Finite Automata

Reading: Chapter 2

Finite Automaton (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols
- Recognizer for "Regular Languages"
- Deterministic Finite Automata (DFA)
 - The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
 - The machine can exist in multiple states at the same time

Deterministic Finite Automata - Definition

- A Deterministic Finite Automaton (DFA) consists of:
 - Q ==> a finite set of states
 - $\sum ==>$ a finite set of input symbols (alphabet)
 - $q_0 ==> a \text{ start state}$
 - F ==> set of accepting states
 - δ ==> a transition function, which is a mapping between Q x ∑ ==> Q
- A DFA is defined by the 5-tuple:
 - {Q, \sum , q₀,F, δ }

What does a DFA do on reading an input string?

- Input: a word w in ∑*
- Question: Is w acceptable by the DFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Compute the next state from the current state, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed, the current state is one of the accepting states (F) then accept w;
 - Otherwise, reject w.

Regular Languages

- Let L(A) be a language recognized by a DFA A.
 - Then L(A) is called a "Regular Language".

 Locate regular languages in the Chomsky Hierarchy

Example #1

- Build a DFA for the following language:
 - L = {w | w is a binary string that contains 01 as a substring}
- Steps for building a DFA to recognize L:
 - $\sum = \{0, 1\}$
 - Decide on the states: Q
 - Designate start state and final state(s)
 - δ: Decide on the transitions:
- "Final" states == same as "accepting states"
- Other states == same as "non-accepting states"

Regular expression: (0+1)*01(0+1)*

DFA for strings containing 01

Example #2

Clamping Logic:

- A clamping circuit waits for a "1" input, and turns on forever. However, to avoid clamping on spurious noise, we'll design a DFA that waits for *two consecutive 1s* in a row before clamping on.
- Build a DFA for the following language:

L = { w | w is a bit string which contains the substring 11}

- State Design:
 - q₀: start state (initially off), also means the most recent input was not a 1
 - q₁: has never seen 11 but the most recent input was a 1
 - q₂: has seen 11 at least once

Example #3

- Build a DFA for the following language:
 L = { w | w is a binary string that has even number of 1s and even number of 0s}
- ?

Extension of transitions (δ) to Paths ($\hat{\delta}$)

 δ (q,w) = destination state from state q on input string w

$$\widehat{\delta}(q,wa) = \delta(\widehat{\delta}(q,w), a)$$

Work out example #3 using the input sequence w=10010, a=1:

$$\bullet \widehat{\delta} (q_0, wa) = ?$$

Language of a DFA

A DFA A accepts string w if there is a path from q_0 to an accepting (or final) state that is labeled by w

■ *i.e.*,
$$L(A) = \{ w | \widehat{\delta}(q_0, w) \in F \}$$

I.e., L(A) = all strings that lead to an accepting state from q₀

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA)
 - is of course "non-deterministic"
 - Implying that the machine can exist in more than one state at the same time
 - Transitions could be non-deterministic

• Each transition function therefore maps to a <u>set</u> of states

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
 - Q ==> a finite set of states
 - $\sum ==>$ a finite set of input symbols (alphabet)
 - $q_0 ==> a \text{ start state}$
 - F ==> set of accepting states
 - δ ==> a transition function, which is a mapping between Q x ∑ ==> subset of Q
- An NFA is also defined by the 5-tuple:
 - {Q, ∑, q₀,F, δ }

How to use an NFA?

- Input: a word w in ∑*
- Question: Is w acceptable by the NFA?
- Steps:
 - Start at the "start state" q₀
 - For every input symbol in the sequence w do
 - Determine all possible next states from all current states, given the current input symbol in w and the transition function
 - If after all symbols in w are consumed <u>and</u> if at least one of the current states is a final state then accept w;
 - Otherwise, *reject w.*

Regular expression: (0+1)*01(0+1)*

NFA for strings containing 01

Transitions into a dead state are implicit

Example #2

- Build an NFA for the following language:
 L = { w | w ends in 01}
- ?
- Other examples
 - Keyword recognizer (e.g., if, then, else, while, for, include, etc.)
 - Strings where the first symbol is present somewhere later on at least once

Extension of δ to NFA Paths

Basis:
$$\widehat{\delta}(q,\varepsilon) = \{q\}$$

Induction:

Let
$$\delta(q_0, w) = \{p_1, p_2, ..., p_k\}$$
 $\delta(p_i, a) = S_i$ for $i=1, 2, ..., k$

Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w
- $L(N) = \{ w \mid \delta(q_0, w) \cap F \neq \Phi \}$

Advantages & Caveats for NFA

- Great for modeling regular expressions
 - String processing e.g., grep, lexical analyzer
- Could a non-deterministic state machine be implemented in practice?
 - Probabilistic models could be viewed as extensions of nondeterministic state machines (e.g., toss of a coin, a roll of dice)
 - They are not the same though
 - A parallel computer could exist in multiple "states" at the same time

Technologies for NFAs

- Micron's Automata Processor (introduced in 2013)
- 2D array of MISD (multiple instruction single data) fabric w/ thousands to millions of processing elements.
- 1 input symbol = fed to all states (i.e., cores)
- Non-determinism using circuits
- <u>http://www.micronautomata.com/</u>

But, DFAs and NFAs are equivalent in their power to capture langauges !!

Differences: DFA vs. NFA

<u>DFA</u>

- 1. All transitions are deterministic
 - Each transition leads to exactly one state
- 2. For each state, transition on all possible symbols (alphabet) should be defined
- 3. Accepts input if the last state visited is in F
- 4. Sometimes harder to construct because of the number of states
- 5. Practical implementation is feasible

NFA

- 1. Some transitions could be non-deterministic
 - A transition could lead to a subset of states
- Not all symbol transitions need to be defined explicitly (if undefined will go to an error state – this is just a design convenience, not to be confused with "nondeterminism")
- 3. Accepts input if *one of* the last states is in F
- 4. Generally easier than a DFA to construct
- 5. Practical implementations limited but emerging (e.g., Micron automata processor)

Equivalence of DFA & NFA

Theorem:

Should be true for any L

- A language L is accepted by a DFA <u>if and only if</u> it is accepted by an NFA.
- Proof:
- 1. If part:
 - Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides...)
- 2. Only-if part is trivial:
 - Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

Proof for the if-part

- <u>If-part</u>: A language L is accepted by a DFA if it is accepted by an NFA
- rephrasing...
- Given any NFA N, we can construct a DFA D such that L(N)=L(D)
- How to convert an NFA into a DFA?
 - <u>Observation</u>: In an NFA, each transition maps to a subset of states
 - Idea: Represent:

each "subset of NFA_states" -> a single "DFA_state"

Subset construction

NFA to DFA by subset construction

- Let N = {Q_N, \sum,δ_N,q_0,F_N }
- <u>Goal</u>: Build D={Q_D,Σ,δ_D,{q₀},F_D} s.t. L(D)=L(N)
- Construction:
 - 1. Q_D = all subsets of Q_N (i.e., power set)
 - 2. F_D = set of subsets S of Q_N s.t. S∩F_N≠Φ
 - 3. δ_D : for each subset S of Q_N and for each input symbol a in Σ :

•
$$\delta_{D}(S,a) = \bigcup_{p \text{ in } s} \delta_{N}(p,a)$$

Idea: To avoid enumerating all of power set, do "lazy creation of states"

NFA to DFA construction: Example

 $[q_1, q_2]$

 $[q_0, q_1, q_2]$

δ _D		0	1	
▶[q₀]		[q ₀ ,q ₁]	[q ₀]	
	[q ₀ ,q ₁]	[q ₀ ,q ₁]	[q ₀ ,q ₂]	
	*[q ₀ ,q ₂]	[q ₀ ,q ₁]	[q ₀]	

- 0. Enumerate all possible subsets
- 1. Determine transitions
- 2. Retain only those states reachable from {q₀}

NFA to DFA: Repeating the example using LAZY CREATION

Main Idea:

Introduce states as you go (on a need basis)

Correctness of subset construction

- <u>Theorem:</u> If D is the DFA constructed from NFA N by subset construction, then L(D)=L(N)
- Proof:
 - Show that $\delta_{D}(\{q_0\}, w) \equiv \delta_{N}(q_0, w\}$, for all w
 - Using induction on w's length:
 - Let w = xa
 - $\delta_{D}(\{q_0\},xa) \equiv \delta_{D}(\delta_{N}(q_0,x\},a) \equiv \delta_{N}(q_0,w\}$

A bad case where #states(DFA)>>#states(NFA)

- L = {w | w is a binary string s.t., the kth symbol from its end is a 1}
 - NFA has k+1 states
 - But an equivalent DFA needs to have at least 2^k states

(Pigeon hole principle)

- m holes and >m pigeons
 - => at least one hole has to contain two or more pigeons

Applications

- Text indexing
 - inverted indexing
 - For each unique word in the database, store all locations that contain it using an NFA or a DFA
- Find pattern P in text T
 - Example: Google querying
- Extensions of this idea:
 - PATRICIA tree, suffix tree

A few subtle properties of DFAs and NFAs

- The machine never really terminates.
 - It is always waiting for the next input symbol or making transitions.
- The machine decides when to <u>consume</u> the next symbol from the input and when to <u>ignore</u> it.
 - (but the machine can never <u>skip</u> a symbol)
- => A transition can happen even without really consuming an input symbol (think of consuming ε as a free token) if this happens, then it becomes an ε-NFA (see next few slides).
- A single transition *cannot* consume more than one (non-ε) symbol.

FA with ε-Transitions

- We can allow <u>explicit</u> ε-transitions in finite automata
 - i.e., a transition from one state to another state without consuming any additional input symbol
 - Explicit ε-transitions between different states introduce non-determinism.
 - Makes it easier sometimes to construct NFAs

<u>Definition:</u> ε -NFAs are those NFAs with at least one explicit ε -transition defined.

ε -NFAs have one more column in their transition table

Example of an ε-NFA

 $L = \{w \mid w \text{ is empty, } \underline{or} \text{ if non-empty will end in } 01\}$

ε-closure of a state q,
 ECLOSE(q), is the set of all states (including itself) that can be *reached* from q by repeatedly making an arbitrary number of ε-transitions.

To simulate any transition: Step 1) Go to all immediate destination states. Step 2) From there go to all their ϵ -closure states as well.

Example of another ε-NFA

Simulate for w=101:

?

Equivalency of DFA, NFA, ϵ -NFA

Theorem: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA

- Implication:
 - DFA \equiv NFA $\equiv \varepsilon$ -NFA
 - (all accept Regular Languages)

Eliminating *ɛ*-transitions

Let E = { $Q_E, \sum, \delta_E, q_0, F_E$ } be an ε -NFA <u>Goal:</u> To build DFA D={ $Q_D, \sum, \delta_D, \{q_D\}, F_D$ } s.t. L(D)=L(E) <u>Construction:</u>

- 1. Q_D = all reachable subsets of Q_E factoring in ε -closures
- $q_D = ECLOSE(q_0)$
- ^{3.} F_D =subsets S in Q_D s.t. $S \cap F_E \neq \Phi$
- δ_D: for each subset S of Q_E and for each input symbol a ∈ Σ:

• Let R=
$$\bigcup_{p \text{ in } s} \delta_{E}(p,a)$$

- // go to destination states
- $\delta_D(S,a) = U ECLOSE(r)$ // from there, take a union of all their ϵ -closures

Reading: Section 2.5.5 in book

Example: ε-NFA → DFA

 $L = \{w \mid w \text{ is empty, or if non-empty will end in } 01\}$

	δ_{E}	0	1	3
\rightarrow	*q' ₀	Ø	Ø	{q' ₀ ,q ₀ }
	q ₀	${q_0,q_1}$	{q ₀ }	{q ₀ }
	q ₁	Ø	{q ₂ }	{q ₁ }
	*q ₂	Ø	Ø	{q ₂ }

	δ_{D}	0	1
\rightarrow	*{q' ₀ ,q ₀ }		

Summary

- DFA
 - Definition
 - Transition diagrams & tables
- Regular language
- NFA
 - Definition
 - Transition diagrams & tables
- DFA vs. NFA
- NFA to DFA conversion using subset construction
- Equivalency of DFA & NFA
- Removal of redundant states and including dead states
- E-transitions in NFA
- Pigeon hole principles
- Text searching applications