Finite Automata

Reading: Chapter 2

Finite Automaton (FA)

- Informally, a state diagram that comprehensively captures all possible states and transitions that a machine can take while responding to a stream or sequence of input symbols
- Recognizer for "Regular Languages"
- Deterministic Finite Automata (DFA)
- The machine can exist in only one state at any given time
- Non-deterministic Finite Automata (NFA)
- The machine can exist in multiple states at the same time

Deterministic Finite Automata - Definition

- A Deterministic Finite Automaton (DFA) consists of:
- $\mathrm{Q}==>$ a finite set of states
- $\sum==>$ a finite set of input symbols (alphabet)
- $\mathrm{q}_{0}==>$ a start state
- $F==>$ set of accepting states
- $\delta==>$ a transition function, which is a mapping between $\mathrm{Q} \times \Sigma==>\mathrm{Q}$
- A DFA is defined by the 5-tuple:
- $\left\{Q, \Sigma, q_{0}, F, \delta\right\}$

What does a DFA do on reading an input string?

- Input: a word win \sum^{*}
- Question: Is w acceptable by the DFA?
- Steps:
- Start at the "start state" q_{0}
- For every input symbol in the sequence w do
- Compute the next state from the current state, given the current input symbol in wand the transition function
- If after all symbols in w are consumed, the current state is one of the accepting states (F) then accept w;
- Otherwise, reject w.

Regular Languages

- Let $\mathrm{L}(\mathrm{A})$ be a language recognized by a DFA A.
- Then $\mathrm{L}(\mathrm{A})$ is called a "Regular Language".
- Locate regular languages in the Chomsky Hierarchy

The Chomsky Hierachy

- A containment hierarchy of classes of formal languages

Example \#1

- Build a DFA for the following language:
- $L=\{w \mid w$ is a binary string that contains 01 as a substring $\}$
- Steps for building a DFA to recognize L:
- $\Sigma=\{0,1\}$
- Decide on the states: Q
- Designate start state and final state(s)
- δ : Decide on the transitions:
- "Final" states == same as "accepting states"
- Other states == same as "non-accepting states"

Regular expression: $(0+1)^{*} 01(0+1)^{*}$

DFA for strings containing 01

-What makes this DFA deterministic?

- $\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
- $\Sigma=\{0,1\}$
- start state $=q_{0}$
- $F=\left\{q_{2}\right\}$

Accepting • Transition table state

- What if the language allows empty strings?

Example \#2

Clamping Logic:

- A clamping circuit waits for a "1" input, and turns on forever. However, to avoid clamping on spurious noise, we'll design a DFA that waits for two consecutive $1 s$ in a row before clamping on.
- Build a DFA for the following language:
$L=\{w \mid w$ is a bit string which contains the substring 11\}
- State Design:
- q_{0} : start state (initially off), also means the most recent input was not a 1
- q_{1} : has never seen 11 but the most recent input was a 1
- q_{2} : has seen 11 at least once

Example \#3

- Build a DFA for the following language:
$L=\{w \mid w$ is a binary string that has even number of 1 s and even number of 0 s\}
- ?

Extension of transitions ($\overline{\text {) }}$ to Paths ($\bar{\delta}$)

- $\hat{\delta}(q, w)=$ destination state from state q on input string w
- Work out example \#3 using the input sequence $w=10010, a=1$:

$$
=\hat{\delta}\left(q_{0}, w a\right)=?
$$

Language of a DFA

A DFA A accepts string w if there is a path from q_{0} to an accepting (or final) state that is labeled by w

- l.e., $L(A)=$ all strings that lead to an accepting state from q_{0}

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA)
- is of course "non-deterministic"
- Implying that the machine can exist in more than one state at the same time
- Transitions could be non-deterministic

- Each transition function therefore maps to a set of states

Non-deterministic Finite Automata (NFA)

- A Non-deterministic Finite Automaton (NFA) consists of:
- $\mathrm{Q}==>$ a finite set of states
- $\Sigma==>$ a finite set of input symbols (alphabet)
- $\mathrm{q}_{0}==>$ a start state
- $\mathrm{F}==>$ set of accepting states
- $\delta==>$ a transition function, which is a mapping between $Q \times \sum==>$ subset of Q
- An NFA is also defined by the 5-tuple:
- $\left\{Q, \Sigma, q_{0}, F, \delta\right\}$

How to use an NFA?

- Input: a word win \sum^{*}
- Question: Is w acceptable by the NFA?
- Steps:
- Start at the "start state" q_{0}
- For every input symbol in the sequence w do
- Determine all possible next states from all current states, given the current input symbol in w and the transition function
- If after all symbols in w are consumed and if at least one of the current states is a final state then accept w;
- Otherwise, reject w.

Regular expression: $(0+1)^{*} 01(0+1)^{*}$

NFA for strings containing 01

Why is this non-deterministic?

Final state

What will happen if at state q_{1} an input of 0 is received?

- $Q=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
- $\Sigma=\{0,1\}$
- start state $=\mathrm{q}_{0}$
- $\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$
- Transition table
symbols

δ	0	1
$\longrightarrow \mathrm{q}_{0}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
$\stackrel{0}{0} \mathrm{q}_{1}$	Φ	$\left\{\mathrm{q}_{2}\right\}$
$\cdots{ }^{*} \mathrm{q}_{2}$	$\left\{\mathrm{a}_{2}\right\}$	$\left\{\mathrm{a}_{2}\right\}$

Note: Omitting to explicitly show error states is just a matter of design convenience (one that is generally followed for NFAs), and i.e., this feature should not be confused with the notion of non-determinism.

What is an "error state"?

- A DFA for recognizing the key word "while"

- An NFA for the same purpose:

Transitions into a dead state are implicit

Example \#2

- Build an NFA for the following language:

$$
L=\{w \mid w \text { ends in 01 }\}
$$

- ?
- Other examples
- Keyword recognizer (e.g., if, then, else, while, for, include, etc.)
- Strings where the first symbol is present somewhere later on at least once

Extension of δ to NFA Paths

- Basis: $\hat{\delta}(q, \varepsilon)=\{q\}$
- Induction:
- Let $\delta\left(q_{0}, w\right)=\left\{p_{1}, p_{2} \ldots, p_{k}\right\}$
- $\delta\left(p_{i}, a\right)=S_{i} \quad$ for $i=1,2 \ldots, k$
- Then, $\hat{\delta}\left(q_{0}\right.$, wa $)=S_{1} \cup S_{2} \cup \ldots \cup S_{k}$

Language of an NFA

- An NFA accepts w if there exists at least one path from the start state to an accepting (or final) state that is labeled by w
- $L(N)=\left\{w \mid \hat{\delta}\left(q_{0}, w\right) \cap F \neq \Phi\right\}$

Advantages \& Caveats for NFA

- Great for modeling regular expressions
- String processing - e.g., grep, lexical analyzer
- Could a non-deterministic state machine be implemented in practice?
- Probabilistic models could be viewed as extensions of nondeterministic state machines
(e.g., toss of a coin, a roll of dice)
- They are not the same though
- A parallel computer could exist in multiple "states" at the same time

Technologies for NFAs

- Micron’s Automata Processor (introduced in 2013)
- 2D array of MISD (multiple instruction single data) fabric w/ thousands to millions of processing elements.
- 1 input symbol = fed to all states (i.e., cores)
- Non-determinism using circuits
- http://www.micronautomata.com/

But, DFAs and NFAs are equivalent in their power to capture langauges !!

Differences: DFA vs. NFA

- DFA

1. All transitions are deterministic

- Each transition leads to exactly one state

2. For each state, transition on all possible symbols (alphabet) should be defined
3. Accepts input if the last state visited is in F
4. Sometimes harder to construct because of the number of states
5. Practical implementation is feasible

- NFA

1. Some transitions could be non-deterministic

- A transition could lead to a subset of states

2. Not all symbol transitions need to be defined explicitly (if undefined will go to an error state - this is just a design convenience, not to be confused with "nondeterminism")
3. Accepts input if one of the last states is in F
4. Generally easier than a DFA to construct
5. Practical implementations limited but emerging (e.g., Micron automata processor)

Equivalence of DFA \& NFA

- Theorem:

Should be \longrightarrow A language L is accepted by a DFA if and only if true for any L it is accepted by an NFA.

Proof:

1. If part:

- Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides...)

2. Only-if part is trivial:

- Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

Proof for the if-part

- If-part: A language L is accepted by a DFA if it is accepted by an NFA
- rephrasing...
- Given any NFA N, we can construct a DFA D such that $L(N)=L(D)$
- How to convert an NFA into a DFA?
- Observation: In an NFA, each transition maps to a subset of states
- Idea: Represent: each "subset of NFA_states" \rightarrow a single "DFA_state" Subset construction

NFA to DFA by subset construction

- Let $N=\left\{Q_{N}, \Sigma, \delta_{N}, q_{0}, F_{N}\right\}$
- Goal: Build $D=\left\{Q_{D}, \Sigma, \delta_{D},\left\{q_{0}\right\}, F_{D}\right\}$ s.t.
$\mathrm{L}(\mathrm{D})=\mathrm{L}(\mathrm{N})$
- Construction:

1. $Q_{D}=$ all subsets of Q_{N} (i.e., power set)
2. $F_{D}=$ set of subsets S of Q_{N} s.t. $S \cap F_{N} \neq \Phi$
3. $\quad \delta_{D}$: for each subset S of Q_{N} and for each input symbol a in \sum :

- $\quad \delta_{D}(S, a)=\bigcup_{p \text { in } s} \delta_{N}(p, a)$

NFA to DFA construction: Example

- $L=\{w \mid w$ ends in 01\}

\longrightarrow| | | |
| :--- | :--- | :--- |
| \rightarrow | 0 | 1 |
| $\delta_{D}\left[q_{0}\right]$ | $\left[q_{0}, q_{1}\right]$ | $\left[q_{0}\right]$ |
| $\left[q_{0}, q_{1}\right]$ | $\left[q_{0}, q_{1}\right]$ | $\left[q_{0}, q_{2}\right]$ |
| ${ }^{*}\left[q_{0}, q_{2}\right]$ | $\left[q_{0}, q_{1}\right]$ | $\left[q_{0}\right]$ |

0. Enumerate all possible subsets
1. Determine transitions
2. Retain only those states reachable from $\left\{q_{0}\right\}$

NFA to DFA: Repeating the example using LAZY CREATION

- $L=\{w \mid w$ ends in 01 $\}$

Main Idea:
Introduce states as you go (on a need basis)

Correctness of subset construction

Theorem: If D is the DFA constructed from NFA N by subset construction, then $L(D)=L(N)$

- Proof:
- Show that $\hat{\delta}_{D}\left(\left\{q_{0}\right\}, w\right) \equiv \hat{\delta}_{N}\left(q_{0}, w\right\}$, for all w
- Using induction on w's length:
- Let w = xa
- $\hat{\delta}_{D}\left(\left\{q_{0}\right\}, x a\right) \equiv \delta_{D}\left(\hat{\delta}_{N}\left(q_{0}, x\right\}, a\right) \equiv \hat{\delta}_{N}\left(q_{0}, w\right\}$

A bad case where \#states(DFA)>>\#states(NFA)

- $L=\left\{w \mid w\right.$ is a binary string s.t., the $k^{\text {th }}$ symbol from its end is a 1$\}$
- NFA has k+1 states
- But an equivalent DFA needs to have at least 2^{k} states
(Pigeon hole principle)
- m holes and $>m$ pigeons
- => at least one hole has to contain two or more pigeons

Applications

- Text indexing
- inverted indexing
- For each unique word in the database, store all locations that contain it using an NFA or a DFA
- Find pattern P in text T
- Example: Google querying
- Extensions of this idea:
- PATRICIA tree, suffix tree

A few subtle properties of DFAs and NFAs

- The machine never really terminates.
- It is always waiting for the next input symbol or making transitions.
- The machine decides when to consume the next symbol from the input and when to ignore it.
- (but the machine can never skip a symbol)
- => A transition can happen even without really consuming an input symbol (think of consuming ε as a free token) - if this happens, then it becomes an ε-NFA (see next few slides).
- A single transition cannot consume more than one (non- ε) symbol.

FA with ε-Transitions

- We can allow explicit ε-transitions in finite automata
- i.e., a transition from one state to another state without consuming any additional input symbol
- Explicit ε-transitions between different states introduce non-determinism.
- Makes it easier sometimes to construct NFAs

Definition: ε-NFAs are those NFAs with at least one explicit ε-transition defined.

- ε-NFAs have one more column in their transition table

Example of an ε-NFA

$L=\{w \mid w$ is empty, or if non-empty will end in 01\}

- ε-closure of a state q, $\operatorname{ECLOSE}(q)$, is the set of all states (including itself) that can be reached from q by repeatedly making an arbitrary number of ε transitions.

To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their ε-closure states as well.

Example of an ε-NFA

$L=\{w \mid w$ is empty, or if non-empty will end in 01\}

Simulate for w=101:

To simulate any transition:
Step 1) Go to all immediate destination states.
Step 2) From there go to all their ε-closure states as well.

Example of another ε-NFA

Simulate for w=101:

?

Equivalency of DFA, NFA, ε-NFA

- Theorem: A language L is accepted by some ε-NFA if and only if L is accepted by some DFA
- Implication:
- DFA \equiv NFA $\equiv \varepsilon$-NFA
- (all accept Regular Languages)

Eliminating ε-transitions

Let $E=\left\{Q_{E}, \Sigma, \delta_{E}, q_{0}, F_{E}\right\}$ be an $\varepsilon-N F A$
Goal: To build DFA $D=\left\{Q_{D}, \Sigma, \delta_{D},\left\{q_{D}\right\}, F_{D}\right\}$ s.t. $L(D)=L(E)$ Construction:

1. $Q_{D}=$ all reachable subsets of Q_{E} factoring in ε-closures
2. $q_{D}=\operatorname{ECLOSE}\left(q_{0}\right)$
3. $\quad F_{D}=$ subsets S in Q_{D} s.t. $S \cap F_{E} \neq \Phi$
4. δ_{D} : for each subset S of Q_{E} and for each input symbol $a \in \sum$:

- Let $\mathrm{R}=\underset{\mathrm{pins}}{\mathrm{U}} \delta_{\mathrm{E}}(\mathrm{p}, \mathrm{a})$
- $\quad \delta_{D}(S, a)=U \operatorname{ECLOSE}(r) \quad / /$ from there, take a union
r in R
// go to destination states
of all their ε-closures

Reading: Section 2.5.5 in book

Example: ε-NFA \rightarrow DFA

$L=\{w \mid w$ is empty, or if non-empty will end in 01\}

δ_{E}	0	1	ε
${ }^{*} \mathrm{q}^{\prime}{ }_{0}$	\varnothing	\varnothing	$\left\{\mathrm{q}^{\prime}, \mathrm{q}_{0}\right\}$
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
q_{1}	\varnothing	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{1}\right\}$
${ }^{*} \mathrm{q}_{2}$	\varnothing	\varnothing	$\left\{\mathrm{q}_{2}\right\}$

δ_{D}	0	1
${ }^{*}\left\{q^{\prime}{ }_{0}, q_{0}\right\}$		
\ldots		

Example: ε-NFA \rightarrow DFA

$L=\{w \mid w$ is empty, or if non-empty will end in 01\}

Summary

- DFA
- Definition
- Transition diagrams \& tables
- Regular language
- NFA
- Definition
- Transition diagrams \& tables
- DFA vs. NFA
- NFA to DFA conversion using subset construction
- Equivalency of DFA \& NFA
- Removal of redundant states and including dead states
- ε-transitions in NFA
- Pigeon hole principles
- Text searching applications

