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Bézier Curves 

• Hermite cubic curves are difficult to model 
– need to specify point and gradient. 

• More intuitive to only specify points. 

• Pierre Bézier (an engineer at Renault) 
specified 2 endpoints and 2 additional 
control points to specify the gradient at the 
endpoints. 

• Can be derived from Hermite matrix: 

– Two end control points specify tangent 
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Bézier Curves 
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Note the Convex Hull has been shown as a 

dashed line – used as a bounding extent 

for intersection purposes. 
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Bézier Matrix 

• The cubic form is the most popular                        

X(t) = tTMBq   (MB is the Bézier matrix)‏ 

• With    n=4   and   r=0,1,2,3    we get: 

 

 

 

• Similarly for Y(t) and Z(t)‏ 
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Bézier blending functions 
This is how they look – 

The functions sum to 1 at 

any point along the curve. 

Endpoints have full weight 

The weights of each 

function is clear and the 

labels show the control 

points being weighted. 

q0 q3 

q1 q2 
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Joining Bezier Curves 

• G  continuity is provided at the endpoint 
when P2 – P3 = k (Q1 – Q0)  

• if k=1, C  continuity is obtained  
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Bicubic patches 
• The concept of parametric curves can be 

extended to surfaces  

• The cubic parametric curve is in the form of 
Q(t)=tTM q where q=(q1,q2,q3,q4) : qi control 
points, M is the basis matrix (Hermite or 
Bezier,…),‏tT=(t3, t2, t, 1) 
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• Now we assume qi to vary along a parameter s, 

•  Qi(s,t)=tTM [q1(s),q2(s),q3(s),q4(s)] 

• qi(s) are themselves cubic curves, we can write 
them‏in‏the‏form‏… 
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Bicubic patches 
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where q is a 4x4 matrix 

Each column contains the control points of  

q1(s),…,q4(s)  

x,y,z computed by  
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Bézier example 

• We compute (x,y,z) by  
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Continuity of Bicubic patches. 

• Hermite and Bézier patches 

– C0 continuity by sharing 4 

control points between 

patches. 

– C1 continuity when both sets 

of control points either side of 

the edge are collinear with the 

edge. 
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Displaying Bicubic patches. 

• Need to compute the normals 

– vector cross product of the 2 tangent vectors. 

• Need to convert the bicubic patches into a 

polygon mesh  

– tessellation 
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Normal Vectors 
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The surface normal is biquintic (two variables, fifth-
degree) polynomial and very expensive 
Can use finite difference to reduce the computation 
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Tessellation 

• We need to compute the triangles on the surface 

• The simplest way is do uniform tessellation, which 

samples points uniformly in the parameter space 

• Adaptive tessellation – adapt the size of triangles 

to the shape of the surface 

– i.e., more triangles where the surface bends more  

– On the other hand, for flat areas we do not need many 

triangles 
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Adaptive Tessellation 
• For every triangle edges, check if each edge is 

tessellated enough (curveTessEnough()) 

• If all edges are tessellated enough, check if the 
whole triangle is tessellated enough as a whole 
(triTessEnough()) 

• If‏one‏or‏more‏of‏the‏edges‏or‏the‏triangle’s‏
interior is not tessellated enough, then further 
tessellation is needed  
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• When an edge is not tessellated enough, a 
point is created halfway between the edge 
points’‏uv-values  

• New triangles are created and the tessellator 
is once again called with the new triangles 
as input 

Adaptive Tessellation 

Four cases of further tessellation 
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AdaptiveTessellate(p,q,r) 

• tessPQ=not curveTessEnough(p,q) 

• tessQR=not curveTessEnough(q,r) 

• tessRP=not curveTessEnough(r,p) 

• If (tessPQ and tessQR and tessRP)  

– AdaptiveTessellate(p,(p+q)/2,(p+r)/2); 

– AdaptiveTessellate(q,(q+r)/2,(q+p)/2); 

– AdaptiveTessellate(r,(r+p)/2,(r+q)/2); 

– AdaptiveTessellate((p+q)/2,(q+r)/2,(r+p)/2); 

• else if (tessPQ and tessQR)  

– AdaptiveTessellate(p,(p+q)/2,r); 

– AdaptiveTessellate((p+q)/2,(q+r)/2,r); 

– AdaptiveTessellate((p+q)/2,q,(q+r)/2); 

• else if (tessPQ)  

– AdaptiveTessellate(p,(p+q)/2,r); 

– AdaptiveTessellate(q,r,(p+q)/2); 

• Else if (not triTessEnough(p,q,r)) 
   AdaptiveTessellate((p+q+r)/3,p,q);  
   AdaptiveTessellate((p+q+r)/3,q,r);  
   AdaptiveTessellate((p+q+r)/3,r,p);  
end; 
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curveTessEnough 

• Say you are to judge whether ab needs 
tessellation 

• You can compute the midpoint c, and compute its 
distance l from ab  

• Check if l/||a-b|| is under a threshold 

• Can do something similar for triTessEnough 

– Sample at the mass center and calculate its distance 
from the triangle 
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Other factors to evaluate 

• Inside the view frustum 

• Front facing 

• Occupying a large area in screen space 

• Close to the sillhouette of the object 

• Illuminated by a significant amount of 
specular lighting 


