# Intensity Attenuation 

Today we will start to look at illumination models in computer graphics

- Why do we need illumination models?
- Different kinds of lights
- Different kinds of reflections
- Basic lighting model


## Why Lighting?

If we don't have lighting effects nothing looks three dimensional!

## Why Lighting? (cont...)



## Point Light Sources

A point source is the simplest model we can use for a light source

We simply define:

- The position of the light

- The RGB values for the colour of the light

Light is emitted in all directions
Useful for small light sources

## Radial Intensity Attenuation

As light moves from a light source its intensity diminished

At any distance $d_{l}$ away from the light source the intensity diminishes by a factor of $1 / d_{1}^{2}$ However, using the factor $1 / d_{i}^{2}$ does not produce very good results so we use something different

## Radial Intensity Attenuation (cont...)

We use instead in inverse quadratic function of the form:

$$
f_{\text {radatten }}\left(d_{l}\right)=\frac{1}{a_{0}+a_{1} d_{l}+a_{2} d_{l}^{2}}
$$

where the coefficients $a_{0}, a_{1}$, and $a_{2}$ can be varied to produce optimal results

## Infinitely Distant Light Sources

A large light source, like the sun, can be modelled as a point light source However, it will have very little directional effect Radial intensity attenuation is not used


## Directional Light Sources \& Spotlights

## To turn a point light source into a spotlight we simply add a vector direction and an angular limit $\theta_{l}$



We can denote $V_{\text {light }}$ as the unit vector in the direction of the light and $V_{o b j}$ as the unit vector from the light source to an object
The dot-product of these two vectors gives us the angle between them

$$
V_{o b j} \cdot V_{l i g h t}=\cos \alpha
$$



If this angle is inside the light's angular limit then the object is within the spotlight

## Angular Intensity Attenuation

As well as light intensity decreasing as we move away from a light source, it also decreases angularly
A commonly used function for calculating angular attenuation is:

$$
f_{\text {angatten }}(\phi)=\cos ^{a_{l}} \phi \quad 0^{\circ} \leq \phi \leq \theta
$$

where the attenuation exponent $a_{l}$ is assigned some positive value and angle $\phi$ is measured from the cone axis

The colours that we perceive are determined by the nature of the light reflected from an object
For example, if white light is shone onto a green object most wavelengths are absorbed, while green light is reflected from
 the object

## Surface Lighting Effects

The amount of incident light reflected by a surface depends on the type of material Shiny materials reflect more of the incident light and dull surfaces absorb more of the incident light
For transparent surfaces some of the light is also transmitted through the material

## Diffuse Reflection

Surfaces that are rough or grainy tend to reflect light in all directions
This scattered light is called diffuse reflection


## Specular Reflection

Additionally to diffuse reflection some of the reflected light is concentrated into a highlight or bright spot
This is called specular reflection


## Ambient Light

A surface that is not exposed to direct light may still be lit up by reflections from other nearby objects ambient light
The total reflected light from a surface is the sum of the contributions from light sources and reflected light

## Example



## Example



## Nate Robin's Tutorial



Nate Robin's OpenGL Tutorials available at: http://www.xmission.com/~nate/tutors.html

## Basic Illumination Model

We will consider a basic illumination model which gives reasonably good results and is used in most graphics systems
The important components are:

- Ambient light
- Diffuse reflection
- Specular reflection

For the most part we will consider only monochromatic light

## Ambient Light

To incorporate background light we simply set a general brightness level for a scene This approximates the global diffuse reflections from various surfaces within the scene

We will denote this value as $I_{a}$

First we assume that surfaces reflect incident light with equal intensity in all directions
Such surfaces are referred to as ideal diffuse reflectors or Lambertian reflectors

A parameter $k_{d}$ is set for each surface that determines the fraction of incident light that is to be scattered as diffuse reflections from that surface

This parameter is known as the diffusereflection coefficient or the diffuse reflectivity
$k_{d}$ is assigned a value between 0.0 and 1.0

- 0.0: dull surface that absorbs almost all light
- 1.0: shiny surface that reflects almost all light


## Diffuse Reflection - Ambient Light

For background lighting effects we can assume that every surface is fully illuminated by the scene's ambient light $I_{a}$ Therefore the ambient contribution to the diffuse reflection is given as:

$$
I_{a m b d i f f}=k_{d} I_{a}
$$

Ambient light alone is very uninteresting so we need some other lights in a scene as well

## Diffuse Reflection (cont...)

When a surface is illuminated by a light source, the amount of incident light depends on the orientation of the surface relative to the light source direction


The angle between the incoming light direction and a surface normal is referred to as the angle of incidence given as $\theta$


## Diffuse Reflection (cont...)

So the amount of incident light on a surface is given as:

$$
I_{l, \text { incident }}=I_{l} \cos \theta
$$

So we can model the diffuse reflections as:

$$
\begin{aligned}
I_{l, d i f f} & =k_{d} I_{l, \text { ncident }} \\
& =k_{d} I_{l} \cos \theta
\end{aligned}
$$

## Diffuse Reflection (cont...)

Assuming we denote the normal for a surface as $N$ and the unit direction vector to the light source
 as $L$ then:

$$
N \cdot L=\cos \theta
$$

So:

$$
I_{l, \text { diff }}=\left\{\begin{array}{cc}
k_{d} I_{l}(N \cdot L) & \text { if } N \cdot L>0 \\
0 & \text { if } N \cdot L \leq 0
\end{array}\right.
$$

To combine the diffuse reflections arising from ambient and incident light most graphics packages use two separate diffusereflection coefficients:
$-k_{a}$ for ambient light
$-k_{d}$ for incident light
The total diffuse reflection equation for a single point source can then be given as:

$$
I_{d i f f}=\left\{\begin{array}{cc}
k_{a} I_{a}+k_{d} I_{l}(N \cdot L) & \text { if } N \cdot L>0 \\
k_{a} I_{a} & \text { if } N \cdot L \leq 0
\end{array}\right.
$$

## Examples



## Specular Reflection

The bright spot that we see on a shiny surface is the result of near total of the incident light in a concentrated region around the specular reflection angle The specular reflection angle equals the angle of the incident light


A perfect mirror reflects light only in the specular-reflection direction
Other objects exhibit specular reflections over a finite range of viewing positions around vector $R$


Shiny Surface
(Large $n_{s}$ )


Dull Surface
(Small $n_{s}$ )

## The Phong Specular Reflection Model

The Phong specular reflection model or Phong model is an empirical model for calculating specular reflection range developed in 1973 by Phong Bui Tuong
The Phong model sets the intensity of specular reflection as proportional to the angle between the viewing vector and the specular reflection vector

So, the specular reflection intensity is proportional to $\cos ^{n_{s}} \phi$
The angle $\Phi$ can be varied between $0^{\circ}$ and $90^{\circ}$ so that $\cos \Phi$ varies from 1.0 to 0.0

The specular-reflection exponent, $n_{s}$ is determined by the type of surface we want to display

- Shiny surfaces have a very large value (>100)
- Rough surfaces would have a value near 1


## The Phong Specular Reflection Model (cont...)

The graphs below show the effect of $n_{s}$ on the angular range in which we can expect to see specular reflections






For some materials the amount of specular reflection depends heavily on the angle of the incident light
Fresnel's Laws of Reflection describe in great detail how specular reflections behave However, we don't need to worry about this and instead approximate the specular effects with a constant specular reflection coefficient $\underline{k}_{\underline{s}}$

So the specular reflection intensity is given as:

$$
I_{l, s p e c}=k_{s} I_{l} \cos ^{n_{s}} \phi
$$

Remembering that $V \cdot R=\cos \phi$ we can say:

$$
I_{l, \text { spec }}=\left\{\begin{array}{cc}
k_{s} I_{l}(V \cdot R)^{n_{s}} & \text { if } V \cdot R>0 \text { and } N \cdot L>0 \\
0.0 & \text { if } V \cdot R<0 \text { or } N \cdot L \leq 0
\end{array}\right.
$$



For a single light source we can combine the effects of diffuse and specular reflections simply as follows:

$$
\begin{aligned}
I & =I_{\text {diff }}+I_{\text {spec }} \\
& =k_{a} I_{a}+k_{d} I_{l}(N \cdot L)+k_{s} I_{l}(V \cdot R)^{n_{s}}
\end{aligned}
$$

# Diffuse \& Specular Reflections From 

 Multiple Light SourcesWe can place any number of light sources in a scene

We compute the diffuse and specular reflections as sums of the contributions from the various sources

$$
\begin{aligned}
I & =I_{\text {ambdiff }}+\sum_{l=1}^{n}\left[I_{l, \text { diff }}+I_{l, \text { spec }}\right] \\
& =k_{a} I_{a}+\sum_{l=1}^{n} I_{l}\left[k_{d}(N \cdot L)+k_{s}(V \cdot R)^{n_{s}}\right]
\end{aligned}
$$

## Adding Intensity Attenuation

To incorporate radial and angular intensity attenuation into our model we simply adjust our equation to take these into account So, light intensity is now given as:

$$
I=I_{a m b d i f f}+\sum_{l=1}^{n}\left[f_{l, \text { radatten }} f_{l, \text { angatten }}\left(I_{l, \text { diff }}+I_{l, \text { spec }}\right)\right]
$$

where $f_{\text {radatten }}$ and $f_{\text {angatten }}$ are as discussed previously

## RGB Colour Considerations

For an RGB colour description each intensity specification is a three element vector So, for each light source:

$$
I_{l}=\left(I_{l R}, I_{l G}, I_{l B}\right)
$$

Similarly all parameters are given as vectors:

$$
\begin{gathered}
k_{a}=\left(k_{a R}, k_{a G}, k_{a B}\right) \quad k_{d}=\left(k_{d R}, k_{d G}, k_{d B}\right) \\
k_{s}=\left(k_{s R}, k_{s G}, k_{s B}\right)
\end{gathered}
$$

## RGB Colour Considerations (cont...)

Each component of the surface colour is then calculated with a separate expression For example:

$$
\begin{aligned}
& I_{l R, d i f f}=k_{d R} I_{l R}(N \cdot L) \\
& I_{l G,, d i f f}=k_{d G} I_{l G}(N \cdot L) \\
& I_{l B, d i f f}=k_{d B} I_{l B}(N \cdot L)
\end{aligned}
$$

## Summary

T create realistic (or even semi-realistic) looking scenes we must model light correctly To successfully model lighting effects we need to consider:

- Ambient light
- Diffuse reflections
- Specular reflections


