CODE CONVERSIONS LECTURE 1

1. BCD to Binary Conversion

A BCD number between 0 and 99 is stored in an R/W memory location called the input buffer (UNBUF). WAP and a conversion subroutine (BSDBIN) to convert the BCD number into its equivalent binary number. Store the result in a memory location defined as Output Buffer(OUTBUF).

START: LXI SP,STACK
LXI H,INBUF
LXI B,OUTBUF
MOV A,M
CALL BCDBIN
STAX B
HLT
BCDBIN: PUSH B
PUSH D
MOV B,A
ANI 0FH
MOV C,A
MOV A,B
ANI F0H
JZ BCD1
RRC
RRC
RRC
RRC
MOV D,A
XRA A

(CONT.)
 MVI E,OAH
 SUM: ADD E DCR D JNZ SUM
 BCD1: ADD C POP D POP B
 RET

-The main program initializes the stack pointer and two memory indexes. It brings BCD number into the accumulator and passes that parameter into subroutine.
-After returning from the subroutine ,the main program stores the binary equivalent in output buffer memory.

- Subroutine saves the content of BC and DE because these registers are used in the subroutine. The acc contents are not saved because that information is passed on to the subroutine.
-The conversion from BCD to binary is illustrated in subroutine 72
BCD converted to binary.

2. Binary to BCD Conversion

A binary group is stored in memory location BINBYT. Convert the number into BCD, and store each BCD as two unpacked BCD digits in the output buffer. To perform this task, WAP two subroutines: one to supply the powers of ten, and the other to perform the conversion.

START:	LXI SP,STACK
	LXI H,BINBYT
	MOV A,M
	CALL PWRTEN
PWRTEN:	HLT
	LXI H,OUTBUF
	MVI,64H
	CALL BINBCD
	MVI B,0AH
	CALL BINBCD
	MOV M,A
BINBCD:	RET
NXTBUF:	MVI M,FFH
	INR M
	SUB B
	JNC NXTBUF
	ADD B
	INX H

3. BCD to Seven Segment LED CODE CONVERSION

Problem Statement: A set of three packed BCD numbers are stored in memory location starting at $\mathrm{XX50H}$. The seven segment codes of digits 0 to 9 for common cathode LED are stored in memory location starting at $\mathrm{XX70H}$ and output buffer is reserved at $\mathrm{XX90H}$.
WAP \& two subroutines called UNPAK and LEDCOD to unpack BCD numbers and select an appropriate seven segment code for each digit. The code should be stored in output buffer memory.

LXI SP, 27FFH
LXI H,XX50H
MVI D, 03H
CALL UNPAK
HLT
UNPAK: LXI B, BUFFER
NXTBCD: MOV A,M
ANI FOH
RRC
RRC
RRC
RRC
CALL LEDCOD
INX B
MOV A,M
ANI OFH
CALL LEDCOD
INX B
INX H
DCR D
JNZ NXTBCD
RET

BCD to Seven Segment LED CODE CONVERSION (Cont.)

LEDCOD:	PUSH H	
	LXI H, CODE	
	ADD L	
	MOV L, A	
	MOV A, M	
	STAX B	
	POP H	
	RET	
CODE:	3 F	;Digit 0
	06	; Digit 1
	5B	; Digit 2
	4 F	; Digit 3
	66	; Digit 4
	6 D	; Digit 5
	7D	; Digit 6
	07	; Digit 7
	7 F	; Digit 8
	6 F	; Digit 9
	00	; Invalid Digit

4. Binary to ASCII CODE CONVERSION

Problem statement: WAP to convert the content of 5 memory locations starting from 2000 H into ASCII character. Place the result in five memory locations starting from 2200 H .

LXI SP, 27FFH
LXI H, 2000H
LXI D, 2200 H
MVI C, 05 H
X: MOV A,M
CALL ASCII
STAX D
INX H
INX D
DCR C
JNZ X
HLT

Flowchart for binary to ASCII

5. ASCII to Binary CODE CONVERSION

Problem statement: WAP to convert the content of 5 memory locations starting from 2000 H into Binary code. Place the result in five memory locations starting from 2200 H .

LXI SP, 27FFH
LXI H, 2000 H
LXI D, 2200H
MVI C, 05 H
X: MOV A,M
CALL ASCII
STAX D
INX H
INX D
DCR C
JNZ X
HLT
ASCII:CPI 3AH
JNC Y
SUI 37H
JMP Z
Y: SUI 30H
Z: RET

Flowchart for ASCII to binary

6. BCD ADDITION

Problem statement: Add two 2 -digit BCD numbers in memory location 2200H and 2201H and store the result in memory location 2300 H .
LXI H, 2200 H
MOV A,M
INX H
ADD M
DAA
STA 2300H
HLT

Example of BCD ADDITION

Problem statement: Add two 4 digits BCD numbers in HL and DE register pairs and store the result in memory locations 2300 H and 2301 H . Ignore carry after 16bit.

MOV A, L
ADD E
DAA
STA 2300 H
MOV A, H
ADC D
DAA
STA 2301H
HLT

SUBTRACTION OF TWO BCD NUMBERS

Problem statement: Subtract the BCD number stored in E register from the number stored in D register.

Process: (i) Find 100's complement of subtrahend
(ii) Add two numbers using BCD addition

MVI A, 99 H
SUBE
INR A
ADD D
DAA
HLT

ADVANCED INSTRUCTIONS

1. LHLD Address($\mathbf{1 6}$ bit)- This instruction is used to load the contents of memory location given within the instruction into L register and the contents of memory location next to it will be stored in H register.

Example: LHLD 5000 H - It will load the contents of memory location 5000 H into L register and the contents of memory location 5001 H will be stored in H register.
2. SHLD Address $(\mathbf{1 6}$ bit)- This instruction will store the contents of L register into the memory address as specified within the instruction and store the contents of H register into memory location next to it.

Example: SHLD 5000 H - This instruction will store the contents of L register into the memory address 5000 and store the contents of H register into memory location 5001.
3. XCHG- This instruction is used to exchange the contents of HL register pair with the contents of DE register pair.
4. XTHL- This instruction is used to exchange the contents of HL register pair with the contents of top of stack.
5. SPHL- This instruction is used to copy the contents of HL register pair into top of stack.
6. PCHL- This instruction is used to copy the contents of HL register pair into program counter.
7. ADC R- This instruction is used to add the contents of accumulator with the contents of specified register and carry and store the result in accumulator.
8. ADC M- This instruction is used to add the contents of accumulator with the contents of memory location as pointed by HL register pair and carry and store the result in accumulator.
9. ACI Data- This instruction is used to add the contents of accumulator with the immediate data given within the instruction and carry and store the result in accumulator.
10. SBB R-This instruction is used to subtract the contents of specified register from the contents of accumulator and carry and store the result in accumulator.
11. SBB M- This instruction is used to subtract the contents of memory location as pointed by HL register pair from the contents of accumulator and carry and store the result in accumulator.
12. SBI data- This instruction is used to subtract the contents of immediate data given within the instruction from the contents of accumulator and carry and store the result in accumulator.

8. MULTIPLICATION

A multiplicand is stored in memory location $\mathrm{XX50H}$ and multiplier is stored in location XX51H.WAP to transfer the two numbers from memory locations to the HL registers and store the product in the output buffer at XX 90 H . Write a subroutine to multiply two unsigned numbers placed in registers H and L. Return the result to HL pair.
LXI SP,STACK
LHLD XX50H
XCHG
CALL MLTPLY
SHLD XX90H
HLT
LXI H,0000H
MVI B,08H
DAD H
XCHG
DCR B
JNZ NXTBITRET
MOV A,D
MVI D,00H
NXTBIT: \quad RAR \quad JNC NOADD
NOADD: XCHG

