hyperbola Parallel to $y z$-plane The axis of the hyperboloid corresponds to the variable whose coefficient is negative.	

Quadric Surfaces

Quadric Surfaces

Elliptic Paraboloid
Parabola
Parabola
The axis of the paraboloid corresponds
to the variable raised to the first power

Example 2 - Sketching a Quadric Surface

Classify and sketch the surface given by
$4 x^{2}-3 y^{2}+12 z^{2}+12=0$.

Solution:

Begin by writing the equation in standard form.

$$
\begin{aligned}
4 x^{2}-3 y^{2}+12 z^{2}+12=0 & \text { Write original equation. } \\
\frac{x^{2}}{-3}+\frac{y^{2}}{4}-z^{2}-1=0 & \text { Divide by }-12 \\
\frac{y^{2}}{4}-\frac{x^{2}}{3}-\frac{z^{2}}{1}=1 & \text { Standard form }
\end{aligned}
$$

You can conclude that the surface is a hyperboloid of two sheets with the y-axis as its axis.

Example 2 - Solution

To sketch the graph of this surface, it helps to find the traces in the coordinate planes.

$$
\begin{array}{ll}
x y \text {-trace }(z=0): & \frac{y^{2}}{4}-\frac{x^{2}}{3}=1 \tag{Hyperbola}\\
x z \text {-trace }(y=0): & \frac{x^{2}}{3}+\frac{z^{2}}{1}=-1 \\
y z \text {-trace }(x=0): & \frac{y^{2}}{4}-\frac{z^{2}}{1}=1
\end{array}
$$

No trace

Hyperbola

Example 2 - Solution

The graph is shown in Figure 11.59.

Surfaces of Revolution

Surfaces of Revolution

The fifth special type of surface you will study is called a surface of revolution.

You will now look at a procedure for finding its equation.

Consider the graph of the radius function

$$
y=r(z)
$$

Generating curve
in the $y z$-plane.

Surfaces of Revolution

If this graph is revolved about the z-axis, it forms a surface of revolution, as shown in Figure 11.62.

The trace of the surface in the plane $z=z_{0}$ is a circle whose radius is $r\left(z_{0}\right)$ and whose equation is $x^{2}+y^{2}=\left[r\left(z_{0}\right)\right]^{2} . \quad$ Circular trace in plane: $z=z_{0}$

Replacing z_{0} with z produces an equation that is valid for all values of z.

Figure 11.62

Surfaces of Revolution

In a similar manner, you can obtain equations for surfaces of revolution for the other two axes, and the results are summarized as follows.

Surface of Revolution

If the graph of a radius function r is revolved about one of the coordinate axes, then the equation of the resulting surface of revolution has one of the forms listed below.

1. Revolved about the x-axis: $y^{2}+z^{2}=[r(x)]^{2}$
2. Revolved about the y-axis: $x^{2}+z^{2}=[r(y)]^{2}$
3. Revolved about the z-axis: $x^{2}+y^{2}=[r(z)]^{2}$

Example 5 - Finding an Equation for a Surface of Revolution

Find an equation for the surface of revolution formed by revolving (a) the graph of $y=1 / z$ and (b) the graph of $9 x^{2}=y^{3}$ about the y-axis.

Example 5 (a) - Solution

a. An equation for the surface of revolution formed by revolving the graph of

$$
y=\frac{1}{z}
$$

Radius function

about the z-axis is

$$
\begin{array}{ll}
x^{2}+y^{2}=[r(z)]^{2} & \text { Revolved about the } z \text {-axis } \\
x^{2}+y^{2}=\left(\frac{1}{z}\right)^{2} . & \text { Substitute } 1 / z \text { for } r(z)
\end{array}
$$

Example 5 (b) - Solution

b. To find an equation for the surface formed by revolving the graph of $9 x^{2}=y^{3}$ about the y-axis, solve for x in terms of y to obtain
$x=\frac{1}{3} y^{3 / 2}=r(y)$.
Radius function
So, the equation for this surface is
$x^{2}+z^{2}=[r(y)]^{2}$
Revolved about the y-axis
$x^{2}+z^{2}=\left(\frac{1}{3} y^{3 / 2}\right)^{2}$
$x^{2}+z^{2}=\frac{1}{9} y^{3}$.
Substitute $\frac{1}{3} y^{3 / 2}$ for $r(y)$.
Equation of surface
The graph is shown in Figure 11.63.

Figure 11.63

