Automata theory and formal languages

What is automata theory

- Automata theory is the study of abstract computational devices
- Abstract devices are (simplified) models of real computations
- Computations happen everywhere: On your laptop, on your cell phone, in nature, ...
- Why do we need abstract models?

A simple computer

input: switch
output: light bulb
actions: flip switch
states: on, off

A simple "computer"

input: switch
output: light bulb
actions: ffor "flip switch"
states: on, off
bulb is on if and only if there was an odd number of flips

Another "computer"

inputs: switches 1 and 2 actions: 1 for "flip switch 1" 2 for "flip switch 2"
states: on, off
bulb is on if and only if both switches were flipped an odd number of times

A design problem

Can you design a circuit where the light is on if and only if all the switches were flipped exactly the same number of times?

A design problem

- Such devices are difficult to reason about, because they can be designed in an infinite number of ways
- By representing them as abstract computational devices, or automata, we will learn how to answer such questions

These devices can model many things

- They can describe the operation of any "small computer", like the control component of an alarm clock or a microwave
- They are also used in lexical analyzers to recognize well formed expressions in programming languages:
ab1 is a legal name of a variable in C
$5 u=$ is not

Different kinds of automata

- This was only one example of a computational device, and there are others
- We will look at different devices, and look at the following questions:
- What can a given type of device compute, and what are its limitations?
- Is one type of device more powerful than another?

Some devices we will see

finite automata

Devices with a finite amount of memory. Used to model "small" computers.

push-down automata

Devices with infinite memory that can be accessed in a restricted way.
Used to model parsers, etc.
Devices with infinite memory.
Used to model any computer.
time-bounded Infinite memory, but bounded running Turing Machines time.

Used to model any computer program that runs in a "reasonable" amount of time.

Some highlights of the course

- Finite automata
- We will understand what kinds of things a device with finite memory can do, and what it cannot do
- Introduce simulation: the ability of one device to "imitate" another device
- Introduce nondeterminism: the ability of a device to make arbitrary choices
- Push-down automata
- These devices are related to grammars, which describe the structure of programming (and natural) languages

Some highlights of the course

- Turing Machines
- This is a general model of a computer, capturing anything we could ever hope to compute
- Surprisingly, there are many things that we cannot compute, for example:

Write a program that, given the code of another program in C, tells if this program ever outputs the word "hello"

- It seems that you should be able to tell just by looking at the program, but it is impossible to do!

Some highlights of the course

- Time-bounded Turing Machines
- Many problems are possible to solve on a computer in principle, but take too much time in practice
- Traveling salesman: Given a list of cities, find the shortest way to visit them and come back home

- Easy in principle: Try the cities in every possible order
- Hard in practice: For 100 cities, this would take 100+ years even on the fastest computer!

Preliminaries of automata theory

- How do we formalize the question

Can device A solve problem B?

- First, we need a formal way of describing the problems that we are interested in solving

Problems

- Examples of problems we will consider
- Given a word s, does it contain the subword "fool"?
- Given a number n, is it divisible by 7 ?
- Given a pair of words s and t, are they the same?
- Given an expression with brackets, e.g. (() ()), does every left bracket match with a subsequent right bracket?
- All of these have "yes/no" answers.
- There are other types of problems, that ask "Find this" or "How many of that" but we won't look at those.

Alphabets and strings

- A common way to talk about words, number, pairs of words, etc. is by representing them as strings
- To definn ntrinne ...^n ntnnt with nn ninhnhnt An alphabet is a finite set of symbols.
- Examples, $b, \mathrm{c}, \mathrm{d}, \ldots, \mathrm{z}\}$: the set of letters in English $\Sigma_{2}=\{0,1, \ldots, 9\}$: the set of (base 10) digits
$\Sigma_{3}=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \#\}$: the set of letters plus the special symbol \#
$\Sigma_{4}=\{()$,$\} : the set of open and closed brackets$

Strings

A string over alphabet Σ is a finite sequence of symbols in Σ.

- The empty string will be denoted by ε
- Examples
abfbz is a string over $\Sigma_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \ldots, \mathrm{z}\}$
9021 is a string over $\Sigma_{2}=\{0,1, \ldots, 9\}$
ab\#bc is a string over $\Sigma_{3}=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \#\}$
)) $0\left(0\right.$ is a string over $\Sigma_{4}=\{()\}$,

Languages

A language is a set of strings over an alphabet.

- Languages can be used to describe problems with "yes/no" answers, for example:
$L_{1}=$ The set of all strings over Σ_{1} that contain the substring "fool"
$L_{2}=$ The set of all strings over Σ_{2} that are divisible by
7

$$
=\{7,14,21, \ldots\}
$$

$L_{3}=$ The set of all strings of the form $\mathrm{s} \# \mathrm{~s}$ where s is any string over $\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$
$L_{4}=$ The set of all strings over Σ_{4} where every (can

Finite Automata

Example of a finite automaton

- There are states off and on, the automaton starts in off and tries to reach the "good state" on
- What sequences of f lead to the good state?
- Answer: $\{f$, fff, fffff,...$\}=\left\{f^{n}: n\right.$ is odd $\}$
- This is an example of a deterministic finite automaton over alphabet $\{f\}$

Deterministic finite automata

- A deterministic finite automaton (DFA) is a 5tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
- Q is a finite set of states
$-\Sigma$ is an alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function
- $\mathrm{q}_{0} \in Q$ is the initial state
- $F \subseteq Q$ is a set of accepting states (or final states).
- In diagrams, the accepting states will be denoted by double loops

Example

alphabet $\Sigma=\{0,1\}$
start state $Q=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
initial state q_{0}
accepting states $F=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$
transition function δ :

Language of a DFA

The language of a DFA $\left(Q, \Sigma, \delta, q_{0}, F\right)$ is the set of all strings over Σ that, starting from q_{0} and following the transitions as the string is read left to right, will reach some accepting state.

- Language of M is $\{f, f f f, f f f f, \ldots\}=\left\{f^{n}: n\right.$ is odd $\}$

Examples

What are the languages of these DFAs?

Examples

- Construct a DFA that accepts the language

$$
L=\{010,1\} \quad(\Sigma=\{0,1\})
$$

Examples

- Construct a DFA that accepts the language

$$
L=\{010,1\} \quad(\Sigma=\{0,1\})
$$

- Answer

Examples

- Construct a DFA over alphabet $\{0,1\}$ that accepts all strings that end in 101

Examples

- Construct a DFA over alphabet $\{0,1\}$ that accepts all strings that end in 101
- Hint: The DFA must "remember" the last 3 bits of the string it is reading

Examples

- Construct a DFA over alphabet $\{0,1\}$ that accepts all strings that end in 101
- Sketch of answer:

