
Automata theory 

and formal languages 



What is automata theory 

• Automata theory is the study of abstract 

computational devices 

• Abstract devices are (simplified) models of real 

computations  

• Computations happen everywhere: On your 

laptop, on your cell phone, in nature, … 

• Why do we need abstract models? 



A simple computer 

BATTERY 

input: switch 

output: light bulb 

actions: flip switch 

states: on, off 



A simple “computer” 

BATTERY off on start 

f 

f 

input: switch 

output: light bulb 

actions: f for “flip switch” 

states: on, off 

bulb is on if and only if 

there was an odd 

number of flips 



Another “computer” 

BATTERY 

off off start 
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inputs: switches 1 and 2 

actions: 1 for “flip switch 1” 

actions: 2 for “flip switch 2” 

states: on, off 

bulb is on if and only if 

both switches were 

flipped an odd number of 

times 
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A design problem 

Can you design a circuit where the light is on if and 

only if all the switches were flipped exactly the 

same number of times? 
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A design problem 

• Such devices are difficult to reason about, 

because they can be designed in an infinite 

number of ways 

• By representing them as abstract computational 

devices, or automata, we will learn how to 

answer such questions 



These devices can model many things 

• They can describe the operation of any “small 

computer”, like the control component of an 

alarm clock or a microwave 

• They are also used in lexical analyzers to 

recognize well formed expressions in 

programming languages: 
ab1 is a legal name of a variable in C 

5u= is not 



Different kinds of automata 

• This was only one example of a computational 

device, and there are others 

• We will look at different devices, and look at the 

following questions: 

– What can a given type of device compute, and what 

are its limitations? 

– Is one type of device more powerful than another? 



Some devices we will see 

finite automata Devices with a finite amount of memory. 

Used to model “small” computers. 

push-down 

automata 

Devices with infinite memory that can be 

accessed in a restricted way. 

Used to model parsers, etc. 

Turing Machines Devices with infinite memory. 

Used to model any computer. 

time-bounded 

Turing Machines 

Infinite memory, but bounded running 

time. 

Used to model any computer program 

that runs in a “reasonable” amount of 

time. 



Some highlights of the course 

• Finite automata 

– We will understand what kinds of things a device with 

finite memory can do, and what it cannot do 

– Introduce simulation: the ability of one device to 

“imitate” another device 

– Introduce nondeterminism: the ability of a device to 

make arbitrary choices 

• Push-down automata 

– These devices are related to grammars, which 

describe the structure of programming (and natural) 

languages 



Some highlights of the course 

• Turing Machines 

– This is a general model of a computer, capturing 

anything we could ever hope to compute 

– Surprisingly, there are many things that we cannot 

compute, for example: 

 

 

 

 

– It seems that you should be able to tell just by looking 

at the program, but it is impossible to do! 

Write a program that, given the code of another  

program in C, tells if this program ever outputs  
the word “hello” 



Some highlights of the course 

• Time-bounded Turing Machines 

– Many problems are possible to solve on a computer in 

principle, but take too much time in practice 

– Traveling salesman: Given a list of cities, find the 

shortest way to visit them and come back home 

 

 

 

 

– Easy in principle: Try the cities in every possible order 

– Hard in practice: For 100 cities, this would take 100+ 

years even on the fastest computer! 

Hong Kong 

Beijing 

Shanghai 
Xian 

Guangzhou 

Chengdu 



Preliminaries of automata theory 

• How do we formalize the question 

 

 

• First, we need a formal way of describing the 

problems that we are interested in solving 

Can device A solve problem B? 



Problems 

• Examples of problems we will consider 

– Given a word s, does it contain the subword “fool”? 

– Given a number n, is it divisible by 7? 

– Given a pair of words s and t, are they the same? 

– Given an expression with brackets, e.g. (()()), does 

every left bracket match with a subsequent right 

bracket? 

• All of these have “yes/no” answers.   

• There are other types of problems, that ask “Find 

this” or “How many of that” but we won’t look at 

those. 



Alphabets and strings 

• A common way to talk about words, number, 

pairs of words, etc. is by representing them as 

strings 

• To define strings, we start with an alphabet 

 

 

• Examples 

An alphabet is a finite set of symbols. 

S1 = {a, b, c, d, …, z}: the set of letters in English 

S2 = {0, 1, …, 9}: the set of (base 10) digits 

S3 = {a, b, …, z, #}: the set of letters plus the  

   special symbol # 

S4 = {(, )}: the set of open and closed brackets  



Strings 

• The empty string will be denoted by e 

• Examples 

A string over alphabet S is a finite sequence 

of symbols in S. 

abfbz is a string over S1 = {a, b, c, d, …, z} 

9021 is a string over S2 = {0, 1, …, 9} 

ab#bc is a string over S3 = {a, b, …, z, #} 

))()(() is a string over S4 = {(, )} 



Languages 

• Languages can be used to describe problems 

with “yes/no” answers, for example: 

A language is a set of strings over an alphabet. 

L1 =  The set of all strings over S1 that contain 

 the substring “fool” 

L2 =  The set of all strings over S2 that are divisible by 

7 
     = {7, 14, 21, …} 

L3 =  The set of all strings of the form s#s where s is 

any 
 string over {a, b, …, z} 

L4 =  The set of all strings over S4 where every ( can 

be 



Finite Automata 



Example of a finite automaton 

• There are states off and on, the automaton starts 

in off and tries to reach the “good state” on 

• What sequences of fs lead to the good state? 

• Answer: {f, fff, fffff, …} = {f n: n is odd} 

• This is an example of a deterministic finite 
automaton over alphabet {f} 

off on 

f 

f 



Deterministic finite automata 

• A deterministic finite automaton (DFA) is a 5-
tuple (Q, S, d, q0, F) where 

–  Q is a finite set of states 

–  S is an alphabet 

–  d: Q × S → Q is a transition function 

–  q0  Q is the initial state 

–  F  Q is a set of accepting states (or final states). 

• In diagrams, the accepting states will be denoted 

by double loops 



Example 

q0 q1 q2 
1 0 

0 0,1 1 

alphabet S = {0, 1} 

start state Q = {q0, q1, q2} 

initial state q0 

accepting states F = {q0, q1} 

s
ta

te
s
 

inputs 

0 1 
q0 

q1 

q2 

q0 q1 

q2 

q2 q2 

q1 

transition function d:  



Language of a DFA 

The language of a DFA (Q, S, d, q0, F) is the set of  

all strings over S that, starting from q0 and  

following the transitions as the string is read left 

to right, will reach some accepting state. 

• Language of M is {f, fff, fffff, …} = {f n: n is odd}  

off on 

f 

f 

M: 



q0 q1 

q0 q1 

q0 q1 q2 

0 0 

1 

1 

0 1 

1 

0 

1 0 

0 0,1 1 

What are the languages of these DFAs? 

Examples 



Examples 

• Construct a DFA that accepts the language  

L = {010, 1} ( S = {0, 1} ) 



Examples 

• Construct a DFA that accepts the language  

 

 

• Answer 

L = {010, 1} ( S = {0, 1} ) 

qe 

q0 

q1 

q01 q010 

qdie 
0, 1 

0 

1 0 

0, 1 1 

0 1 

0, 1 



Examples 

• Construct a DFA over alphabet {0, 1} that 

accepts all strings that end in 101 



Examples 

• Construct a DFA over alphabet {0, 1} that 

accepts all strings that end in 101 

 

• Hint: The DFA must “remember” the last 3 bits of 

the string it is reading 



Examples 

0 

1 

… 

… 

…
 

…
 

qe 

q0 

q1 

q00 

q10 

q01 

q11 

q000 

q001 

q101 

q111 

0 

1 

0 

1 

0 

1 

1 

1 

1 

1 

0 

• Construct a DFA over alphabet {0, 1} that 

accepts all strings that end in 101 

• Sketch of answer: 


