

Warm Up Problem of the Day Lesson Presentation Warm Up

Spheres

- Find the surface area of a square pyramid whose base is 3 m on a side and whose slant height is 5 m.
 39 m²
- 2. Find the surface area of a cone whose base has a radius of 10 in. and whose slant height is 14 in. Use 3.14 for π . 753.6 in²

Problem of the Day

Find the slant height of the cone with the following measurements:

The area of its base is one-third of its total surface area. The radius is 4 cm. 8 cm

Learn to find the volume and surface area of spheres.

Vocabulary

sphere hemisphere great circle A **<u>sphere</u>** is the set of points in three dimensions that are a fixed distance from a given point, the center. A plane that intersects a sphere through its center divides the two halves or **<u>hemispheres</u>**. The edge of a hemisphere is a **<u>great</u> <u>circle</u>**.

Spheres

The volume of a hemisphere is exactly halfway between the volume of a cone and a cylinder with the same radius *r* and height equal to *r*.

VOLUME OF A SPHERE Words Numbers Formula The volume *V* of a sphere is $\frac{4}{3}\pi$ times the cube of the $V = \left(\frac{4}{3}\right) \pi r^3$ $V = \left(\frac{4}{3}\right) \boldsymbol{\pi}(3^3)$ radius r. $=\frac{108}{3}\pi$ $= 36\pi$ \approx 113.1 units³

Spheres

Additional Example 1: Finding the Volume of a Sphere

Find the volume of a sphere with radius 9 cm, both in terms of π and to the nearest tenth of a unit.

$$V = \left(\frac{4}{3}\right) \pi r^{3}$$

$$= \left(\frac{4}{3}\right) \pi (9)^{3}$$

$$= 972\pi \text{ cm}^{3} \approx 3.052.1 \text{ cm}^{3}$$

Try This: Example 1

Find the volume of a sphere with radius 3 m, both in terms of π and to the nearest tenth of a unit.

$$V = \left(\frac{4}{3}\right) \pi r^{3}$$

$$= \left(\frac{4}{3}\right) \pi (3)^{3}$$
Volume of a sphere Substitute 3 for r.

 $= 36\pi \text{ cm}^3 \approx 113.0 \text{ m}^3$

The surface area of a sphere is four times the area of a great circle.

SURFACE AREA OF A SPHERE		
Words	Numbers	Formula
The surface area S of a sphere is 4π times the square of the radius r .	$S = 4\pi(2^2)$ $= 16\pi$ $\approx 50.3 \text{ units}^2$	$S = 4\pi r^2$

Additional Example 2: Finding Surface Area of a Sphere

Find the surface area, both in terms of π and to the nearest tenth of a unit.

 $S = 4\pi r^2$ Surface area of a sphere

- = $4\pi(3^2)$ Substitute 3 for r.
- = 36π in² \approx 113.0 in²

Try This: Example 2

The moon has a radius of 1738 km. Find the surface area, both in terms of π and to the nearest tenth.

- $S = 4\pi r^2$ Surface area of a sphere
 - $= 4\pi(1738^2)$ Substitute 1738 for r.

í1738 km

= 12,082,576 π km² \approx 37,939,288.6 km²

Additional Example 3: Comparing Volumes and Surface Areas

Compare the volumes and surface areas of a sphere with radius 42 cm with that of a rectangular prism measuring 44 cm × 84 cm × 84 cm.

Sphere:

$$V = \left(\frac{4}{3}\right)\pi r^3 = \left(\frac{4}{3}\right)\pi(42^3)$$
$$\approx \left(\frac{4}{3}\right)\left(\frac{22}{7}\right)74,088$$

Spheres

Rectangular Prism:

$$V = Iwh$$

$$= (44)(84)(84)$$

$$= 310,464 \text{ cm}^3$$

Additional Example 3 Continued

Compare the volumes and surface areas of a sphere with radius 42 cm with that of a rectangular prism measuring 44 cm × 84 cm × 84 cm. Sphere: Rectangular Prism:

$S = 4\pi r^2 = 4\pi (42^2)$ S = 2/w + 2/h + 2wh

= 7,056 π S = 2(44)(84) + 2(44)(84) \approx 7,056 $\left(\frac{22}{7}\right)$ \approx 22,176 cm² + 2(84)(84) = 28,896 cm²

The sphere and the prism have approximately the same volume, but the prism has a larger surface area.

Try This: Example 3

Compare the volume and surface area of a sphere with radius 21 mm with that of a rectangular prism measuring $22 \times 42 \times 42$ mm.

Sphere:

$$V = \left(\frac{4}{3}\right)\pi r^3 = \left(\frac{4}{3}\right)\pi(21^3)$$
$$\approx \left(\frac{4}{3}\right)\left(\frac{22}{7}\right)9261$$

 \approx 38,808 mm³

Rectangular Prism:

$$V = lwh$$

$$= (22)(42)(42)$$

 $= 38,808 \text{ mm}^3$

Try This: Example 3 Continued

Compare the volume and surface area of a sphere with radius 21 mm with that of a rectangular prism measuring $22 \times 42 \times 42$ mm.

Sphere:

Rectangular Prism:

- $S = 4\pi r^2 = 4\pi (21^2)$ S = 2/w + 2/h + 2wh
 - $= 1764\pi \qquad S = 2(22)(42) + 2(22)(42)$

$$\approx 1764 \left(\frac{22}{7}\right) \approx 5544 \text{ mm}^2$$

+ 2(42)(42)

The sphere and the prism have approximately the same volume, but the prism has a larger surface area.

Lesson Quiz: Part 1

Find the volume of each sphere, both in terms of π and to the nearest tenth. Use 3.14 for π .

- **1.** r = 4 ft 85.3 π ft³, 267.8 ft³
- **2.** d = 6 m **36** π m³, **113.0** m³

Find the surface area of each sphere, both in terms of π and to the nearest tenth. Use 3.14 for π .

3. r = 22 in 1936 π in², 6079.0 in²

4. d = 1.5 mi 2.25 π mi², 7.1 mi²

Lesson Quiz: Part 2

- 5. A basketball has a circumference of 29 in. To the nearest cubic inch, what is its volume?
 - 412 in³