
Automata theory

and formal languages

What is automata theory

• Automata theory is the study of abstract

computational devices

• Abstract devices are (simplified) models of real

computations

• Computations happen everywhere: On your

laptop, on your cell phone, in nature, …

• Why do we need abstract models?

A simple computer

BATTERY

input: switch

output: light bulb

actions: flip switch

states: on, off

A simple “computer”

BATTERY off on start

f

f

input: switch

output: light bulb

actions: f for “flip switch”

states: on, off

bulb is on if and only if

there was an odd

number of flips

Another “computer”

BATTERY

off off start

1

inputs: switches 1 and 2

actions: 1 for “flip switch 1”

actions: 2 for “flip switch 2”

states: on, off

bulb is on if and only if

both switches were

flipped an odd number of

times

1

2

1

off on

1

1

2 2
2 2

A design problem

Can you design a circuit where the light is on if and

only if all the switches were flipped exactly the

same number of times?

4

BATTERY

1

2

3

5

?

A design problem

• Such devices are difficult to reason about,

because they can be designed in an infinite

number of ways

• By representing them as abstract computational

devices, or automata, we will learn how to

answer such questions

These devices can model many things

• They can describe the operation of any “small

computer”, like the control component of an

alarm clock or a microwave

• They are also used in lexical analyzers to

recognize well formed expressions in

programming languages:
ab1 is a legal name of a variable in C

5u= is not

Different kinds of automata

• This was only one example of a computational

device, and there are others

• We will look at different devices, and look at the

following questions:

– What can a given type of device compute, and what

are its limitations?

– Is one type of device more powerful than another?

Some devices we will see

finite automata Devices with a finite amount of memory.

Used to model “small” computers.

push-down

automata

Devices with infinite memory that can be

accessed in a restricted way.

Used to model parsers, etc.

Turing Machines Devices with infinite memory.

Used to model any computer.

time-bounded

Turing Machines

Infinite memory, but bounded running

time.

Used to model any computer program

that runs in a “reasonable” amount of

time.

Some highlights of the course

• Finite automata

– We will understand what kinds of things a device with

finite memory can do, and what it cannot do

– Introduce simulation: the ability of one device to

“imitate” another device

– Introduce nondeterminism: the ability of a device to

make arbitrary choices

• Push-down automata

– These devices are related to grammars, which

describe the structure of programming (and natural)

languages

Some highlights of the course

• Turing Machines

– This is a general model of a computer, capturing

anything we could ever hope to compute

– Surprisingly, there are many things that we cannot

compute, for example:

– It seems that you should be able to tell just by looking

at the program, but it is impossible to do!

Write a program that, given the code of another

program in C, tells if this program ever outputs
the word “hello”

Some highlights of the course

• Time-bounded Turing Machines

– Many problems are possible to solve on a computer in

principle, but take too much time in practice

– Traveling salesman: Given a list of cities, find the

shortest way to visit them and come back home

– Easy in principle: Try the cities in every possible order

– Hard in practice: For 100 cities, this would take 100+

years even on the fastest computer!

Hong Kong

Beijing

Shanghai
Xian

Guangzhou

Chengdu

Preliminaries of automata theory

• How do we formalize the question

• First, we need a formal way of describing the

problems that we are interested in solving

Can device A solve problem B?

Problems

• Examples of problems we will consider

– Given a word s, does it contain the subword “fool”?

– Given a number n, is it divisible by 7?

– Given a pair of words s and t, are they the same?

– Given an expression with brackets, e.g. (()()), does

every left bracket match with a subsequent right

bracket?

• All of these have “yes/no” answers.

• There are other types of problems, that ask “Find

this” or “How many of that” but we won’t look at

those.

Alphabets and strings

• A common way to talk about words, number,

pairs of words, etc. is by representing them as

strings

• To define strings, we start with an alphabet

• Examples

An alphabet is a finite set of symbols.

S1 = {a, b, c, d, …, z}: the set of letters in English

S2 = {0, 1, …, 9}: the set of (base 10) digits

S3 = {a, b, …, z, #}: the set of letters plus the

 special symbol #

S4 = {(,)}: the set of open and closed brackets

Strings

• The empty string will be denoted by e

• Examples

A string over alphabet S is a finite sequence

of symbols in S.

abfbz is a string over S1 = {a, b, c, d, …, z}

9021 is a string over S2 = {0, 1, …, 9}

ab#bc is a string over S3 = {a, b, …, z, #}

))()(() is a string over S4 = {(,)}

Languages

• Languages can be used to describe problems

with “yes/no” answers, for example:

A language is a set of strings over an alphabet.

L1 = The set of all strings over S1 that contain

 the substring “fool”

L2 = The set of all strings over S2 that are divisible by

7
 = {7, 14, 21, …}

L3 = The set of all strings of the form s#s where s is

any
 string over {a, b, …, z}

L4 = The set of all strings over S4 where every (can

be

Finite Automata

Example of a finite automaton

• There are states off and on, the automaton starts

in off and tries to reach the “good state” on

• What sequences of fs lead to the good state?

• Answer: {f, fff, fffff, …} = {f n: n is odd}

• This is an example of a deterministic finite
automaton over alphabet {f}

off on

f

f

Deterministic finite automata

• A deterministic finite automaton (DFA) is a 5-
tuple (Q, S, d, q0, F) where

– Q is a finite set of states

– S is an alphabet

– d: Q × S → Q is a transition function

– q0 Q is the initial state

– F Q is a set of accepting states (or final states).

• In diagrams, the accepting states will be denoted

by double loops

Example

q0 q1 q2
1 0

0 0,1 1

alphabet S = {0, 1}

start state Q = {q0, q1, q2}

initial state q0

accepting states F = {q0, q1}

s
ta

te
s

inputs

0 1
q0

q1

q2

q0 q1

q2

q2 q2

q1

transition function d:

Language of a DFA

The language of a DFA (Q, S, d, q0, F) is the set of

all strings over S that, starting from q0 and

following the transitions as the string is read left

to right, will reach some accepting state.

• Language of M is {f, fff, fffff, …} = {f n: n is odd}

off on

f

f

M:

q0 q1

q0 q1

q0 q1 q2

0 0

1

1

0 1

1

0

1 0

0 0,1 1

What are the languages of these DFAs?

Examples

Examples

• Construct a DFA that accepts the language

L = {010, 1} (S = {0, 1})

Examples

• Construct a DFA that accepts the language

• Answer

L = {010, 1} (S = {0, 1})

qe

q0

q1

q01 q010

qdie
0, 1

0

1 0

0, 1 1

0 1

0, 1

Examples

• Construct a DFA over alphabet {0, 1} that

accepts all strings that end in 101

Examples

• Construct a DFA over alphabet {0, 1} that

accepts all strings that end in 101

• Hint: The DFA must “remember” the last 3 bits of

the string it is reading

Examples

0

1

…

…

…

…

qe

q0

q1

q00

q10

q01

q11

q000

q001

q101

q111

0

1

0

1

0

1

1

1

1

1

0

• Construct a DFA over alphabet {0, 1} that

accepts all strings that end in 101

• Sketch of answer:

