Colour in Computer Graphics

Outline: This time

- Introduction
- Spectral distributions
- Simple Model for the Visual System
- Simple Model for an Emitter System
- Generating Perceivable Colours
- CIE-RGB Colour Matching Functions

Outline: Next Time

- CIE-RGB Chromaticity Space
- CIE-XYZ Chromaticity Space
- Converting between XYZ and RGB
- Colour Gamuts and Undisplayable Colours
- Summary for Rendering: What to do in practice

Spectral Distributions

- Radiometry (radiant power, radiance etc)
 - Measurement of light energy
- Photometry (luminance etc)
 - Measurement including response of visual system
- $\Phi(\lambda) = Kn(\lambda) / \lambda$ spectral radiant power distribution
- Generally C(λ) defines spectral colour distribution $\lambda \epsilon [\lambda_a, \lambda_b] = \Lambda$
- In computer graphics C is usually radiance.

Monochromatic Light (pure colour)

- $\delta(\lambda) = 0, \lambda \neq 0$
- $\int \delta(\lambda) d \lambda = 1$
- $\int \delta(t) f(x-t) dt = f(x)$
- $C(\lambda) = \delta(\lambda \lambda_0)$ is spectral distribution for pure colour with wavelength λ_0

Colour as Spectral Distributions

Spectral Energy Distribution

Visible Spectrum

Schematic Representation of Colour Spectra

Colour Space

Space of all visible colours equivalent to set of all functions C : Λ→R
- C(λ) ≥ 0 all λ
- C(λ) > 0 some λ.
(Cardinality of this space is 2^c)

Perception and 'The Sixth Sense' movie

- We do not 'see' C(λ) directly but as filtered through visual system.
- Two different people/animals will 'see' C(λ) differently.
- Different C(λ)s can appear exactly the same to one individual (metamer).
- (Ignoring all 'higher level' processing, which basically indicates "we see what we expect to see").

Infinite to Finite

- Colour space is infinite dimensional
- Visual system filters the energy distribution through a finite set of channels
- Constructs a finite signal space (retinal level)
- Through optic nerve to higher order processing (visual cortex ++++).

A Simple Model for the Visual System

Human Eye Schematic

Photosensitive Receptors

- Rods 130,000,000 night vision + peripheral (scotopic)
- Cones 5-7,000,000, daylight vision + acuity (one point only)
- Cones
 - L-cones
 - M-cones
 - S-cones

LMS Response Curves

- $1 = \int C(\lambda) L(\lambda) d\lambda$
- $m = \int C(\lambda) M(\lambda) d\lambda$
- $s = \int C(\lambda) S(\lambda) d\lambda$
- $C \rightarrow (l,m,s)$ (trichromatic theory)
- LMS(C) = (l,m,s)
- $LMS(C_a) = LMS(C_b)$ then C_a , C_b are *metamers*.

2-degree cone normalised response curves

System

- Generates chromatic light by mixing streams of energy of light of different spectral distributions
- Finite number (>=3) and independent

Primaries (Basis) for an Emitter

- $C_E(\lambda) = \alpha_1 E_1(\lambda) + \alpha_2 E_2(\lambda) + \alpha_3 E_3(\lambda)$
- E_i are the primaries (form a basis)
- α_i are called the *intensities*.
- CIE-RGB Primaries are:
 - $E_R(\lambda) = \delta(\lambda \lambda_R), \lambda_R = 700 \text{nm}$
 - $E_{G}(\lambda) = \delta(\lambda \lambda_{G}), \lambda_{G} = 546.1$ nm
 - $E_{\rm B}(\lambda) = \delta(\lambda \lambda_{\rm B}), \lambda_{\rm B} = 435.8 {\rm nm}$

Computing the Intensities

- For a given C(λ) problem is to find the intensities α_i such that C_E(λ) is metameric to C(λ).
- First Method to be shown isn't used, but illustrative of the problem.

Colour Matching Functions

- Previous method relied on knowing L, M, and S response curves accurately.
- Better method based on colour matching functions.
- Define how to get the colour matching functions γ_i(λ) relative to a given system of primaries.

2-degree RGB Colour Matching Functions

Colour Matching Experiment

Mixing of 3 primaries

Target colour

overlap

Adjust intensities to match the colour

Summary Week 1

- Compute the radiance distribution $C(\lambda)$
- Find out the colour matching functions for the display $\gamma_i(\lambda)$
- Perform the 3 integrals $\int \gamma_i(\lambda)C(\lambda)d\lambda$ to get the intensities for the metamer for that colour on the display.
-
- Except that's not how it is done ...
-to be continued....

Outline: Week 2

- CIE-RGB Chromaticity Space
- CIE-XYZ Chromaticity Space
- Converting between XYZ and RGB
- Colour Gamuts and Undisplayable Colours
- Summary for Rendering: What to do in practice

- Consider CIE-RGB primaries:
 For each C(λ) there is a point (α_R, α_G, α_B):
 C(λ) ≈ α_R E_R(λ) + α_G E_G(λ) + α_B E_B(λ)
 Considering all such possible points
 (α_R, α_G, α_B)
 Results in 3D RGB colour space
 - Hard to visualise in 3D
 - so we'll find a 2D representation instead.

- Consider 1st only monochromatic colours:
 C(λ) = δ(λ-λ₀)
- Let the CIE-RGB matching functions be

 r(λ), g(λ), b(λ)
- Then, eg,
 - $-\alpha_{\rm R}(\lambda_0) = \int \delta(\lambda \lambda_0) r(\lambda) d \lambda = r(\lambda_0)$
- Generally

 $- (\alpha_{\rm R}(\lambda_0), \alpha_{\rm G}(\lambda_0), \alpha_{\rm B}(\lambda_0)) = (r(\lambda_0), g(\lambda_0), b(\lambda_0))$

- As λ_0 varies over all wavelengths
 - $-(r(\lambda_0), g(\lambda_0), b(\lambda_0))$ sweeps out a 3D curve.
- This curve gives the metamer intensities for all monochromatic colours.
- To visualise this curve, conventionally project onto the plane

 $-\alpha_{\rm R} + \alpha_{\rm G} + \alpha_{\rm B} = 1$

It is easy to show that projection of (α_R, α_G, α_B) onto α_R + α_G + α_B = 1 is: - (α_R/D, α_G/D, α_B/D),
D = α_R + α_G + α_B

Show that interior and boundary of the curve correspond to visible colours.
 CIE-RGB chromaticity space.

CIE-RGB Chromaticity Diagram

CIE-RGB Chromaticity

- Define:
 - $V(\lambda) = \beta_1 L(\lambda) + \beta_2 M(\lambda) + \beta_3 S(\lambda)$
- Specific constants β_i results in
 - Spectral luminous efficiency curve
- Overall response of visual system to C(λ)
 L(C) = K ∫ C(λ) V(λ)d λ
- For K=680 lumens/watt, and C as radiance, L is called the luminance (candelas per square metre)

Spectral Luminous Efficiency Function

CIE-RGB Chromaticity

Since $-C(\lambda) \approx \alpha_{\rm R} E_{\rm R}(\lambda) + \alpha_{\rm G} E_{\rm G}(\lambda) + \alpha_{\rm B} E_{\rm R}(\lambda)$ Then • L(C) = $\alpha_{\rm R} \int E_{\rm R}(\lambda) V(\lambda) d\lambda$ $+ \alpha_G \int E_G(\lambda) V(\lambda) d\lambda$ $+ \alpha_{\rm B} \int E_{\rm B}(\lambda) V(\lambda) d\lambda$ Or $-L(C) = \alpha_R l_R + \alpha_G l_G + \alpha_B l_B$

Luminance and Chrominance

• $L(C) = \alpha_R l_R + \alpha_G l_G + \alpha_B l_B$

- and $l_R l_G l_B$ are constants

- Consider set of all $(\alpha_R, \alpha_G, \alpha_B)$ satisfying this equation...
 - a plane of constant luminance in RGB space
- Only one point on plane corresponds to colour C – so what is varying?
- Chrominance
 - The part of a colour (hue) abstracting away the luminance

• Colour = chrominance + luminance (independent)

Luminance and Chrominance

Consider plane of constant luminance

 $- \alpha_R l_R + \alpha_G l_G + \alpha_B l_B = L$

- Let $\alpha^* = (\alpha^*_R, \alpha^*_G, \alpha^*_B)$ be a point on this plane.
 - $(t\alpha_R^*, t\alpha_G^*, t\alpha_B^*)$, t>0 is a line from 0 through α^*
- Luminance is increasing (tL) but projection on $\alpha_R + \alpha_G + \alpha_B = 1$ is the same.
- Projection on $\alpha_R + \alpha_G + \alpha_B = 1$ is a way of providing 2D coord system for chrominance.

(Change of Basis)

• E and F are two different primaries - $C(\lambda) \approx \alpha_1 E_1(\lambda) + \alpha_2 E_2(\lambda) + \alpha_3 E_3(\lambda)$ - $C(\lambda) \approx \beta_1 F_1(\lambda) + \beta_2 F_2(\lambda) + \beta_3 F_3(\lambda)$

Let A be the matrix that expresses F in terms of E
 - F (λ) = AE(λ)

• Then

 $-\alpha = \beta A$

$$-\gamma_{\rm Ej}(\lambda) = \sum_i \gamma_{\rm Fi}(\lambda) \alpha_{ij} \ (\rm CMFs)$$

CIE-XYZ Chromaticity Space

CIE-RGB representation not ideal

- Colours outside 1st quadrant not achievable
- Negative CMF function ranges
- CIE derived a different XYZ basis with better mathamatical behaviour
 - $X(\lambda), Y(\lambda), Z(\lambda)$ basis functions (imaginary primaries)
 - X, Z have zero luminance
 - CMF for Y is specral luminous efficiency function V

• Known matrix A for transformation to CIE-RGB

CIE-XYZ Chromaticity Space

- $C(\lambda) \approx X. X(\lambda) + Y. Y(\lambda) + Z. Z(\lambda)$
 - $X = \int C(\lambda) x(\lambda) d\lambda$
 - $Y = \int C(\lambda) y(\lambda) d\lambda$ [luminance]
 - $Z = \int C(\lambda) z(\lambda) d\lambda$

– x,y,z are the CMFs

2-deg XYZ Colour Matching Functions

CIE-XYZ Chromaticity Diagram

Converting Between XYZ and RGB

- System has primaries $R(\lambda)$, $G(\lambda)$, $B(\lambda)$
- How to convert between a colour expressed in RGB and vice versa?
- Derivation...

Colour Gamuts and Undisplayable Colours

- Display has RGB primaries, with corresponding XYZ colours C_R, C_G, C_B
- Chromaticities c_R, c_G, c_B will form triangle on CIE-XYZ diagram
- All points in the triangle are displayable colours
 - forming the colour gamut

Some Colour Gamuts

Undisplayable Colours

- Suppose XYZ colour computed, but not displayable?
- Terminology
 - Dominant wavelength
 - Saturation

XYZ with White Point

Colour might not be displayable

- Falls outside of the triangle (its chromaticity not displayable on this device)
 - Might desaturate it, move it along line QW until inside gamut (so dominant wavelength invariant)
- Colour with luminance outside of displayable range.
 - Clip vector through the origin to the RGB cube (chrominance invariant)

RGB Colour Cube

RGB Cube Mapped to XYZ Space

Summary for Rendering

• Incorrect to use RGB throughout!!!

- Different displays will produce different results
- RGB is not the appropriate measure of light energy (neither radiometric nor photometric).
- But depends on application
 - Most applications of CG do not require 'correct' colours...
 - ...but colours that are appropriate for the application.

For Rendering

- Algorithm should compute $C(\lambda)$ for surfaces
 - means computing at a sufficient number of wavelengths to estimate C (not 'RGB').
- Transform into XYZ space
 - $X = \int C(\lambda) x(\lambda) d\lambda$
 - $Y = \int C(\lambda) y(\lambda) d\lambda$
 - $Z = \int C(\lambda) z(\lambda) d\lambda$
- Map to RGB space, with clipping and gamma correction.