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Quadric Surfaces 

The fourth basic type of surface in space is a quadric 

surface. Quadric surfaces are the three-dimensional 

analogs of conic sections. 
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Quadric Surfaces 

The intersection of a surface with a plane is called the 

trace of the surface in the plane. To visualize a surface in 

space, it is helpful to determine its traces in some well- 

chosen planes. 

 

The traces of quadric surfaces are conics. These traces, 

together with the standard form of the equation of each 

quadric surface, are shown in the following table. 
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Quadric Surfaces 
cont’d 
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Quadric Surfaces 
cont’d 
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 Example 2 – Sketching a Quadric Surface 

Classify and sketch the surface given by  

4x2 – 3y2 + 12z2 + 12 = 0. 
 

Solution: 

Begin by writing the equation in standard form. 

 

 

 

 

 

You can conclude that the surface is a hyperboloid of two 

sheets with the y-axis as its axis. 
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 Example 2 – Solution 

To sketch the graph of this surface, it helps to find the 

traces in the coordinate planes. 

cont’d 
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 Example 2 – Solution 

The graph is shown in Figure 11.59. 

Figure 11.59 

cont’d 
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Surfaces of Revolution 

The fifth special type of surface you will study is called a 

surface of revolution.  

 

You will now look at a procedure for finding its equation. 

  

Consider the graph of the radius function 

 y = r(z)                           Generating curve 

in the yz-plane.  



12 

Surfaces of Revolution 

If this graph is revolved about the z-axis, it forms a surface 

of revolution, as shown in Figure 11.62.  

 

The trace of the surface in the plane z = z0 is a circle 

whose radius is r(z0) and whose equation is 

x2 + y2 = [r(z0)]
2.      Circular trace in plane: z = z0 

 

Replacing z0 with z produces an equation  

that is valid for all values of z. 

Figure 11.62 
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Surfaces of Revolution 

In a similar manner, you can obtain equations for surfaces 

of revolution for the other two axes, and the results are 

summarized as follows. 
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Find an equation for the surface of revolution formed by  

revolving (a) the graph of y = 1 / z and (b) the graph of  

9x2 = y3 about the y-axis.    

 Example 5 – Finding an Equation for a Surface of Revolution 
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a. An equation for the surface of revolution formed by 

revolving the graph of 

 

 
  

 about the z-axis is 

 Example 5 (a) – Solution 
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 Example 5 (b) – Solution 

b. To find an equation for the surface formed by revolving 

the graph of 9x2 = y3 about the y-axis, solve for x in 

terms of y to obtain 

 

 

 So, the equation for this surface is 

 

 

 

 

 The graph is shown in Figure 11.63. 
Figure 11.63 

cont’d 


