Beizer Curve

Bézier Curves

- Hermite cubic curves are difficult to model - need to specify point and gradient.
- More intuitive to only specify points.
- Pierre Bézier (an engineer at Renault) specified 2 endpoints and 2 additional control points to specify the gradient at the endpoints.
- Can be derived from Hermite matrix:
- Two end control points specify tangent

Bézier Curves

Note the Convex Hull has been shown as a dashed line - used as a bounding extent for intersection purposes.

Bézier Matrix

- The cubic form is the most popular $\mathrm{X}(\mathrm{t})=\mathrm{t}^{\mathrm{T}} \mathrm{M}_{\mathrm{B}} \mathrm{q} \quad\left(\mathrm{M}_{\mathrm{B}}\right.$ is the Bézier matrix)
- With $n=4$ and $r=0,1,2,3$ we get:

$$
X(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right]
$$

- Similarly for $\mathrm{Y}(\mathrm{t})$ and $\mathrm{Z}(\mathrm{t})$

Computer Graphics

Bézier blending functions

This is how they look -
The functions sum to 1 at any point along the curve.

Endpoints have full weight
The weights of each function is clear and the labels show the control

Computer Graphics

Joining Bezier Curves

- G^{l} continuity is provided at the endpoint when $P_{2}-P_{3}=k\left(Q_{1}-Q_{0}\right)$
- if $k=1, C^{l}$ continuity is obtained

Computer Graphics

Bicubic patches

- The concept of parametric curves can be extended to surfaces
- The cubic parametric curve is in the form of $Q(t)=\boldsymbol{t}^{\boldsymbol{T}} \boldsymbol{M} \boldsymbol{q}$ where $\boldsymbol{q}=\left(q_{1,} q_{2}, q_{3}, q_{4}\right): q_{i}$ control points, \boldsymbol{M} is the basis matrix (Hermite or Bezier, ...), $\boldsymbol{t}^{\boldsymbol{T}=\left(t^{3}, t^{2}, t, l\right)}$

Computer Graphics

- Now we assume q_{i} to vary along a parameter s,
- $Q_{i}(s, t)=\boldsymbol{t}^{\boldsymbol{T}} \boldsymbol{M}\left[q_{1}(s), q_{2}(s), q_{3}(s), q_{4}(s)\right]$
- $q_{i}(s)$ are themselves cubic curves, we can write them in the form ...

Computer Graphics

Bicubic patches

$Q(s, t)=t^{T} . M .\left(s^{T} . M .\left[\mathbf{q}_{11}, \mathbf{q}_{12}, \mathbf{q}_{13}, \mathbf{q}_{14}\right], \ldots, s^{T} . M .\left[\mathbf{q}_{41}, \mathbf{q}_{42}, \mathbf{q}_{43}, \mathbf{q}_{44}\right]\right)$

$$
=t^{T} \cdot M \cdot \mathbf{q} \cdot M^{T} \cdot S
$$

Each column contains the control points of
$q_{1}(S), \ldots, q_{4}(S)$
$\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ computed by $\quad x(s, t)=t^{T} \cdot M \cdot \mathbf{q}_{x} \cdot M^{T} . s$

$$
\begin{aligned}
& y(s, t)=t^{T} \cdot M \cdot \mathbf{q}_{y} \cdot M^{T} \cdot S \\
& z(s, t)=t^{T} \cdot M \cdot \mathbf{q}_{z} \cdot M^{T} \cdot S
\end{aligned}
$$

Computer Graphics

Bézier example

- We compute ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) by

$$
\begin{aligned}
& x(s, t)=t^{T} \cdot M_{B} \cdot q_{x} \cdot M_{B}^{T} \cdot s \\
& \quad q_{x} \text { is } 4 \times 4 \text { array of } x \text { coords } \\
& y(s, t)=t^{T} \cdot M_{B} \cdot q_{y} \cdot M_{B}^{T} \cdot s \\
& \quad q_{y} \text { is } 4 \times 4 \text { array of } y \text { coords }
\end{aligned}
$$

$z(s, t)=t^{T} \cdot M_{B} \cdot q_{z} \cdot M_{B}^{T} \cdot s$
q_{z} is 4×4 array of z coords

Computer Graphics

Continuity of Bicubic patches.

- Hermite and Bézier patches
- C_{0} continuity by sharing 4 control points between patches.
$-\mathrm{C}_{1}$ continuity when both sets of control points either side of the edge are collinear with the edge.

Displaying Bicubic patches.

- Need to compute the normals
- vector cross product of the 2 tangent vectors.
- Need to convert the bicubic patches into a polygon mesh
- tessellation

Computer Graphics

Normal Vectors

$$
\begin{aligned}
& \frac{\partial}{\partial s} Q(s, t)=\frac{\partial}{\partial s}\left(t^{T} \cdot M \cdot q \cdot M^{T} \cdot s\right)=t^{T} \cdot M \cdot q \cdot M^{T} \cdot \frac{\partial}{\partial s}(s) \\
& =t^{T} \cdot M \cdot q_{x} \cdot M^{T} \cdot\left[3 s^{2}, 2 s, 1,0\right]^{T} \\
& \frac{\partial}{\partial t} Q(s, t)=\frac{\partial}{\partial t}\left(t^{T} \cdot M \cdot q \cdot M^{T} \cdot s\right)=\frac{\partial}{\partial t}\left(t^{T}\right) \cdot M \cdot q \cdot M^{T} \cdot s \\
& =\left[3 t^{2}, 2 t, 1,0\right]^{T} \cdot M \cdot q \cdot M^{T} \cdot s \\
& \frac{\partial}{\partial s} Q(s, t) \times \frac{\partial}{\partial t} Q(s, t)=\left(y_{s} z_{t}-y_{t} z_{s}, z_{s} x_{t}-z_{t} x_{s}, x_{s} y_{t}-x_{t} y_{s}\right)
\end{aligned}
$$

The surface normal is biquintic (two variables, fifthdegree) polynomial and very expensive
Can use finite difference to reduce the computation

Tessellation

- We need to compute the triangles on the surface
- The simplest way is do uniform tessellation, which samples points uniformly in the parameter space
- Adaptive tessellation - adapt the size of triangles to the shape of the surface
- i.e., more triangles where the surface bends more
- On the other hand, for flat areas we do not need many triangles

Adaptive Tessellation

- For every triangle edges, check if each edge is tessellated enough (curveTessEnough())
- If all edges are tessellated enough, check if the whole triangle is tessellated enough as a whole (triTessEnough())
- If one or more of the edges or the triangle's interior is not tessellated enough, then further tessellation is needed

Adaptive Tessellation

- When an edge is not tessellated enough, a point is created halfway between the edge points' uv-values
- New triangles are created and the tessellator is once again called with the new triangles as input

Four cases of further tessellation

Adaptive Tessellation

AdaptiveTessellate(p,q,r)

- tessPQ=not curveTessEnough(p, q)
- tessQR=not curveTessEnough(q,r)
- tessRP=not curveTessEnough(r,p)
- If (tessPQ and tessQR and tessRP)
- AdaptiveTessellate $(\mathrm{p},(\mathrm{p}+\mathrm{q}) / 2,(\mathrm{p}+\mathrm{r}) / 2)$;
- AdaptiveTessellate ($\mathrm{q},(\mathrm{q}+\mathrm{r}) / 2,(\mathrm{q}+\mathrm{p}) / 2)$;
- AdaptiveTessellate(r,(r+p)/2,(r+q)/2);

- AdaptiveTessellate ($(\mathrm{p}+\mathrm{q}) / 2,(\mathrm{q}+\mathrm{r}) / 2,(\mathrm{r}+\mathrm{p}) / 2)$;
- else if (tessPQ and tessQR)
- AdaptiveTessellate(p,(p+q)/2,r);
- AdaptiveTessellate((p+q)/2,(q+r)/2,r);

- AdaptiveTessellate $((\mathrm{p}+\mathrm{q}) / 2, \mathrm{q},(\mathrm{q}+\mathrm{r}) / 2)$;
- else if (tessPQ)
- AdaptiveTessellate(p,(p+q)/2,r);
- AdaptiveTessellate(q,r,(p+q)/2);
- Else if (not triTessEnough(p,q,r))

AdaptiveTessellate ($(\mathrm{p}+\mathrm{q}+\mathrm{r}) / 3, \mathrm{p}, \mathrm{q})$; AdaptiveTessellate($(\mathrm{p}+\mathrm{q}+\mathrm{r}) / 3, \mathrm{q}, \mathrm{r})$; end;

Computer Graphics

curveTessEnough

- Say you are to judge whether ab needs tessellation
- You can compute the midpoint c , and compute its distance l from ab
- Check if $l /\|\mathbf{a - b}\|$ is under a threshold
- Can do something similar for triTessEnough
- Sample at the mass center and calculate its distance from the triangle

Other factors to evaluate

- Inside the view frustum
- Front facing
- Occupying a large area in screen space
- Close to the sillhouette of the object
- Illuminated by a significant amount of specular lighting

