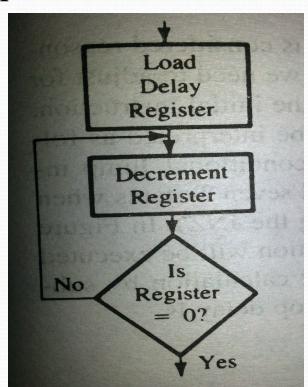

COUNTERS AND TIME DELAYS LECTURE 2


Counter and Time Delays

- •A counter is designed simply by loading appropriate number into one of the registers and using INR or DNR instructions.
- Loop is established to update the count.
- •Each count is checked to determine whether it has reached final number; if not, the loop is repeated.

Time Delay

- Procedure used to design a specific delay.
- A register is loaded with a number, depending on the time delay required and then the register is decremented until it reaches zero by setting up a loop with conditional jump instruction.
- Time delay using One register:

Label Opcode Operand Comments T states

MVI C,FFH ;Load register C 7
LOOP: DCR C ;Decrement C 4
JNZ LOOP ;Jump back to 10/7
decrement C

Clock frequency of the system = 2 MHz

Clock period= $1/T=0.5 \mu s$

Time to execute MVI = 7 T states * $0.5 = 3.5 \mu s$

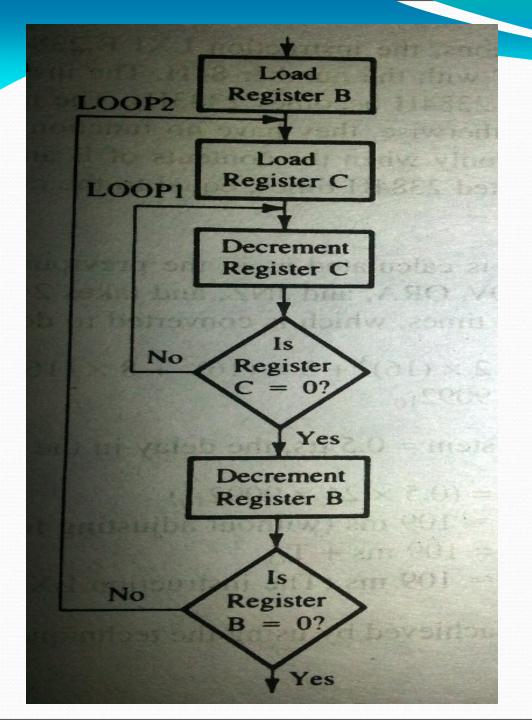
Time Delay in Loop TL= T*Loop T states * N10 = 0.5 * 14* 255= $1785 \mu s = 1.8 ms$

N₁₀ = Equivalent decimal number of hexadecimal count loaded in the delay register

TLA= Time to execute loop instructions =TL -(3T states* clock period)=1785-1.5=1783.5 μs

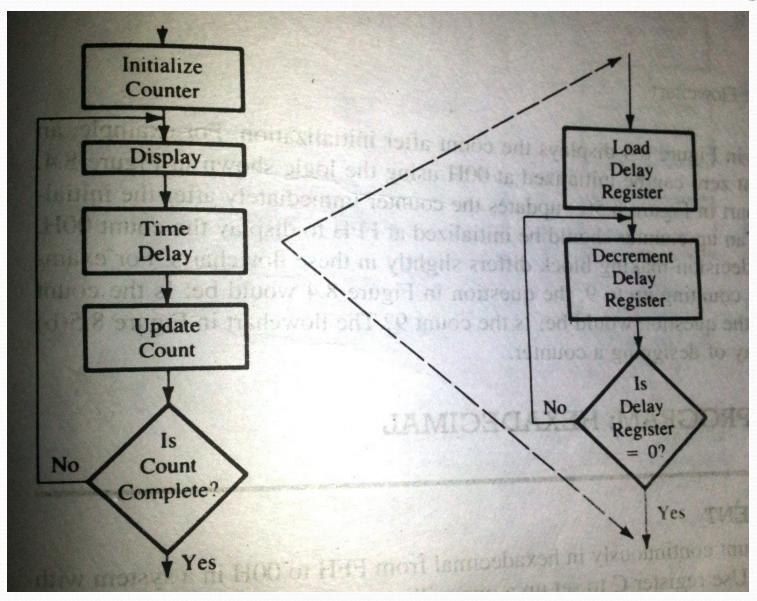
Time Delay using a register pair

Label	Opcode	Operand	Comments	T states
	LXI	В,2384Н	Load BC with 16-bit count	10
LOOP:	DCX	В	Decrement BC by 1	6
	MOV	A,C	Place contents of C in A	4
	ORA	В	OR B with C to set Zero flag	4
	JNZ	LOOP	if result not equal to 0,	10 /7
			jump back to loop	


Time Delay in Loop TL= T*Loop T states * N10

= 0.5 * 24* 9092

= 109 ms


Time Delay using a LOOP within a LOOP

	MVI B,38H	7T	Delay in Loop TL1=1783.5 μs
LOOP2:	MVI C,FFH	7 T	Delay in Loop TL2= $(0.5*21+TL1)*56$
LOOP1:	DCR C	4T	=100.46ms
	JNZ LOOP1	10/7 T	
	DCR B	4 T	
	JNZ LOOP 2	10 /7T	

Flowchart for time delay with two loops

Flowchart of a counter with time delay

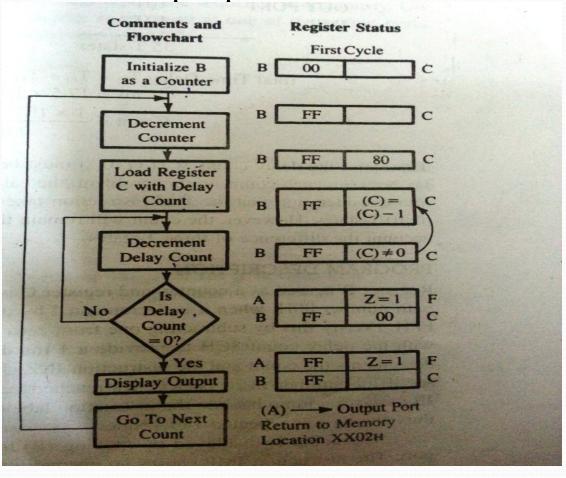
Illustrative Program: Hexadecimal Counter

Write a Program to count continuously from FFH to 00H using register C with delay count 8CH between each count and display the number at one of the output ports.

MVI B,00H

NEXT: DCR B

MVI C,8CH


DELAY: DCR C

JNZ DELAY

MOV A,B

OUT PORT#

JMP NEXT

Illustrative Program: Zero to nine (Modulo

ten) Counter

START: MVI B,00H

MOV A,B

DSPLAY: OUT PORT#

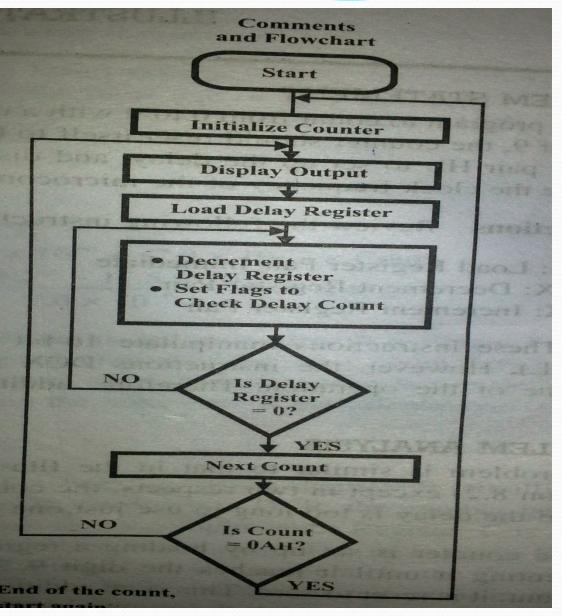
LXI H,16-bit

LOOP: DCX H

MOV A,L

ORAH

JNZ LOOP


INR B

MOV A,B

CPI 0AH

JNZ DSPLAY

JZ START

THANK YOU...