Colour in

 Computer Graphics
Outline: This time

- Introduction
- Spectral distributions
- Simple Model for the Visual System
- Simple Model for an Emitter System
- Generating Perceivable Colours
- CIE-RGB Colour Matching Functions

Outline: Next Time

- CIE-RGB Chromaticity Space
- CIE-XYZ Chromaticity Space
- Converting between XYZ and RGB
- Colour Gamuts and Undisplayable Colours
- Summary for Rendering: What to do in practice

Spectral Distributions

- Radiometry (radiant power, radiance etc)
- Measurement of light energy
- Photometry (luminance etc)
- Measurement including response of visual system
- $\Phi(\lambda)=\operatorname{Kn}(\lambda) / \lambda$ spectral radiant power distribution
- Generally C(λ) defines spectral colour distribution $\lambda \varepsilon\left[\lambda_{\mathrm{a}}, \lambda_{\mathrm{b}}\right]=\Lambda$
- In computer graphics C is usually radiance.

Monochromatic Light (pure colour)

- $\delta(\lambda)=0, \lambda \neq 0$
- $\int \delta(\lambda) d \lambda=1$
- $\int \delta(t) f(x-t) d t=f(x)$
- $\mathrm{C}(\lambda)=\delta\left(\lambda-\lambda_{0}\right)$ is spectral distribution for pure colour with wavelength λ_{0}

Colour as Spectral Distributions

Spectral Energy Distribution

Visible Spectrum

Schematic Representation of Colour Spectra

Colour Space

- Space of all visible colours equivalent to set of all functions $\mathrm{C}: \Lambda \rightarrow \mathrm{R}$
- $\mathrm{C}(\lambda) \geq 0$ all λ
- C $(\lambda)>0$ some λ.
- (Cardinality of this space is 2^{c})

Perception and 'The Sixth Sense' movie

- We do not 'see' $\mathrm{C}(\lambda)$ directly but as filtered through visual system.
- Two different people/animals will 'see' $C(\lambda)$ differently.
- Different $C(\lambda)$ s can appear exactly the same to one individual (metamer).
- (Ignoring all 'higher level' processing, which basically indicates "we see what we expect to see").

Infinite to Finite

- Colour space is infinite dimensional
- Visual system filters the energy distribution through a finite set of channels
- Constructs a finite signal space (retinal level)
- Through optic nerve to higher order processing (visual cortex ++++).

A Simple Model for the Visual

 System

Human Eye Schematic

Photosensitive Receptors

- Rods - 130,000,000 night vision + peripheral (scotopic)
- Cones - 5-7,000,000, daylight vision + acuity (one point only)
- Cones
- L-cones
- M-cones
- S-cones

LMS Response Curves

- $1=\int \mathrm{C}(\lambda) \mathrm{L}(\lambda) \mathrm{d} \lambda$
- $\mathrm{m}=\int \mathrm{C}(\lambda) \mathrm{M}(\lambda) \mathrm{d} \lambda$
- $\mathrm{s}=\int \mathrm{C}(\lambda) \mathrm{S}(\lambda) \mathrm{d} \lambda$
- $\mathrm{C} \rightarrow(1, \mathrm{~m}, \mathrm{~s})$ (trichromatic theory)
- $\operatorname{LMS}(\mathrm{C})=(1, \mathrm{~m}, \mathrm{~s})$
- $\operatorname{LMS}\left(\mathrm{C}_{\mathrm{a}}\right)=\operatorname{LMS}\left(\mathrm{C}_{\mathrm{b}}\right)$ then $\mathrm{C}_{\mathrm{a}}, \mathrm{C}_{\mathrm{b}}$ are metamers.

2-degree cone normalised response curves

Simple Model for an Emitter System

- Generates chromatic light by mixing streams of energy of light of different spectral distributions
- Finite number (>=3) and independent

Primaries (Basis) for an Emitter

- $\mathrm{C}_{\mathrm{E}}(\lambda)=\alpha_{1} \mathrm{E}_{1}(\lambda)+\alpha_{2} \mathrm{E}_{2}(\lambda)+\alpha_{3} \mathrm{E}_{3}(\lambda)$
- E_{i} are the primaries (form a basis)
- α_{i} are called the intensities.
- CIE-RGB Primaries are:
$-\mathrm{E}_{\mathrm{R}}(\lambda)=\delta\left(\lambda-\lambda_{\mathrm{R}}\right), \lambda_{\mathrm{R}}=700 \mathrm{~nm}$
$-\mathrm{E}_{\mathrm{G}}(\lambda)=\delta\left(\lambda-\lambda_{\mathrm{G}}\right), \lambda_{\mathrm{G}}=546.1 \mathrm{~nm}$
$-\mathrm{E}_{\mathrm{B}}(\lambda)=\delta\left(\lambda-\lambda_{\mathrm{B}}\right), \lambda_{\mathrm{B}}=435.8 \mathrm{~nm}$

Computing the Intensities

- For a given $\mathrm{C}(\lambda)$ problem is to find the intensities α_{i} such that $\mathrm{C}_{\mathrm{E}}(\lambda)$ is metameric to $C(\lambda)$.
- First Method to be shown isn't used, but illustrative of the problem.

Colour Matching Functions

- Previous method relied on knowing L, M, and S response curves accurately.
- Better method based on colour matching functions.
- Define how to get the colour matching functions $\gamma_{i}(\lambda)$ relative to a given system of primaries.

2-degree RGB Colour Matching Functions

wavelength nm

Colour Matching Experiment

Mixing of 3 primaries

Target colour

Adjust intensities to match the colour

Summary Week 1

- Compute the radiance distribution $C(\lambda)$
- Find out the colour matching functions for the display $\gamma_{i}(\lambda)$
- Perform the 3 integrals $\int \gamma_{i}(\lambda) C(\lambda) \mathrm{d} \lambda$ to get the intensities for the metamer for that colour on the display.
- Except that's not how it is done ...
-to be continued....

Outline: Week 2

- CIE-RGB Chromaticity Space
- CIE-XYZ Chromaticity Space
- Converting between XYZ and RGB
- Colour Gamuts and Undisplayable Colours
- Summary for Rendering: What to do in practice

CIE-RGB Chromaticity Space

- Consider CIE-RGB primaries:
- For each $C(\lambda)$ there is a point $\left(\alpha_{R}, \alpha_{G}, \alpha_{B}\right)$:
- $\mathrm{C}(\lambda) \approx \alpha_{\mathrm{R}} \mathrm{E}_{\mathrm{R}}(\lambda)+\alpha_{\mathrm{G}} \mathrm{E}_{\mathrm{G}}(\lambda)+\alpha_{\mathrm{B}} \mathrm{E}_{\mathrm{B}}(\lambda)$
- Considering all such possible points
- $\left(\alpha_{R}, \alpha_{G}, \alpha_{B}\right)$
- Results in 3D RGB colour space
- Hard to visualise in 3D
- so we'll find a 2 D representation instead.

CIE-RGB Chromaticity Space

- Consider $1^{\text {st }}$ only monochromatic colours:
$-\mathrm{C}(\lambda)=\delta\left(\lambda-\lambda_{0}\right)$
- Let the CIE-RGB matching functions be
$-r(\lambda), g(\lambda), b(\lambda)$
- Then, eg,
$-\alpha_{R}\left(\lambda_{0}\right)=\int \delta\left(\lambda-\lambda_{0}\right) r(\lambda) d \lambda=r\left(\lambda_{0}\right)$
- Generally
$-\left(\alpha_{R}\left(\lambda_{0}\right), \alpha_{G}\left(\lambda_{0}\right), \alpha_{B}\left(\lambda_{0}\right)\right)=\left(r\left(\lambda_{0}\right), g\left(\lambda_{0}\right), b\left(\lambda_{0}\right)\right)$

CIE-RGB Chromaticity Space

- As λ_{0} varies over all wavelengths - $\left(\mathrm{r}\left(\lambda_{0}\right), \mathrm{g}\left(\lambda_{0}\right), \mathrm{b}\left(\lambda_{0}\right)\right)$ sweeps out a 3D curve.
- This curve gives the metamer intensities for all monochromatic colours.
- To visualise this curve, conventionally project onto the plane
$-\alpha_{R}+\alpha_{G}+\alpha_{B}=1$

CIE-RGB Chromaticity Space

- It is easy to show that projection of $\left(\alpha_{R}, \alpha_{G}, \alpha_{B}\right)$ onto $\alpha_{R}+\alpha_{G}+\alpha_{B}=1$ is: $-\left(\alpha_{R} / D, \alpha_{G} / D, \alpha_{B} / D\right)$,
- $D=\alpha_{R}+\alpha_{G}+\alpha_{B}$
- Show that interior and boundary of the curve correspond to visible colours.
- CIE-RGB chromaticity space.

CIE-RGB Chromaticity Diagram

CIE-RGB Chromaticity

- Define:

$$
-V(\lambda)=\beta_{1} L(\lambda)+\beta_{2} M(\lambda)+\beta_{3} S(\lambda)
$$

- Specific constants β_{i} results in
- Spectral luminous efficiency curve
- Overall response of visual system to $\mathrm{C}(\lambda)$
- $L(C)=K \int C(\lambda) V(\lambda) d \lambda$
- For $\mathrm{K}=680$ lumens/watt, and C as radiance, L is called the luminance (candelas per square metre)

Spectral Luminous Efficiency Function

CIE-RGB Chromaticity

- Since
$-\mathrm{C}(\lambda) \approx \alpha_{\mathrm{R}} \mathrm{E}_{\mathrm{R}}(\lambda)+\alpha_{\mathrm{G}} \mathrm{E}_{\mathrm{G}}(\lambda)+\alpha_{\mathrm{B}} \mathrm{E}_{\mathrm{B}}(\lambda)$
- Then
- $\mathrm{L}(\mathrm{C})=$
$\alpha_{R} \int \mathrm{E}_{\mathrm{R}}(\lambda) \mathrm{V}(\lambda) \mathrm{d} \lambda$
$+\alpha_{\mathrm{G}} \int \mathrm{E}_{\mathrm{G}}(\lambda) \mathrm{V}(\lambda) \mathrm{d} \lambda$
$+\alpha_{B} \int \mathrm{E}_{\mathrm{B}}(\lambda) \mathrm{V}(\lambda) \mathrm{d} \lambda$
- Or
$-\mathrm{L}(\mathrm{C})=\alpha_{\mathrm{R}} 1_{\mathrm{R}}+\alpha_{\mathrm{G}} 1_{\mathrm{G}}+\alpha_{\mathrm{B}} 1_{\mathrm{B}}$

Luminance and Chrominance

- $\mathrm{L}(\mathrm{C})=\alpha_{\mathrm{R}} 1_{\mathrm{R}}+\alpha_{\mathrm{G}} 1_{\mathrm{G}}+\alpha_{\mathrm{B}} 1_{\mathrm{B}}$
- and $1_{R} 1_{G} 1_{B}$ are constants
- Consider set of all ($\alpha_{R}, \alpha_{G}, \alpha_{B}$) satisfying this equation...
- a plane of constant luminance in RGB space
- Only one point on plane corresponds to colour C
- so what is varying?
- Chrominance
- The part of a colour (hue) abstracting away the luminance
- Colour $=$ chrominance + luminance (independent)

Luminance and Chrominance

- Consider plane of constant luminance
$-\alpha_{R} 1_{R}+\alpha_{G} 1_{G}+\alpha_{B} 1_{B}=L$
- Let $\alpha^{*}=\left(\alpha^{*}{ }_{\mathrm{R}}, \alpha^{*}{ }_{\mathrm{G}}, \alpha^{*}{ }_{\mathrm{B}}\right)$ be a point on this plane.
- $\left(\mathrm{t} \alpha_{\mathrm{R}}^{*}, \mathrm{t} \alpha_{\mathrm{G}}{ }_{\mathrm{G}}, \mathrm{t} \alpha_{\mathrm{B}}{ }_{\mathrm{B}}\right), \mathrm{t}>0$ is a line from 0 through α^{*}
- Luminance is increasing (tL) but projection on $\alpha_{R}+\alpha_{G}+\alpha_{B}=1$ is the same.
- Projection on $\alpha_{R}+\alpha_{G}+\alpha_{B}=1$ is a way of providing 2D coord system for chrominance.

(Change of Basis)

- E and F are two different primaries
$-\mathrm{C}(\lambda) \approx \alpha_{1} \mathrm{E}_{1}(\lambda)+\alpha_{2} \mathrm{E}_{2}(\lambda)+\alpha_{3} \mathrm{E}_{3}(\lambda)$
$-C(\lambda) \approx \beta_{1} F_{1}(\lambda)+\beta_{2} F_{2}(\lambda)+\beta_{3} F_{3}(\lambda)$
- Let A be the matrix that expresses F in terms of E
- $\mathrm{F}(\lambda)=\mathrm{AE}(\lambda)$
- Then
- $\alpha=\beta \mathrm{A}$
$-\gamma_{\mathrm{Ej}}(\lambda)=\sum_{\mathrm{i}} \gamma_{\mathrm{Fi}}(\lambda) \alpha_{\mathrm{ij}}$ (CMFs)

CIE-XYZ Chromaticity Space

- CIE-RGB representation not ideal
- Colours outside $1^{\text {st }}$ quadrant not achievable
- Negative CMF function ranges
- CIE derived a different XYZ basis with better mathamatical behaviour
$-\mathrm{X}(\lambda), \mathrm{Y}(\lambda), \mathrm{Z}(\lambda)$ basis functions (imaginary primaries)
- X, Z have zero luminance
- CMF for Y is specral luminous efficiency function V
- Known matrix A for transformation to CIE-RGB

CIE-XYZ Chromaticity Space

- $\mathrm{C}(\lambda) \approx \mathrm{X} . \mathrm{X}(\lambda)+\mathrm{Y} . \mathrm{Y}(\lambda)+\mathrm{Z} . \mathrm{Z}(\lambda)$
$-\mathrm{X}=\int \mathrm{C}(\lambda) \mathrm{x}(\lambda) \mathrm{d} \lambda$
$-\mathrm{Y}=\int \mathrm{C}(\lambda) \mathrm{y}(\lambda) \mathrm{d} \lambda$ [luminance]
$-\mathrm{Z}=\int \mathrm{C}(\lambda) \mathrm{Z}(\lambda) \mathrm{d} \lambda$
$-\mathrm{x}, \mathrm{y}, \mathrm{z}$ are the CMFs

2-deg XYZ Colour Matching Functions

Converting Between XYZ and

 RGB- System has primaries $R(\lambda), G(\lambda), B(\lambda)$
- How to convert between a colour expressed in RGB and vice versa?
- Derivation...

Colour Gamuts and Undisplayable Colours

- Display has RGB primaries, with corresponding XYZ colours $\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{G}}, \mathrm{C}_{\mathrm{B}}$
- Chromaticities $\mathrm{c}_{\mathrm{R}}, \mathrm{c}_{\mathrm{G}}$, c_{B} will form triangle on CIE-XYZ diagram
- All points in the triangle are displayable colours
- forming the colour gamut

Some Colour Gamuts

Undisplayable Colours

- Suppose XYZ colour computed, but not displayable?
- Terminology
- Dominant wavelength
- Saturation

XYZ with White Point

For colour at P

- Q dominant wavelength

Colour might not be displayable

- Falls outside of the triangle (its chromaticity not displayable on this device)
- Might desaturate it, move it along line QW until inside gamut (so dominant wavelength invariant)
- Colour with luminance outside of displayable range.
- Clip vector through the origin to the RGB cube (chrominance invariant)

RGB Colour Cube

blue
$(0,0,1)$

white
(1,1,1)
yellow
(1,1,0)

RGB Cube Mapped to XYZ Space

Summary for Rendering

- Incorrect to use RGB throughout!!!
- Different displays will produce different results
- RGB is not the appropriate measure of light energy (neither radiometric nor photometric).
- But depends on application
- Most applications of CG do not require 'correct' colours...
- ...but colours that are appropriate for the application.

For Rendering

- Algorithm should compute $C(\lambda)$ for surfaces
- means computing at a sufficient number of wavelengths to estimate C (not 'RGB').
- Transform into XYZ space
$-\mathrm{X}=\int \mathrm{C}(\lambda) \mathrm{x}(\lambda) \mathrm{d} \lambda$
$-\mathrm{Y}=\int \mathrm{C}(\lambda) \mathrm{y}(\lambda) \mathrm{d} \lambda$
$-\mathrm{Z}=\int \mathrm{C}(\lambda) \mathrm{z}(\lambda) \mathrm{d} \lambda$
- Map to RGB space, with clipping and gamma correction.

