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Finite Automata 

Reading: Chapter 2 
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Finite Automaton (FA) 

 Informally, a state diagram that comprehensively 
captures all possible states and transitions that a 
machine can take while responding to a stream or 
sequence of input symbols 

 Recognizer for “Regular Languages” 

 

 Deterministic Finite Automata (DFA) 
 The machine can exist in only one state at any given time 

 Non-deterministic Finite Automata (NFA) 
 The machine can exist in multiple states at the same time 
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Deterministic Finite Automata 

- Definition 

 A Deterministic Finite Automaton (DFA) 
consists of: 
 Q ==> a finite set of states 

 ∑ ==> a finite set of input symbols (alphabet) 

 q0 ==> a start state 

 F ==> set of accepting states 

 δ  ==> a transition function, which is a mapping 
between Q x ∑ ==> Q 

 A DFA is defined by the 5-tuple:  
 {Q, ∑ , q0,F, δ  } 
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What does a DFA do on 

reading an input string? 

 Input: a word w in ∑* 

 Question: Is w acceptable by the DFA? 

 Steps: 
 Start at the “start state” q0 

 For every input symbol in the sequence w do 
 Compute the next state from the current state, given the 

current input symbol in w and the transition function 

 If after all symbols in w are consumed, the current 
state is one of the accepting states (F) then accept 
w;  

 Otherwise, reject w. 
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Regular Languages 

 Let L(A) be a language recognized by a 

DFA A.  

 Then L(A) is called a “Regular Language”. 

 

 Locate regular languages in the 

Chomsky Hierarchy 
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The Chomsky Hierachy 

Regular 

(DFA) 
Context- 

free 

(PDA) 

Context- 

sensitive  

(LBA) 

Recursively- 

enumerable  

(TM) 

• A containment hierarchy of classes of formal languages 
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Example #1 

 Build a DFA for the following language: 
 L = {w | w is a binary string that contains 01 as a substring} 

 Steps for building a DFA to recognize L: 
 ∑ = {0,1} 

 Decide on the states: Q 

 Designate start state and final state(s) 

 δ: Decide on the transitions:  

 “Final” states == same as “accepting states” 

 Other states == same as “non-accepting states” 
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DFA for strings containing 01 

q0 
start 

q1 

0 

Regular expression: (0+1)*01(0+1)* 

1 0,1 0 

1 
q2 

Accepting 

state 

• What if the language allows  

  empty strings? 

• What makes this DFA deterministic? • Q = {q0,q1,q2} 

• ∑ = {0,1} 

• start state = q0  

• F = {q2}  

• Transition table 

q2 q2 *q2 

q2 q1 q1 

q0 q1 q0 

1 0 

s
ta

te
s
 

symbols 
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Example #2 

Clamping Logic:  
 A clamping circuit waits for a ”1” input, and turns on forever. 

However, to avoid clamping on spurious noise, we’ll design 
a DFA that waits for two consecutive 1s in a row before 
clamping on. 

 Build a DFA for the following language: 
 L = { w | w is a bit string which contains the 
substring 11} 

 State Design: 
 q0 : start state (initially off), also means the most recent input 

was not a 1 

 q1: has never seen 11 but the most recent input was a 1 

 q2: has seen 11 at least once 
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Example #3 

 Build a DFA for the following language: 

 L = { w | w is a binary string that has even 

number of 1s and even number of 0s} 

 ? 
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Extension of transitions (δ) to 

Paths (δ) 

 δ (q,w) = destination state from state q 
on input string w 

 

 δ (q,wa) = δ (δ(q,w), a) 

 

 Work out example #3 using the input 
sequence w=10010, a=1: 

 

 δ (q0,wa) = ? 
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Language of a DFA 

A DFA A accepts string w if there is a 
path from q0 to an accepting (or final) 
state that is labeled by w 

 

 i.e., L(A) = { w |  δ(q0,w)  F } 

 

 I.e., L(A) = all strings that lead to an 
accepting state from q0 
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Non-deterministic Finite 

Automata (NFA) 

 A Non-deterministic Finite Automaton 

(NFA)  

  is of course “non-deterministic” 

 Implying that the machine can exist in more 

than one state at the same time 

 Transitions could be non-deterministic  

 
qi 

1 

1 

qj 

qk 

… • Each transition function therefore  

maps to a set of states 
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Non-deterministic Finite 

Automata (NFA) 

 A Non-deterministic Finite Automaton (NFA) 
consists of: 
 Q ==> a finite set of states 

 ∑ ==> a finite set of input symbols (alphabet) 

 q0 ==> a start state 

 F ==> set of accepting states  

 δ ==> a transition function, which is a mapping 
between Q x ∑ ==> subset of Q 

 An NFA is also defined by the 5-tuple:  
 {Q, ∑ , q0,F, δ } 
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How to use an NFA? 

 Input: a word w in ∑* 

 Question: Is w acceptable by the NFA? 

 Steps: 
 Start at the “start state” q0 

 For every input symbol in the sequence w do 

 Determine all possible next states from all current states, given 
the current input symbol in w and the transition function 

 If after all symbols in w are consumed and if at least one of 
the current states is a final state then accept w; 

 Otherwise, reject w. 
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NFA for strings containing 01 

q0 
start 

q1 

0 

0,1 0,1 

1 
q2 

Final 

state 

• Q = {q0,q1,q2} 

•  = {0,1} 

• start state = q0  

• F = {q2}  

• Transition table 

{q2} {q2} *q2 

{q2} Φ q1 

{q0} {q0,q1} q0 

1 0 

s
ta

te
s
 

symbols 

What will happen if at state q1  

an input of 0 is received?  

Why is this non-deterministic?  

Regular expression: (0+1)*01(0+1)* 
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What is an “error state”? 

 A DFA for recognizing the key word 

“while” 

 

 

 

 An NFA for the same purpose: 

 

q0 
w 

q1 
h 

q2 
i 

q3 
l 

q4 
e 

q5 

qerr 

Any other input symbol 

q0 
w 

q1 
h 

q2 
i 

q3 
l 

q4 
e 

q5 

Any symbol 

Note: Omitting to explicitly show error states is just a matter of design convenience 

 (one that is generally followed for NFAs), and  

 i.e., this feature should not be confused with the notion of non-determinism.  

Transitions into a dead state are implicit 
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Example #2 

 Build an NFA for the following language: 

 L = { w | w ends in 01} 

 ? 

 Other examples 

 Keyword recognizer (e.g., if, then, else, 

while, for, include, etc.) 

 Strings where the first symbol is present 

somewhere later on at least once 
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Extension of δ to NFA Paths 

 Basis:  δ (q,) = {q} 

 

 Induction:  
 Let  δ (q0,w) = {p1,p2…,pk} 

 δ (pi,a) = Si  for i=1,2...,k 

 

 Then,   δ (q0,wa) = S1 U S2 U … U Sk   
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Language of an NFA 

 An NFA accepts w if there exists at 

least one path from the start state to an 

accepting (or final) state that is labeled 

by w 

 L(N) = { w | δ(q0,w) ∩ F ≠ Φ } 
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Advantages & Caveats for NFA 

 Great for modeling regular expressions   

 String processing - e.g., grep, lexical analyzer 

 

 Could a non-deterministic state machine be 

implemented in practice? 
 Probabilistic models could be viewed as extensions of non-

deterministic state machines  

(e.g., toss of a coin, a roll of dice) 

 They are not the same though 

 A parallel computer could exist in multiple “states” at the same time 



Technologies for NFAs 

 Micron’s Automata Processor (introduced in 2013) 

 2D array of MISD (multiple instruction single data) 

fabric w/ thousands to millions of processing 

elements.  

 1 input symbol = fed to all states (i.e., cores) 

 Non-determinism using circuits 

 http://www.micronautomata.com/  
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http://www.micronautomata.com/
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Differences: DFA vs. NFA 
 DFA 

1. All transitions are 
deterministic 
 Each transition leads to 

exactly one state 

2. For each state, transition on 
all possible symbols 
(alphabet) should be defined 

3. Accepts input if the last state 
visited is in F 

4. Sometimes harder to 
construct because of the 
number of states 

5. Practical implementation is 
feasible 

 

 NFA 

1. Some transitions could be 
non-deterministic 
 A transition could lead to a 

subset of states 

2. Not all symbol transitions 
need to be defined explicitly (if 
undefined will go to an error 
state – this is just a design 
convenience, not to be 
confused with “non-
determinism”) 

3. Accepts input if one of the last 
states is in F 

4. Generally easier than a DFA 
to construct 

5. Practical implementations 
limited but emerging (e.g., 
Micron automata processor) 

But, DFAs and NFAs are equivalent in their power to capture langauges !! 
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Equivalence of DFA & NFA 

 Theorem: 
 A language L is accepted by a DFA if and only if 

it is accepted by an NFA. 

 Proof: 
1. If part: 

 Prove by showing every NFA can be converted to an 
equivalent DFA (in the next few slides…) 

 

2. Only-if part is trivial: 
 Every DFA is a special case of an NFA where each 

state has exactly one transition for every input symbol. 
Therefore, if L is accepted by a DFA, it is accepted by 
a corresponding NFA. 

Should be 

true for 

any L 
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Proof for the if-part 

 If-part: A language L is accepted by a DFA if 
it is accepted by an NFA 

 rephrasing… 

 Given any NFA N, we can construct a DFA D 
such that L(N)=L(D) 

 How to convert an NFA into a DFA? 
 Observation: In an NFA, each transition maps to a 

subset of states  

 Idea: Represent: 

       each “subset of NFA_states”  a single “DFA_state” 

Subset construction 
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NFA to DFA by subset construction 

 Let N = {QN,∑,δN,q0,FN} 

 Goal: Build D={QD,∑,δD,{q0},FD} s.t. 

L(D)=L(N) 

 Construction: 

1. QD= all subsets of QN (i.e., power set) 

2. FD=set of subsets S of QN s.t. S∩FN≠Φ 

3. δD: for each subset S of QN and for each input 

symbol a in ∑:  

  δD(S,a) = U δN(p,a) 
p in s 
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NFA to DFA construction: Example 

 L = {w | w ends in 01} 

q0 q1 
0 

0,1 

q2 
1 

NFA: 

δN 0 1 

q0 {q0,q1} {q0} 

q1 Ø {q2} 

*q2 Ø Ø 

DFA: 

δD 0 1 

Ø Ø Ø 

[q0] {q0,q1} {q0} 

[q1] Ø {q2} 

*[q2] Ø Ø 

[q0,q1] {q0,q1} {q0,q2} 

*[q0,q2] {q0,q1} {q0} 

*[q1,q2] Ø {q2} 

*[q0,q1,q2] {q0,q1} {q0,q2} 

1. Determine transitions 

δD 0 1 

[q0] [q0,q1] [q0] 

[q0,q1] [q0,q1] [q0,q2] 

*[q0,q2] [q0,q1] [q0] 

[q0] 

1 

0 
[q0,q1] 

1 
[q0,q2] 

0 

0 

1 

Idea: To avoid enumerating all of  

 power set, do  

 “lazy creation of states” 

2.        Retain only those states  

 reachable from {q0} 

0. Enumerate all possible subsets 



28 

NFA to DFA: Repeating the example 

using LAZY CREATION 

 L = {w | w ends in 01} 

q0 q1 
0 

0,1 

q2 
1 

NFA: 

δN 0 1 

q0 {q0,q1} {q0} 

q1 Ø {q2} 

*q2 Ø Ø 

DFA: 

δD 0 1 

[q0] [q0,q1] [q0] 

[q0,q1] [q0,q1] [q0,q2] 

*[q0,q2] [q0,q1] [q0] 

[q0] 

1 

0 
[q0,q1] 

1 
[q0,q2] 

0 

0 

1 

Main Idea:   

 Introduce states as you go 

 (on a need basis) 
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Correctness of subset construction 

Theorem: If D is the DFA constructed 

from NFA N by subset construction, 

then L(D)=L(N) 

 Proof: 

 Show that δD({q0},w) ≡  δN(q0,w} , for all w 

 Using induction on w’s length: 

 Let w = xa 

 δD({q0},xa) ≡ δD( δN(q0,x}, a ) ≡ δN(q0,w} 
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A bad case where 

#states(DFA)>>#states(NFA) 

 L = {w | w is a binary string s.t., the kth symbol 
from its end is a 1} 

 
 NFA has k+1 states 

 

 But an equivalent DFA needs to have at least 2k 
states 
 

(Pigeon hole principle) 
 m holes and >m pigeons 

 => at least one hole has to contain two or more pigeons 
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Applications  

 Text indexing  

 inverted indexing 

 For each unique word in the database, store all 

locations that contain it using an NFA or a DFA 

 Find pattern P in text T 

 Example: Google querying 

 Extensions of this idea: 

 PATRICIA tree, suffix tree  



A few subtle properties of 

DFAs and NFAs 

 The machine never really terminates.  

 It is always waiting for the next input symbol or making 

transitions. 

 The machine decides when to consume the next symbol from 

the input and when to ignore it. 

 (but the machine can never skip a symbol) 

 => A transition can happen even without really consuming an 

input symbol (think of consuming  as a free token) – if this 

happens, then it becomes an -NFA (see next few slides). 

 A single transition cannot consume more than one (non-) 

symbol. 

32 
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FA with -Transitions  

 We can allow explicit -transitions in finite 

automata 

 i.e., a transition from one state to another state 

without consuming any additional input symbol  

 Explicit -transitions between different states 

introduce non-determinism. 

 Makes it easier sometimes to construct NFAs 

Definition:  -NFAs are those NFAs with at 

least one explicit -transition defined. 

  -NFAs have one more column in their 

transition table 
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Example of an -NFA 

L = {w | w is empty, or if non-empty will end in 01} 

δE 0 1 
 

 *q’0 Ø Ø {q’0,q0} 

q0 {q0,q1} {q0} {q0} 

q1 Ø {q2} {q1} 

*q2 Ø Ø {q2} 

ECLOSE(q’0) 

ECLOSE(q0) 

 -closure of a state q, 

ECLOSE(q), is the set 

of all states (including 

itself) that can be 

reached from q by 

repeatedly making an 

arbitrary number of -

transitions.   

start 

q0 q1 

0 

0,1 

1 
q2 

q’0 

 

ECLOSE(q1) 

ECLOSE(q2) 
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Example of an -NFA 

L = {w | w is empty, or if non-empty will end in 01} 

δE 0 1 
 

 *q’0 Ø Ø {q’0,q0} 

q0 {q0,q1} {q0} {q0} 

q1 Ø {q2} {q1} 

*q2 Ø Ø {q2} 

ECLOSE(q’0) 

ECLOSE(q0) 

Simulate for w=101: 

 

start 

q0 q1 

0 

0,1 

1 
q2 

q’0 

 
q0’ 

q0 q0’ 

  

q1 

0 

q2 

1 

q0 

1 

Ø 

1 

x 

To simulate any transition: 

 Step 1) Go to all immediate destination states. 

 Step 2) From there go to all their -closure states as well. 
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Example of another -NFA 

δE 0 1 
 

 *q’0 Ø Ø {q’0,q0,q3} 

q0 {q0,q1} {q0} {q0,q3} 

q1 Ø {q2} {q1} 

*q2 Ø Ø {q2} 

q3 Ø {q2} {q3} 

Simulate for w=101:  

   ? 

 
start 

q0 q1 

0 

0,1 

1 
q2 

q’0 

  

q3 

1 

To simulate any transition: 

 Step 1) Go to all immediate destination states. 

 Step 2) From there go to all their -closure states as well. 
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Equivalency of DFA, NFA, -NFA  

 Theorem: A language L is accepted by 

some -NFA if and only if L is accepted by 

some DFA 

 

 

 Implication: 

 DFA ≡  NFA ≡ -NFA 

 (all accept Regular Languages) 
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Eliminating -transitions  

Let E = {QE,∑,δE,q0,FE} be an -NFA 

Goal: To build DFA D={QD,∑,δD,{qD},FD} s.t. L(D)=L(E) 

Construction: 
1. QD= all reachable subsets of QE factoring in -closures 

2. qD = ECLOSE(q0) 

3. FD=subsets S in QD s.t. S∩FE≠Φ 

4. δD: for each subset S of QE and for each input symbol 
a∑:  

 Let R= U δE(p,a)  // go to destination states 

 

 δD(S,a) = U ECLOSE(r) // from there, take a union 
     of all their -closures 

p in s 

r in R 

Reading: Section 2.5.5 in book 
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Example: -NFA  DFA 

L = {w | w is empty, or if non-empty will end in 01} 

start 

q0 q1 

0 

0,1 

1 
q2 

q’0 

 

δE 0 1 
 

 *q’0 Ø Ø {q’0,q0} 

q0 {q0,q1} {q0} {q0} 

q1 Ø {q2} {q1} 

*q2 Ø Ø {q2} 

δD 0 1 

*{q’0,q0} 

… 
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Example: -NFA  DFA 

L = {w | w is empty, or if non-empty will end in 01} 

start 

q0 q1 

0 

0,1 

1 
q2 

q’0 

 

δE 0 1 
 

 *q’0 Ø Ø {q’0,q0} 

q0 {q0,q1} {q0} {q0} 

q1 Ø {q2} {q1} 

*q2 Ø Ø {q2} 

δD 0 1 

*{q’0,q0} {q0,q1} {q0} 

{q0,q1} {q0,q1} {q0,q2} 

{q0} {q0,q1} {q0} 

*{q0,q2} {q0,q1} {q0} 

{q’0, q0} 

0 

start 

{q0,q1} {q0,q2} 1 

0 

q0 

1 

1 

0 

0 

1 

union ECLOSE 
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Summary 

 DFA 

 Definition 

 Transition diagrams & tables 

 Regular language 

 NFA 

 Definition 

 Transition diagrams & tables 

 DFA vs. NFA 

 NFA to DFA conversion using subset construction 

 Equivalency of DFA & NFA 

 Removal of redundant states and including dead states 

 -transitions in NFA 

 Pigeon hole principles 

 Text searching applications 

 


