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The Myhill-Nerode Theorem




The Myhill-Nerode theorem
Isomorphism of DFAs

® M= (Qp,Z,00:Sm,F), N = (Qp,S, Oy, Sn:Fy): two DFAs
® M and N are said to be isomorphic if there is a (structure-preserving
bijection f:Q,,-> Q s.t.
0 f(sy) = Sy
0 f(oy(p,a)) = on(f(p),a) forallp e Qy,a € X
0peFyifff(p) e Fy.
® |.e., M and N are essentially the same machine up to renaming of
states.
® Facts:
0 1. Isomorphic DFAs accept the same set.

0 2.if M and N are any two DFAs w/o inaccessible states
accepting the same set, then the quotient automata M/~ and N/ =
are isomorphic

0 3. The DFA obtained by the minimization algorithm (lec. 14) is
the minimal DFA for the set it accepts, and this DFA is unique up
to isomorphism.

Transparency No. 10-2



The Myhill-Nerode theorem
Myhill-Nerode Relations

® R: aregular set, M=(Q, %, 5,s,F): a DFA for R w/o inaccessible
states.
® M induces an equivalence relation =, on £* defined by
0 x=, yiff A(s,x) =A(s,y).
0 i.e., two strings x and y are equivalent iff it is indistinguishable

by running M on them (i.e., by running M with x and y as input,
respectively, from the initial state of M.)

® Properties of =, :
0 0.=, is an equivalence relation on X*.
(cf: = is an equivalence relation on states)

0 1.=,,is aright congruence relation on Z*: i.e., for any x,y €
X*andae X, x=yy=>xa=, Yya.

0 pf: ifx=yy=>A(s,xa) = 06(A (s,x),a) = &(A (s,y),a) = A(s, ya)
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The Myhill-Nerode theorem
Properties of the Mvyhill-Nerode relations

® Properties of =, :
0 2. =, refines R. l.e., for any x,y € X¥,
1 x=yy=>xeRiffyeR
0 pf: x e R iff A(s,x) € Fiff A(s,y) € Fiffy e R.

0 Property 2 means that every =,-class has either all its
elements in R or none of its elements in R. Hence R is a
union of some = ,,-classes.

0 3. It is of finite index, i.e., it has only finitely many

equivalence classes. -
0 (i.e., the set {[x]=, | x € *}
Yy

[0 is finite.

0 pf: x = y iff A(s,x) = A(s,y) =q
0 for some q € Q. Since there
0 are only |Q] states, hence —
0 ¥* has |Q| =,-classes \_

\

\

| =y-Classes
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The Myhill-Nerode theorem
Definition of the Myhill-Nerode relation

® =: an equivalence relation on X*,
R: a language over X*.

® = is called an Myhill-Nerode relation for R if it satisfies
property 1~3. i.e., it is a right congruence of finite index
refining R.

® Fact: R is regular iff it has a Myhill-Nerode relation.
0 (to be proved later)

0 1. For any DFA M accepting R, =, is a Myhill-Nerode
relation for R.

0 2. If =is a Myhill-Nerode relation for R then there is a DFA
M_ accepting R.

0 3. The constructions M —» =, and = —» M_ are inverse up to
isomorphism of automata. (i.e. == =,,_and M = M=)
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The Myhill-Nerode theorem
From= to M=

® R: a language over X, = : a Myhill-Nerode relation for R;
0 the =-class of the string x is [X]_ =4, {Y | X =Y}.

[0 Note: Although there are infinitely many strings, there are
only finitely many = -classes. (by property of finite index)

® Define DFA M= = (Q,X,5,s,F) where
0Q={[x]|xeX}, s=[,
0F={x]|xeR} o([x],a) = [xa].
® Notes:

0 0: M_ has |Q| states, each corresponding to an = -class of =.
Hence the more classes = has, the more states M= has.

0 1. By right congruence of =, § is well-defined, since, if y,z
e[x] =>y=z=x=>ya=za=xa=>ya, za € [xa]

0 2.x € Riff [x] € F.

0 pf: =>: by definition of M= ;

0 <=:[x]e F=>3Jys.t.y e Rand x=y =>x € R. (property 2)
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The Myhill-Nerode theorem
M—>=,and= - M= are inverses

Lemma 15.1: A([x],y) = [xy]
pf: Induction on |y|. Basis: A([x],e) = [x] =[xe].
Ind. step: A([x],ya) = 8(A([x],y),a) = 6([xy],a) = [xya]. QED

Theorem 15.2: L(M_) = R.
pf: x e L(M.) iff A([e],x) € Fiff[x] € Fiff x €e R. QED

Lemma 15.3: = : a Myhill-Nerode relation for R, M: a DFA for R w/
Inaccessible states, then

1. if we apply the construction = - M_ to = and then apply M —
=, to the result, the resulting relation =, _ is identical to =.

2. if we apply the construction M —» =,; to M and then apply =—>
M_ to the result, the resulting relation M=, is identical to M.
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The Myhill-Nerode theorem
M > =and =— M= are inverses (cont’d)

Pf: (of lemma 15.3) (1) Let M_ =(Q,%,5,s,F) be the DFA
constructed as described above. then for any x,y in X*,

x =y Y iff A([e]l, X) = A([€l,y) iff [x] =[y] iffx=Yy.
(2) Let M =(Q, X ,5,s,F) and let M=, =(Q’, X, &’,s’,F’). Recall that
U IxI={y |y=ux}={ylAls)y) =A(s,x) }
0Q ={[x]| xeX*}, s’=[e], FF={[x]|x e R}
0 o6’([x], a) = [xa].
Now let f:Q’-> Q be defined by f([x]) = A(s,X).

0 1. By def., [x] = [y] iff A(s,x) = A(s,y), so f is well-defined
and 1-1. Since M has no inaccessible state, f is onto.

0 2.f(s’) =f([e]) = A(s,e)=s

03.[x] e FP<=>x e R<=>A(s,x) € F <=>1{([x]) € F.

0 4. £f(6’([x],a)) = f([xa]) = A(s,xa) = 6(A(s,x),a) = o(f([x]), a)
0 By 1~4, fis an isomorphism from M=, to M. QED
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The Myhill-Nerode theorem
Relations b/t DFAs and Mvhill-Nerode relations

Theorem 15.4: R: a regular set over X. Then up to isomorphism
of FAs, there is a 1-1 correspondence b/t DFAs w/o
inaccessible states accepting R and Myhill-Nerode relations
for R.

0 l.e., Different DFAs accepting R correspond to different
Myhill-Nerode relations for R, and vice versa.

0 We now show that there exists a coarsest Myhill-Neorde
relation =, for any R, which corresponds to the unique
minimal DFA for R.

Def 16.1: =, ,=, : two relations. If=, c =, (i.e., forall x,y,x=,y
=> X =, y) we say =, refines =, .

Note:1. If =, and =, are equivalence relations, then =, refines
=, iff every = ,-class is included in a = ,-class.

2. The refinement relation on equivalence relations is a partial
order. (since c is ref, transitive and antisymmetric).
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The Myhill-Nerode theorem
The refinement relation

Note:

3.If,=, c =, ,we say =, is the finer and =, is the coarser of
the two relations.

4. The finest equivalence relation on a set U is the identity
relation I, = {(x,x) | x € U}

5. The coarsest equivalence relation on a set U is universal
relation U? = {(x,y) | x, y € U}

Def. 16.1: R: a language over X (possibly not regular). Define a
relation =; over ** by
x =R Yy iff forall z € £* (xz € R <=>yz € R)

i.e., x and y are related iff whenever appending the same string
to both of them, the resulting two strings are either both in R
or both not in R.

Transparency No. 10-10



The Myhill-Nerode theorem
Properties of =

Lemma 16.2: Properties of = :
0 0.=¢ is an equivalence relation over X*.
0 1. =g is right congruent
0 2. =, refines R.
0 3. =, the coarsest of all relations satisfying 0,1 and 2.
0 [4. If R is regular => = is of finite index. ]
Pf: (0) : trivial; (4) immediate from (3) and theorem 15.2.
(1) x=xy=>forall z € £* (xz € R <=>yz € R)
=>VaVw (xaw € R <=>yaw € R)
=>V a (xa=gYya)
(2) x=py =>(x e R<=>y ¢ R)
(3) Let =Dbe any relation satisfying 0~2. Then
x=y=>Vzxz=yz ---byind. on |z| using property (1)
=>Vz(xze R<=>yzeR) ---by(2) =>x=
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The Myhill-Nerode theorem
Myhill-Nerode theorem

Thorem16.3: Let R be any language over X. Then the following
statements are equivalent:

(a) R is regular;
(b) There exists a Myhill-Nerode relation for R;
(c) the relation =, is of finite index.

pf: (a) =>(b) : Let M be any DFA for R. The construction M - =,
produces a Myhill-Nerode relation for R.

(b) => (c): By lemma 16.2, any Myhill-Nerode relation for R is
of finite index and refines R => = is of finite index.

(c)=>(a): If = is of finite index, by lemma 16.2, it is a Myhill-
Nerode relation for R, and the construction = - M_ produce a
DFA for R.
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The Myhill-Nerode theorem
Relations b/t =, and collapsed machine

Note: 1. Since =  is the coarsest Myhill-Nerode relation for a
regular set R, it corresponds to the DFA for R with the fewest
states among all DFAs for R.

(i.e., let M = (Q,...) be any DFA for R and M = (Q’,...) the DFA
induced by =z, where Q’ = the set of all = ;-classes

==> |Q| = | the set of = ,-classes | >= | the set of =; -classes |

= Q7).
Fact: M=(Q,S,s,d,F): a DFA for R that has been collapsed (i.e., M
= M/=). Then=; ==,, (hence M is the unique DFA for R with

the fewest states)
pf: x= Yiff VZ € £* (X2 € R<=>yz € R)
iff V z € ¥ (A(s,xz) € F <=> A(s,yz) € F)
iff V z e 2% (A(A(S,X),2) € F <=> A(A(S,Y),2) € F)
iff A(s,x) = A(s,y) iff A(s,x)=A(s,y) -- since M is collapsed
iff x=,y Q.E.D.
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The Myhill-Nerode theorem
An application of the Myhill-Nerode relation

® Can be used to determine whether a set R is regular by
determining the number of =; -classes.

® Ex:LetA={a"b"|n>0}.
0 If k #m => ak not=, a™, since akbke A but ambk ¢ A .
Hence =, is not of finite index => A is not regular.
0 In fact =, has the following =,-classes:
0 G, ={ak}, k>0
0 H ={a"*b"|n>1},k>0
0 E=2*-U,.,(GUH)=%2*-{a"b"|m>n>0}
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The Myhill-Nerode theorem
Uniqueness of Minimal NFAs

® Problem: Does the conclusion that minimal DFA
accepting a language is unique applies to NFA as
well ?

Ans : ?
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The Myhill-Nerode theorem
Minimal NFAs are not unique up to isomorphism

® Example:letL={x1|xe€{0,1}}"

1. What is the minimum number k of states of all FAs
accepting L ?

Analysis : k #1. Why ?

2. Both of the following two 2-states FAs accept L.

T =
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The Myhill-Nerode theorem
Collapsing NFAs

® Minimal NFAs are not unique up to isomorphism

® Part of the Myhill-Nerode theorem generalize to NFAs based
on the notion of bisimulation.

® Bisimulation:
Def: M=(Qy;,Z, Oy1:Sw;Fu)s N=(QpsZ,08,Sn:Fn): two NFAS,
~ : a binary relation from Q,, to Q.
0 ForBcQy,defineC_(B)={pe Q, |dgeB p~q}
0 ForAcQy, define C_,(A)={qeQy |FP €A p=q}
Extend = to subsets of Q, and Q as follows:
0 A=B<=>,; AcC(B)and B c C_(A)
[] iff Vpe AdgeBs.t.prqandVqeBidpeAs.t.p~q
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The Myhill-Nerode theorem

o
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The Myhill-Nerode theorem
Bisimulation

® Def B.1: A relation = is called a bisimulation if
0 1. Sy = Sy
0 2.if p=qthen Va € Z, oy(p,a) = dy(q,a)
03.ifp=qthenp e F,iff q € F.
® M and N are bisimilar if there exists a bisimulation between
them.

® For each NFA M, the bisimilar class of M is the family of all
NFAs that are bisimilar to M.

® Properties of bisimulaions:

1.Bisimulation is symmetric: if = is a bisimulation b/t M and
N, then its reverse {(q,p)|p=q} is a bisimulation b/t N and M.

2.Bisimulation is transitive: M~;, Nand N~, P=>M=~,~, P

3.The union of any nonempty family of bisimulation b/t M
and N is a bisimulation b/t M and N.
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The Myhill-Nerode theorem
Properties of bisimulations

Pf: 1,2: direct from the definition.

(3): Let {~; | i € | } be a nonempty indexed set of bisimulations b/t
M and N. Define~=_,;U;_,~..

Thus p~q means dielp=;q.

1. Since | is not empty, S;;~; S, for some i € |, hence S;; = S

2.Ifp~q =>dielp=;q=>35y(p,a) =;6y(d,a) => 6y(p,a) ~ 6y(q,a)

3.fp~q =>p=~,qforsomei=>(peFy,<=>qeFy)

Hence = is a bisimulation b/t M and N.

Lem B.3: ~ : a bisimulation b/t M and N. If A =~ B, then for all x in
>*, A(A,x) = A (B,Xx).

pf: by induction on |x|. Basis: 1. x =& => A(A,g) = A ~ B=A(B,¢).

2.x=a :since Ac C_(B), if p e A=>31q € B with p = q. => 6y(p,a)
c C.(dx(g,a)) = C (AN(B,a)). => Ay (A,a) =U, a0y (P,a)
C.(A\(B,a)).

By a symmetric argument, A\(B,a) < C_(Ay(A,a)).
So Ay, (A,a) = Ay(B,a)).

Transparency No. 10-20



The Myhill-Nerode theorem
Bisimilar automata accept the same set.

3. Ind. case: assume Ay(A,x) = Ay(B,x). Then
Ay(A,xa) = Ay(Ay(A,Xx), a) = Ay(An(B,X),a) = Ay(B,xa). Q.E.D.

Theorem B.4: Bisimilar automata accept the same set.
Pf: assume =~ : a bisimulation b/t two NFAs M and N.
Since Sy, = Sy => Ay (SysX) = Ay (Sy,x) for all x.

Hence for all x, x € L(M) <=> Ay(Sy, X) N Fy #= {3 <=> Ay(Sp,X) N
Fy#{} <=>x e L(N). Q.E.D.

Def: ~ : a bisimulation b/t two NFAs M and N

The support of = in M is the states of M related by ~ to some
state of N, i.e., {p € Q| p = q for some q € Q} = C_(Qy)-
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The Myhill-Nerode theorem
Autobisimulation

Lem B.5: A state of M is in the support of all bisimulations
involving M iff it is accessible.

Pf: Let = be any bisimulation b/t M and another FA.

By def B.1(1), every start state of M is in the support of ~.

By B.1(2), if p is in the support of =, then every state in §(p,a) is
in the support of ~. It follows by induction that every
accessible state is in the support of ~.

Conversely, since the relation B.3 = {(p,p) | p is accessible} is a
bisimulation from M to M and all inaccessible states of M are
not in the support of B.3. It follows that no inaccessible state
is in the support of all bisimulations. Q.E.D.

Def. B.6: An autobisimulation is a bisimlation b/t an automaton
and itself.
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The Myhill-Nerode theorem
Property of autobisimulations

Theorem B.7: Every NFA M has a coarsest autobisimulation
=, » Which is an equivalence relation.

Pf: let B be the set of all autobisimulations on M.

B is not empty since the identity relation I, = {(p,p) | P
in Q } is an autobisimulation.

1. let =, be the union of all bisimualtions in B. By Lem
B.2(3), = is also a bisimualtion on M and belongs to
B. So =, is the largest (i.e., coarsest) of all relations
in B.

2. =, Is ref. since for all state p (p,p) € ly < =y -

3. =y is sym. and tran. by Lem B.2(1,2).

4. By 2,3, =, is an equivalence relation on Q.
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The Myhill-Nerode theorem
Find minimal NFA bisimilar to a NFA

® M=(Q,%,5,S,F): aNFA.

® Since accessible subautomaton of M is bisimilar to M under
the bisimulation B.3, we can assume wlog that M has no
inaccessible states.

® Let =be =, the maximal autobisimulation on M.

forpin Q, let[p]={q|p =q} be the =-class of p, and

let « be the relation relating p to its =-class [p], i.e.,

«c Qx29 =4 {(p,[p]) I Pin Q}

for each set of states A c Q, define [A] ={[p] | pin A }. Then

Lem B.8: For all A,B c Q,
01.AcC_(B) iff[A]c[B], 2. A=Biff[A]=[B], 3.A «[A]

pf:1.Ac C_(B) <=>VpinAVqinBs.t. p=q <=>[A] c[B]
2. Direct from 1 and the factthat A=B iff Ac C_(B) and B c C_(A)

3.pe A=>pe[p] €[A], Be[A]l=>3p e Awithp « [p] =B.
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The Myhill-Nerode theorem
Minimal NFA bisimilar to an NFA (cont’d)

Now define M’ = {Q’, S, d’, S’,F’} = M/= where
0 Q' =[Q]={[p]|p e Q},
0S8 =[S]={lpl|peS}, FF=[F]={[p]|p < F}and
0 &'([pl,a) = [3(p,a)],
[0 Note that &’ is well-defined since
[p] = [a] => p = q => 3(p,a) = 6(q,a) => [6(p,a)] = [6(q,a)]
=>&'([pl,a) = 6°([q],a)
em B.9: The relation « is a bisimulation b/t M and M’.
of: 1. By B.8(3): S c [S]=S’.
2.1f p « [q] => p = q => §(p,a) = 5(q,a)
=> [5(p,a)] = [6(q,a)] => &(p,a) « [6(p,a)] = [5(d,a)].
3.ifpe F=>[p] € [F]=F and
if[p] e F’=[F]=>3q e Fwith[q]=[p]=p=q=>p e F.
By theorem B.4, M and M’ accept the same set.
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The Myhill-Nerode theorem
Autobisimulation

Lem B.10: The only autobisimulation on M’ is the identity relation

Pf: Let ~ be an autobisimulation of M’. By Lem B.2(1,2), the
relation « ~ » is a bisimulation from M to itself.

1. Now if there are [p] # [q] (hence not p = q ) with [p] ~ [q]

=>p«[pl~[aql»q=>p «~» q =>«~» &=, a contradiction !.

On the other hand, if [p] not~ [p] for some [p] => for any [q],
[p] not~ [q] (by 1. and the premise)

=>pnot(«~»)qgforanyq (p«[p] [l » q)

=> p is not in the support of « ~ »

=> p is not accessible, a contradiction.
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The Myhill-Nerode theorem
Quotient automata are minimal FAs

® Theorem B11: M: an NFA w/t inaccessible states, = : maximal
autobisimulation on M. Then M’ = M /= is the minimal
automata bisimilar to to M and is unique up to isomorphism.

pf: N: any NFA bisimilar to M w/t inaccessible states.
N’ = N/ =, where =, is the maximal autobisimulation on N.
=> M’ bisimiar to M bisimilar to N bisimiar to N’.
Let =~ be any bisimulation b/t M’ and N’.

Under =, every state p of M’ has at least on state q of N’ with p
~ ( and every state q of N’ has exactly one state p of M’ with
P~=q.

O/lwp=~=q=-1p’ #p=>==~-1is a non-identity autobisimulation
on M, a contradiciton!.

Hence =~ is 1-1. Similarly, ~1is 1-1 => ~ is 1-1 and onto and
hence is an isomorphism b/t M’ and N’. Q.E.D.

Transparency No. 10-27



The Myhill-Nerode theorem
Algorithm for computing maximal bisimulation

® a generalization of that of Lec 14 for finding equivalent states
of DFAs

The algorithm: Find maximal bisimulation of two NFAs M and N
0 1. write down a table of all pairs (p,q) of states, initially
[ unmarked
0 2. mark (p,q) if p € F, and q ¢ F or vice versa.

0 3. repeat until no more change occur: if (p,q) is

unmarked and if for some a € %, either

dp’ € dy(p,a) s-.t. V q’ € dy(q,a), (p’,q’) is marked, or
dq’ € 6y(q,a) s.t. V p’ € dy(p,a), (p’,q’) is marked,
then mark (p,q).

0 4. define p = q iff (p,q) are never marked.

0 5. If Sy =Sy =>=is the maximal bisimulation

[ o/w M and N has no bisimulation.
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