
1

Finite Automata

Reading: Chapter 2

2

Finite Automaton (FA)

 Informally, a state diagram that comprehensively
captures all possible states and transitions that a
machine can take while responding to a stream or
sequence of input symbols

 Recognizer for “Regular Languages”

 Deterministic Finite Automata (DFA)
 The machine can exist in only one state at any given time

 Non-deterministic Finite Automata (NFA)
 The machine can exist in multiple states at the same time

3

Deterministic Finite Automata

- Definition

 A Deterministic Finite Automaton (DFA)
consists of:
 Q ==> a finite set of states

 ∑ ==> a finite set of input symbols (alphabet)

 q0 ==> a start state

 F ==> set of accepting states

 δ ==> a transition function, which is a mapping
between Q x ∑ ==> Q

 A DFA is defined by the 5-tuple:
 {Q, ∑ , q0,F, δ }

4

What does a DFA do on

reading an input string?

 Input: a word w in ∑*

 Question: Is w acceptable by the DFA?

 Steps:
 Start at the “start state” q0

 For every input symbol in the sequence w do
 Compute the next state from the current state, given the

current input symbol in w and the transition function

 If after all symbols in w are consumed, the current
state is one of the accepting states (F) then accept
w;

 Otherwise, reject w.

5

Regular Languages

 Let L(A) be a language recognized by a

DFA A.

 Then L(A) is called a “Regular Language”.

 Locate regular languages in the

Chomsky Hierarchy

6

The Chomsky Hierachy

Regular

(DFA)
Context-

free

(PDA)

Context-

sensitive

(LBA)

Recursively-

enumerable

(TM)

• A containment hierarchy of classes of formal languages

7

Example #1

 Build a DFA for the following language:
 L = {w | w is a binary string that contains 01 as a substring}

 Steps for building a DFA to recognize L:
 ∑ = {0,1}

 Decide on the states: Q

 Designate start state and final state(s)

 δ: Decide on the transitions:

 “Final” states == same as “accepting states”

 Other states == same as “non-accepting states”

8

DFA for strings containing 01

q0
start

q1

0

Regular expression: (0+1)*01(0+1)*

1 0,1 0

1
q2

Accepting

state

• What if the language allows

 empty strings?

• What makes this DFA deterministic? • Q = {q0,q1,q2}

• ∑ = {0,1}

• start state = q0

• F = {q2}

• Transition table

q2 q2 *q2

q2 q1 q1

q0 q1 q0

1 0

s
ta

te
s

symbols

9

Example #2

Clamping Logic:
 A clamping circuit waits for a ”1” input, and turns on forever.

However, to avoid clamping on spurious noise, we’ll design
a DFA that waits for two consecutive 1s in a row before
clamping on.

 Build a DFA for the following language:
 L = { w | w is a bit string which contains the
substring 11}

 State Design:
 q0 : start state (initially off), also means the most recent input

was not a 1

 q1: has never seen 11 but the most recent input was a 1

 q2: has seen 11 at least once

10

Example #3

 Build a DFA for the following language:

 L = { w | w is a binary string that has even

number of 1s and even number of 0s}

 ?

11

Extension of transitions (δ) to

Paths (δ)

 δ (q,w) = destination state from state q
on input string w

 δ (q,wa) = δ (δ(q,w), a)

 Work out example #3 using the input
sequence w=10010, a=1:

 δ (q0,wa) = ?

12

Language of a DFA

A DFA A accepts string w if there is a
path from q0 to an accepting (or final)
state that is labeled by w

 i.e., L(A) = { w | δ(q0,w) F }

 I.e., L(A) = all strings that lead to an
accepting state from q0

13

Non-deterministic Finite

Automata (NFA)

 A Non-deterministic Finite Automaton

(NFA)

 is of course “non-deterministic”

 Implying that the machine can exist in more

than one state at the same time

 Transitions could be non-deterministic

qi

1

1

qj

qk

… • Each transition function therefore

maps to a set of states

14

Non-deterministic Finite

Automata (NFA)

 A Non-deterministic Finite Automaton (NFA)
consists of:
 Q ==> a finite set of states

 ∑ ==> a finite set of input symbols (alphabet)

 q0 ==> a start state

 F ==> set of accepting states

 δ ==> a transition function, which is a mapping
between Q x ∑ ==> subset of Q

 An NFA is also defined by the 5-tuple:
 {Q, ∑ , q0,F, δ }

15

How to use an NFA?

 Input: a word w in ∑*

 Question: Is w acceptable by the NFA?

 Steps:
 Start at the “start state” q0

 For every input symbol in the sequence w do

 Determine all possible next states from all current states, given
the current input symbol in w and the transition function

 If after all symbols in w are consumed and if at least one of
the current states is a final state then accept w;

 Otherwise, reject w.

16

NFA for strings containing 01

q0
start

q1

0

0,1 0,1

1
q2

Final

state

• Q = {q0,q1,q2}

• = {0,1}

• start state = q0

• F = {q2}

• Transition table

{q2} {q2} *q2

{q2} Φ q1

{q0} {q0,q1} q0

1 0

s
ta

te
s

symbols

What will happen if at state q1

an input of 0 is received?

Why is this non-deterministic?

Regular expression: (0+1)*01(0+1)*

17

What is an “error state”?

 A DFA for recognizing the key word

“while”

 An NFA for the same purpose:

q0
w

q1
h

q2
i

q3
l

q4
e

q5

qerr

Any other input symbol

q0
w

q1
h

q2
i

q3
l

q4
e

q5

Any symbol

Note: Omitting to explicitly show error states is just a matter of design convenience

 (one that is generally followed for NFAs), and

 i.e., this feature should not be confused with the notion of non-determinism.

Transitions into a dead state are implicit

18

Example #2

 Build an NFA for the following language:

 L = { w | w ends in 01}

 ?

 Other examples

 Keyword recognizer (e.g., if, then, else,

while, for, include, etc.)

 Strings where the first symbol is present

somewhere later on at least once

19

Extension of δ to NFA Paths

 Basis: δ (q,) = {q}

 Induction:
 Let δ (q0,w) = {p1,p2…,pk}

 δ (pi,a) = Si for i=1,2...,k

 Then, δ (q0,wa) = S1 U S2 U … U Sk

20

Language of an NFA

 An NFA accepts w if there exists at

least one path from the start state to an

accepting (or final) state that is labeled

by w

 L(N) = { w | δ(q0,w) ∩ F ≠ Φ }

21

Advantages & Caveats for NFA

 Great for modeling regular expressions

 String processing - e.g., grep, lexical analyzer

 Could a non-deterministic state machine be

implemented in practice?
 Probabilistic models could be viewed as extensions of non-

deterministic state machines

(e.g., toss of a coin, a roll of dice)

 They are not the same though

 A parallel computer could exist in multiple “states” at the same time

Technologies for NFAs

 Micron’s Automata Processor (introduced in 2013)

 2D array of MISD (multiple instruction single data)

fabric w/ thousands to millions of processing

elements.

 1 input symbol = fed to all states (i.e., cores)

 Non-determinism using circuits

 http://www.micronautomata.com/

22

http://www.micronautomata.com/

23

Differences: DFA vs. NFA
 DFA

1. All transitions are
deterministic
 Each transition leads to

exactly one state

2. For each state, transition on
all possible symbols
(alphabet) should be defined

3. Accepts input if the last state
visited is in F

4. Sometimes harder to
construct because of the
number of states

5. Practical implementation is
feasible

 NFA

1. Some transitions could be
non-deterministic
 A transition could lead to a

subset of states

2. Not all symbol transitions
need to be defined explicitly (if
undefined will go to an error
state – this is just a design
convenience, not to be
confused with “non-
determinism”)

3. Accepts input if one of the last
states is in F

4. Generally easier than a DFA
to construct

5. Practical implementations
limited but emerging (e.g.,
Micron automata processor)

But, DFAs and NFAs are equivalent in their power to capture langauges !!

24

Equivalence of DFA & NFA

 Theorem:
 A language L is accepted by a DFA if and only if

it is accepted by an NFA.

 Proof:
1. If part:

 Prove by showing every NFA can be converted to an
equivalent DFA (in the next few slides…)

2. Only-if part is trivial:
 Every DFA is a special case of an NFA where each

state has exactly one transition for every input symbol.
Therefore, if L is accepted by a DFA, it is accepted by
a corresponding NFA.

Should be

true for

any L

25

Proof for the if-part

 If-part: A language L is accepted by a DFA if
it is accepted by an NFA

 rephrasing…

 Given any NFA N, we can construct a DFA D
such that L(N)=L(D)

 How to convert an NFA into a DFA?
 Observation: In an NFA, each transition maps to a

subset of states

 Idea: Represent:

 each “subset of NFA_states” a single “DFA_state”

Subset construction

26

NFA to DFA by subset construction

 Let N = {QN,∑,δN,q0,FN}

 Goal: Build D={QD,∑,δD,{q0},FD} s.t.

L(D)=L(N)

 Construction:

1. QD= all subsets of QN (i.e., power set)

2. FD=set of subsets S of QN s.t. S∩FN≠Φ

3. δD: for each subset S of QN and for each input

symbol a in ∑:

 δD(S,a) = U δN(p,a)
p in s

27

NFA to DFA construction: Example

 L = {w | w ends in 01}

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

Ø Ø Ø

[q0] {q0,q1} {q0}

[q1] Ø {q2}

*[q2] Ø Ø

[q0,q1] {q0,q1} {q0,q2}

*[q0,q2] {q0,q1} {q0}

*[q1,q2] Ø {q2}

*[q0,q1,q2] {q0,q1} {q0,q2}

1. Determine transitions

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Idea: To avoid enumerating all of

 power set, do

 “lazy creation of states”

2. Retain only those states

 reachable from {q0}

0. Enumerate all possible subsets

28

NFA to DFA: Repeating the example

using LAZY CREATION

 L = {w | w ends in 01}

q0 q1
0

0,1

q2
1

NFA:

δN 0 1

q0 {q0,q1} {q0}

q1 Ø {q2}

*q2 Ø Ø

DFA:

δD 0 1

[q0] [q0,q1] [q0]

[q0,q1] [q0,q1] [q0,q2]

*[q0,q2] [q0,q1] [q0]

[q0]

1

0
[q0,q1]

1
[q0,q2]

0

0

1

Main Idea:

 Introduce states as you go

 (on a need basis)

29

Correctness of subset construction

Theorem: If D is the DFA constructed

from NFA N by subset construction,

then L(D)=L(N)

 Proof:

 Show that δD({q0},w) ≡ δN(q0,w} , for all w

 Using induction on w’s length:

 Let w = xa

 δD({q0},xa) ≡ δD(δN(q0,x}, a) ≡ δN(q0,w}

30

A bad case where

#states(DFA)>>#states(NFA)

 L = {w | w is a binary string s.t., the kth symbol
from its end is a 1}

 NFA has k+1 states

 But an equivalent DFA needs to have at least 2k
states

(Pigeon hole principle)
 m holes and >m pigeons

 => at least one hole has to contain two or more pigeons

31

Applications

 Text indexing

 inverted indexing

 For each unique word in the database, store all

locations that contain it using an NFA or a DFA

 Find pattern P in text T

 Example: Google querying

 Extensions of this idea:

 PATRICIA tree, suffix tree

A few subtle properties of

DFAs and NFAs

 The machine never really terminates.

 It is always waiting for the next input symbol or making

transitions.

 The machine decides when to consume the next symbol from

the input and when to ignore it.

 (but the machine can never skip a symbol)

 => A transition can happen even without really consuming an

input symbol (think of consuming as a free token) – if this

happens, then it becomes an -NFA (see next few slides).

 A single transition cannot consume more than one (non-)

symbol.

32

33

FA with -Transitions

 We can allow explicit -transitions in finite

automata

 i.e., a transition from one state to another state

without consuming any additional input symbol

 Explicit -transitions between different states

introduce non-determinism.

 Makes it easier sometimes to construct NFAs

Definition: -NFAs are those NFAs with at

least one explicit -transition defined.

 -NFAs have one more column in their

transition table

34

Example of an -NFA

L = {w | w is empty, or if non-empty will end in 01}

δE 0 1

 *q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

ECLOSE(q’0)

ECLOSE(q0)

 -closure of a state q,

ECLOSE(q), is the set

of all states (including

itself) that can be

reached from q by

repeatedly making an

arbitrary number of -

transitions.

start

q0 q1

0

0,1

1
q2

q’0

ECLOSE(q1)

ECLOSE(q2)

35

Example of an -NFA

L = {w | w is empty, or if non-empty will end in 01}

δE 0 1

 *q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

ECLOSE(q’0)

ECLOSE(q0)

Simulate for w=101:

start

q0 q1

0

0,1

1
q2

q’0

q0’

q0 q0’

q1

0

q2

1

q0

1

Ø

1

x

To simulate any transition:

 Step 1) Go to all immediate destination states.

 Step 2) From there go to all their -closure states as well.

36

Example of another -NFA

δE 0 1

 *q’0 Ø Ø {q’0,q0,q3}

q0 {q0,q1} {q0} {q0,q3}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

q3 Ø {q2} {q3}

Simulate for w=101:

 ?

start

q0 q1

0

0,1

1
q2

q’0

q3

1

To simulate any transition:

 Step 1) Go to all immediate destination states.

 Step 2) From there go to all their -closure states as well.

37

Equivalency of DFA, NFA, -NFA

 Theorem: A language L is accepted by

some -NFA if and only if L is accepted by

some DFA

 Implication:

 DFA ≡ NFA ≡ -NFA

 (all accept Regular Languages)

38

Eliminating -transitions

Let E = {QE,∑,δE,q0,FE} be an -NFA

Goal: To build DFA D={QD,∑,δD,{qD},FD} s.t. L(D)=L(E)

Construction:
1. QD= all reachable subsets of QE factoring in -closures

2. qD = ECLOSE(q0)

3. FD=subsets S in QD s.t. S∩FE≠Φ

4. δD: for each subset S of QE and for each input symbol
a∑:

 Let R= U δE(p,a) // go to destination states

 δD(S,a) = U ECLOSE(r) // from there, take a union
 of all their -closures

p in s

r in R

Reading: Section 2.5.5 in book

39

Example: -NFA DFA

L = {w | w is empty, or if non-empty will end in 01}

start

q0 q1

0

0,1

1
q2

q’0

δE 0 1

 *q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

δD 0 1

*{q’0,q0}

…

40

Example: -NFA DFA

L = {w | w is empty, or if non-empty will end in 01}

start

q0 q1

0

0,1

1
q2

q’0

δE 0 1

 *q’0 Ø Ø {q’0,q0}

q0 {q0,q1} {q0} {q0}

q1 Ø {q2} {q1}

*q2 Ø Ø {q2}

δD 0 1

*{q’0,q0} {q0,q1} {q0}

{q0,q1} {q0,q1} {q0,q2}

{q0} {q0,q1} {q0}

*{q0,q2} {q0,q1} {q0}

{q’0, q0}

0

start

{q0,q1} {q0,q2} 1

0

q0

1

1

0

0

1

union ECLOSE

41

Summary

 DFA

 Definition

 Transition diagrams & tables

 Regular language

 NFA

 Definition

 Transition diagrams & tables

 DFA vs. NFA

 NFA to DFA conversion using subset construction

 Equivalency of DFA & NFA

 Removal of redundant states and including dead states

 -transitions in NFA

 Pigeon hole principles

 Text searching applications

