Warm Up
Problem of the Day
Lesson Presentation

Warm Up

1. Find the surface area of a square pyramid whose base is 3 m on a side and whose slant height is 5 m . $39 \mathrm{~m}^{2}$
2. Find the surface area of a cone whose base has a radius of 10 in . and whose slant height is 14 in . Use 3.14 for π. 753.6 in 2

Spheres

Problem of the Day

Find the slant height of the cone with the following measurements:
The area of its base is one-third of its total surface area. The radius is 4 cm .
8 cm

Learn to find the volume and surface area

 of spheres.
Spheres

Vocabulary

sphere

hemisphere great circle

Spheres

A sphere is the set of points in three dimensions that are a fixed distance from a given point, the center. A plane that intersects a sphere through its center divides the two halves or hemispheres. The edge of a hemisphere is a great circle.

Hemisphere

Spheres

The volume of a hemisphere is exactly halfway between the volume of a cone and a cylinder with the same radius r and height equal to r.

Spheres

VOLUME OF A SPHERE

Words	Numbers	Formula
The volume V of a sphere is $\frac{4}{3} \pi$ times the cube of the radius r.	$\begin{aligned} V & =\left(\frac{4}{3}\right) \pi\left(3^{3}\right) \\ & =\frac{108}{3} \pi \\ & =36 \pi \\ & \approx 113.1 \text { units }^{3} \end{aligned}$	$V=\left(\frac{4}{3}\right) \pi r^{3}$

Spheres

Additional Example 1: Finding the Volume of a Sphere

Find the volume of a sphere with radius 9 cm , both in terms of π and to the nearest tenth of a unit.

$$
\begin{aligned}
\boldsymbol{V} & =\left(\frac{\mathbf{4}}{\mathbf{3}}\right) \pi \boldsymbol{r}^{\mathbf{3}} \quad \text { Volume of a spher } \\
& =\left(\frac{4}{3}\right) \pi(9)^{3} \quad \text { Substitute } 9 \text { for } r . \\
& =972 \pi \mathrm{~cm}^{3} \approx 3,052.1 \mathrm{~cm}^{3}
\end{aligned}
$$

Spheres

Try This: Example 1

Find the volume of a sphere with radius 3 m , both in terms of π and to the nearest tenth of a unit.

$$
\begin{aligned}
\boldsymbol{V} & =\left(\frac{\mathbf{4}}{\mathbf{3}}\right) \pi \boldsymbol{r}^{\mathbf{3}} \quad \text { Volume of a sphere } \\
& =\left(\frac{4}{3}\right) \pi(3)^{3} \quad \text { Substitute } 3 \text { for } r . \\
& =36 \pi \mathrm{~cm}^{3} \approx 113.0 \mathrm{~m}^{3}
\end{aligned}
$$

Spheres

The surface area of a sphere is four times the area of a great circle.

SURFACE AREA OF A SPHERE

Words	Numbers	Formula
The surface area S of a sphere is 4π times the square of the radius r.	$\begin{aligned} 2 & =4 \pi\left(2^{2}\right) \\ & =16 \pi \\ & \approx 50.3 \mathrm{units}^{2} \end{aligned}$	$S=4 \pi r^{2}$

Spheres

Additional Example 2: Finding Surface Area of a Sphere

Find the surface area, both in terms of π and to the nearest tenth of a unit.
$\boldsymbol{S}=\mathbf{4} \boldsymbol{\pi} \boldsymbol{r}^{\mathbf{2}} \quad$ Surface area of a sphere

$$
\begin{aligned}
& =4 \pi\left(3^{2}\right) \text { Substitute } 3 \text { for } r . \\
& =36 \pi \mathrm{in}^{2} \approx 113.0 \mathrm{in}^{2}
\end{aligned}
$$

Spheres

Try This: Example 2

The moon has a radius of 1738 km . Find the surface area, both in terms of π and to the nearest tenth.

$$
\begin{aligned}
\boldsymbol{S} & =\mathbf{4} \pi \boldsymbol{r}^{\mathbf{2}} \quad \text { Surface area of a sphere } \\
& =4 \pi\left(1738^{2}\right) \text { Substitute } 1738 \text { for } r . \\
& =12,082,576 \pi \mathrm{~km}^{2} \\
& \approx 37,939,288.6 \mathrm{~km}^{2}
\end{aligned}
$$

Spheres

Additional Example 3: Comparing Volumes and

 Surface AreasCompare the volumes and surface areas of a sphere with radius 42 cm with that of a rectangular prism measuring $44 \mathrm{~cm} \times 84 \mathrm{~cm} \times$ 84 cm.

Sphere:

$$
\begin{aligned}
V & =\left(\frac{4}{3}\right) \pi r^{3}=\left(\frac{4}{3}\right) \pi\left(42^{3}\right) \\
& \approx\left(\frac{4}{3}\right)\left(\frac{22}{7}\right) 74,088 \\
& \approx 310,464 \mathrm{~cm}^{3}
\end{aligned}
$$

Rectangular Prism:

$$
\begin{aligned}
V & =I w h \\
= & (44)(84)(84) \\
& =310,464 \mathrm{~cm}^{3}
\end{aligned}
$$

Spheres

Additional Example 3 Continued

Compare the volumes and surface areas of a sphere with radius 42 cm with that of a rectangular prism measuring $44 \mathbf{c m} \times 84 \mathrm{~cm} \times$ 84 cm.

Sphere:

$$
\begin{array}{rlrl}
S & =4 \pi r^{2}=4 \pi\left(42^{2}\right) & S & =2 / w+2 l h+ \\
& =7,056 \pi & S & =2(44)(84)+ \\
\approx & & +2(84)(84) \\
& & =28,896 \mathrm{~cm}^{2}
\end{array}
$$

The sphere and the prism have approximately the same volume, but the prism has a larger surface area.

Spheres

Try This: Example 3

Compare the volume and surface area of a sphere with radius 21 mm with that of a rectangular prism measuring $22 \times 42 \times 42 \mathrm{~mm}$.

Sphere:

$$
\begin{aligned}
V & =\left(\frac{4}{3}\right) \pi r^{3}=\left(\frac{4}{3}\right) \pi\left(21^{3}\right) \\
& \approx\left(\frac{4}{3}\right)\left(\frac{22}{7}\right) 9261 \\
& \approx 38,808 \mathrm{~mm}^{3}
\end{aligned}
$$

Rectangular Prism:

$$
\begin{aligned}
V & =I w h \\
& =(22)(42)(42) \\
& =38,808 \mathrm{~mm}^{3}
\end{aligned}
$$

Spheres

Try This: Example 3 Continued

Compare the volume and surface area of a sphere with radius 21 mm with that of a rectangular prism measuring $22 \times 42 \times 42 \mathrm{~mm}$.

Sphere:

$$
\begin{aligned}
S & =4 \pi r^{2}=4 \pi\left(21^{2}\right) \\
& =1764 \pi \\
& \approx 1764\left(\frac{22}{7}\right) \approx 5544 \mathrm{~mm}^{2}
\end{aligned}
$$

Rectangular Prism:

$$
\begin{aligned}
S= & 2 / w+2 l h+2 w h \\
S= & 2(22)(42)+2(22)(42) \\
& +2(42)(42) \\
= & 7224 \mathrm{~mm}^{2}
\end{aligned}
$$

The sphere and the prism have approximately the same volume, but the prism has a larger surface area.

Spheres

Lesson Quiz: Part 1

Find the volume of each sphere, both in terms of π and to the nearest tenth. Use 3.14 for π.

1. $r=4 \mathrm{ft} \quad 85.3 \pi \mathrm{ft}^{3}, 267.8 \mathrm{ft}^{3}$
2. $d=6 \mathrm{~m} \quad 36 \pi \mathrm{~m}^{3}, 113.0 \mathrm{~m}^{3}$

Find the surface area of each sphere, both in terms of π and to the nearest tenth. Use 3.14 for π.

$$
\begin{aligned}
& \text { 3. } r=22 \text { in } \quad 1936 \pi \mathrm{in}^{2}, 6079.0 \mathrm{in}^{2} \\
& \text { 4. } d=1.5 \mathrm{mi} \quad 2.25 \pi \mathrm{mi}^{2}, 7.1 \mathrm{mi}^{2}
\end{aligned}
$$

Spheres

Lesson Quiz: Part 2

5. A basketball has a circumference of 29 in. To the nearest cubic inch, what is its volume?
```
412 in 3
```

