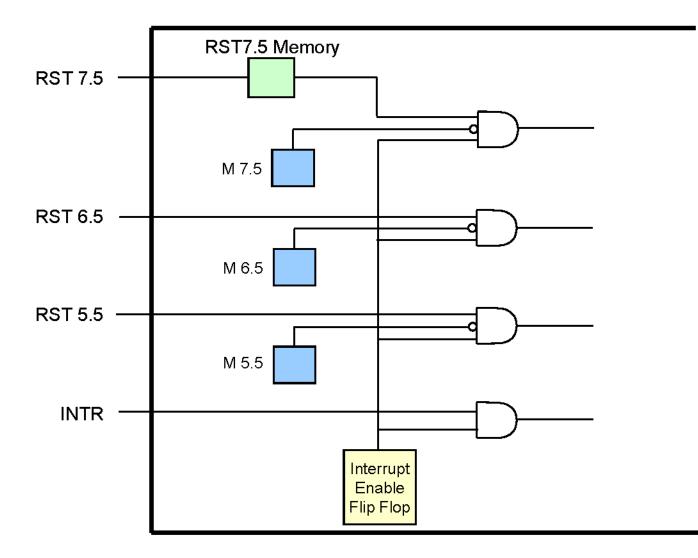
INTERRUPTS (Continued) LECTURE 5

The 8085 Maskable/Vectored Interrupts

- The 8085 has 4 Masked/Vectored interrupt inputs.
 RST 5.5, RST 6.5, RST 7.5
 - They are all maskable.
 - They are automatically vectored according to the following table:


Interrupt	Vector
RST 5.5	002CH
RST 6.5	0034H
RST 7.5	003CH

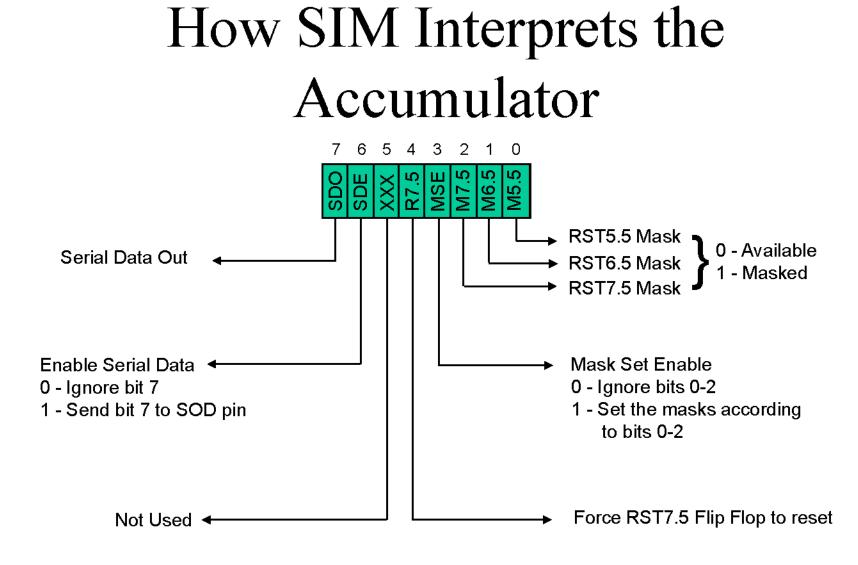
 The vectors for these interrupt fall in between the vectors for the RST instructions. That's why they have names like RST 5.5 (RST 5 and a half).

Masking RST 5.5, RST 6.5 and RST 7.5

- These three interrupts are masked at two levels:
 - Through the Interrupt Enable flip flop and the EI/DI instructions.
 - The Interrupt Enable flip flop controls the whole maskable interrupt process.
 - Through individual mask flip flops that control the availability of the individual interrupts.
 - These flip flops control the interrupts individually.

Maskable Interrupts

The 8085 Maskable/Vectored Interrupt Process


- 1. The interrupt process should be enabled using the EI instruction.
- 2. The 8085 checks for an interrupt during the execution of every instruction.
- 3. If there is an interrupt, <u>and if the interrupt is</u> <u>enabled using the interrupt mask</u>, the microprocessor will complete the executing instruction, and reset the interrupt flip flop.
- 4. The microprocessor then executes a call instruction that sends the execution to the appropriate location in the interrupt vector table.

The 8085 Maskable/Vectored Interrupt Process

- 5. When the microprocessor executes the call instruction, it saves the address of the next instruction on the stack.
- 6. The microprocessor jumps to the specific service routine.
- 7. The service routine must include the instruction EI to re-enable the interrupt process.
- 8. At the end of the service routine, the RET instruction returns the execution to where the program was interrupted.

Manipulating the Masks

- The Interrupt Enable flip flop is manipulated using the EI/DI instructions.
- The individual masks for RST 5.5, RST 6.5 and RST 7.5 are manipulated using the SIM instruction.
 - This instruction takes the bit pattern in the Accumulator and applies it to the interrupt mask enabling and disabling the specific interrupts.

SIM and the Interrupt Mask

- Bit 0 is the mask for RST 5.5, bit 1 is the mask for RST 6.5 and bit 2 is the mask for RST 7.5.
 - If the mask bit is 0, the interrupt is available.
 - If the mask bit is 1, the interrupt is masked.
- Bit 3 (Mask Set Enable MSE) is an enable for setting the mask.
 - If it is set to 0 the mask is ignored and the old settings remain.
 - If it is set to 1, the new setting are applied.
 - The SIM instruction is used for multiple purposes and not only for setting interrupt masks.
 - It is also used to control functionality such as Serial Data Transmission.
 - Therefore, bit 3 is necessary to tell the microprocessor whether or not the interrupt masks should be modified

SIM and the Interrupt Mask

- The RST 7.5 interrupt is the only 8085 interrupt that has memory.
 - If a signal on RST7.5 arrives while it is masked, a flip flop will remember the signal.
 - When RST7.5 is unmasked, the microprocessor will be interrupted even if the device has removed the interrupt signal.
 - This flip flop will be automatically reset when the microprocessor responds to an RST 7.5 interrupt.
- Bit 4 of the accumulator in the SIM instruction allows explicitly resetting the RST 7.5 memory even if the microprocessor did not respond to it.

SIM and the Interrupt Mask

- The SIM instruction can also be used to perform serial data transmission out of the 8085's SOD pin.
 - One bit at a time can be sent out serially over the SOD pin.
- Bit 6 is used to tell the microprocessor whether or not to perform serial data transmission
 - If 0, then do not perform serial data transmission
 - If 1, then do.
- The value to be sent out on SOD has to be placed in bit 7 of the accumulator.
- Bit 5 is not used by the SIM instruction

Using the SIM Instruction to Modify the Interrupt Masks

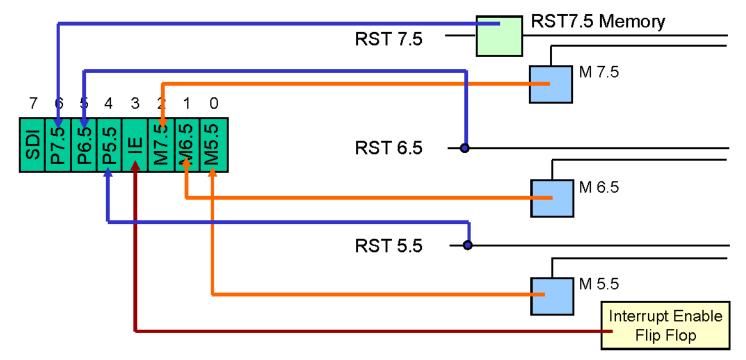
• Example: Set the interrupt masks so that RST5.5 is enabled, RST6.5 is masked, and RST7.5 is enabled.

- First, determine the contents of the accumulator

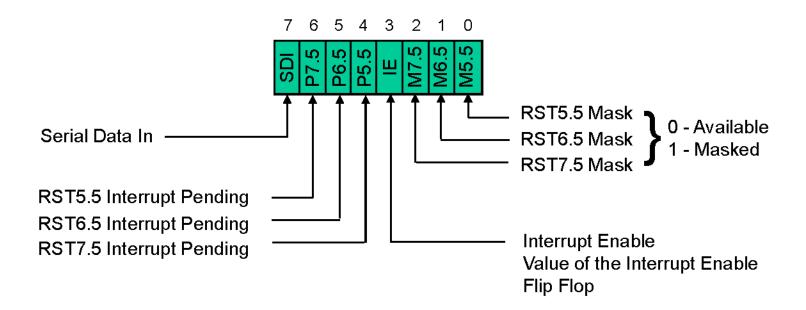
- Enable 5.5 bit 0 = 0- Disable 6.5 bit 1 = 1- Enable 7.5 bit 2 = 0- Allow setting the masks bit 3 = 1- Don't reset the flip flop bit 4 = 0- Bit 5 is not used bit 5 = 0- Don't use serial data bit 6 = 0- Serial data is ignored bit 7 = 0

SDO	SDE	XXX	R7.5	MSE	M7.5	M6.5	M5.5
0	0	0	0	1	0	1	0

Contents of accumulator are: 0AH


El	; Enable interrupts including INTR
MVI A, 0A	; Prepare the mask to enable RST 7.5, and 5.5, disable 6.5
SIM	; Apply the settings RST masks

Triggering Levels


- RST 7.5 is positive edge sensitive.
 - When a positive edge appears on the RST7.5 line, a logic 1 is stored in the flip-flop as a "pending" interrupt.
 - Since the value has been stored in the flip flop, the line does not have to be high when the microprocessor checks for the interrupt to be recognized.
 - The line must go to zero and back to one before a new interrupt is recognized.
- RST 6.5 and RST 5.5 are level sensitive.
 - The interrupting signal must remain present until the microprocessor checks for interrupts.

Determining the Current Mask Settings

- RIM instruction: Read Interrupt Mask
 - Load the accumulator with an 8-bit pattern showing the status of each interrupt pin and mask.

How RIM sets the Accumulator's different bits

The RIM Instruction and the Masks

- Bits 0-2 show the current setting of the mask for each of RST 7.5, RST 6.5 and RST 5.5
 - They return the contents of the three mask flip flops.
 - They can be used by a program to read the mask settings in order to modify only the right mask.
- Bit 3 shows whether the maskable interrupt process is enabled or not.
 - It returns the contents of the Interrupt Enable Flip Flop.
 - It can be used by a program to determine whether or not interrupts are enabled.

The RIM Instruction and the Masks

- Bits 4-6 show whether or not there are pending interrupts on RST 7.5, RST 6.5, and RST 5.5
 - Bits 4 and 5 return the current value of the RST5.5 and RST6.5 pins.
 - Bit 6 returns the current value of the RST7.5 memory flip flop.
- Bit 7 is used for Serial Data Input.
 - The RIM instruction reads the value of the SID pin on the microprocessor and returns it in this bit.

Pending Interrupts

- Since the 8085 has five interrupt lines, interrupts may occur during an ISR and remain pending.
 - Using the RIM instruction, the programmer can read the status of the interrupt lines and find if there are any pending interrupts.
 - The advantage is being able to find about interrupts on RST 7.5, RST 6.5, and RST 5.5 without having to enable low level interrupts like INTR.

Using RIM and SIM to set Individual Masks

- Example: Set the mask to enable RST6.5 without modifying the masks for RST5.5 and RST7.5.
 - In order to do this correctly, we need to use the RIM instruction to find the current settings of the RST5.5 and RST7.5 masks.
 - Then we can use the SIM instruction to set the masks using this information.
 - Given that both RIM and SIM use the Accumulator, we can use some logical operations to masks the un-needed values returned by RIM and turn them into the values needed by SIM.

Using RIM and SIM to set Individual Masks

– Assume the RST5.5 and RST7.5 are enabled and the interrupt process is disabled. Accumulator SDI P7.5 P6.5 P5.5 IE M6. M5. ЧZ RIM ; Read the current settings. ORI 08H ;00001000 0 0 0 1 Ó 1 ; Set bit 4 for MSE. ANI 0DH ;00001101 0 0 0 0 1 0 ; Turn off Serial Data, Don't reset ; RST7.5 flip flop, and set the mask ; for RST6.5 off. Don't cares are ; assumed to be 0. SIM ; Apply the settings. SDC SDE XXX R7.5 MSE M6.5 M5.5

TRAP

- TRAP is the only non-maskable interrupt.
 - It does not need to be enabled because it cannot be disabled.
- It has the highest priority amongst interrupts.
- It is edge and level sensitive.
 - It needs to be high and stay high to be recognized.
 - Once it is recognized, it won't be recognized again until it goes low, then high again.
- TRAP is usually used for power failure and emergency shutoff.

Internal Interrupt Priority

- Internally, the 8085 implements an interrupt priority scheme.
 - The interrupts are ordered as follows:
 - TRAP
 - RST 7.5
 - RST 6.5
 - RST 5.5
 - INTR

 However, TRAP has lower priority than the HLD signal used for DMA.

The 8085 Interrupts

Interrupt Name	Maskable	Masking Method	Vectored	Memory	Triggerin g Method
INTR	Yes	DI / EI	No	No	Level Sensitive
RST 5.5 / RST 6.5	Yes	DI / EI <mark>SIM</mark>	Yes	No	Level Sensitive
RST 7.5	Yes	DI / EI <mark>SIM</mark>	Yes	Yes	Edge Sensitive
TRAP	No	None	Yes	No	Level & Edge Sensitive