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Isomorphism of DFAs 

 M = (QM,S,dM,sM,FM), N = (QN,S, dN,sN,FN): two DFAs 

  M and N are said to be isomorphic if there is a (structure-preserving) 
bijection f:QM-> QN s.t. 

 f(sM) = sN 

 f(dM(p,a)) = dN(f(p),a) for all p  QM , a  S  

 p  FM iff f(p)  FN. 

 I.e., M and N are essentially the same machine up to renaming of 
states. 

 Facts: 

 1. Isomorphic DFAs accept the same set. 

 2. if M and N are any two DFAs w/o inaccessible states 
accepting the same set, then the quotient automata M/ and N/  
are isomorphic 

 3. The DFA obtained by the minimization algorithm (lec. 14) is 
the minimal DFA for the set it accepts, and this DFA is unique up 
to isomorphism. 
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Myhill-Nerode Relations 

 R: a regular set, M=(Q, S, d,s,F): a DFA for R w/o inaccessible 

states. 

 M induces an equivalence relation M on S* defined by 

 x  M  y iff D(s,x) = D (s,y). 

 i.e., two strings x and y are equivalent iff it is indistinguishable 

by running M on them (i.e., by running M with x and y as input, 

respectively, from the initial state of M.) 

 Properties of  M  : 

 0.  M is an equivalence relation on S*. 

       (cf:  is an equivalence relation on states)  

 1.  M is a right congruence relation on S*: i.e., for any x,y   

S* and a  S, x  M y => xa  M  ya. 

  pf:  if x  M y => D(s,xa) = d(D (s,x),a) = d(D (s,y),a) = D(s, ya) 

                         => xa  M ya. 
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Properties of the Myhill-Nerode relations 

 Properties of  M  : 

 2. M refines R. I.e., for any x,y  S*, 

          x M y => x  R iff y  R 

 pf:  x  R  iff D(s,x)  F iff D(s,y)  F iff y  R. 

 Property 2 means that every M-class has either all its 
elements in R or none of its elements in R. Hence R is a 
union of some  M-classes. 

 3. It is of finite index, i.e., it has only finitely many 
equivalence classes. 

  (i.e., the set { [x] M
 | x  S*}  

 is finite. 

 pf: x M y iff D(s,x) = D(s,y) = q 

  for some q  Q. Since there 

  are only |Q| states,  hence 

 S* has |Q| M-classes 

 

S* 
R 

M-classes 
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Definition of the Myhill-Nerode relation 

  : an equivalence relation on S*,  

    R: a language over S*. 

  is called an Myhill-Nerode relation for R if it satisfies 

property 1~3. i.e., it is a right congruence of finite index 

refining R. 

 Fact: R is regular iff it has a Myhill-Nerode relation. 

     (to be proved later) 

 1. For any DFA M accepting R, M is a Myhill-Nerode 

relation for R. 

 2. If  is a Myhill-Nerode relation for R then there is a DFA 

M accepting R. 

 3. The constructions M  M and   M are inverse up to 

isomorphism of automata. (i.e.  =  M and M = MM) 
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From   to M  

 R: a language over S,  : a Myhill-Nerode relation for R; 

 the -class of the string x is  [x] =def {y | x  y}. 

 Note: Although there are infinitely many strings, there are 
only finitely many  -classes. (by property of finite index) 

 Define DFA M = (Q,S,d,s,F) where 

 Q = {[x] | x  S*},      s = [e], 

 F = {[x] | x  R },       d([x],a) = [xa]. 

 Notes:  

 0: M has |Q| states, each corresponding to an  -class of . 
Hence the more classes  has, the more states M has. 

 1. By right congruence of  , d is well-defined, since, if y,z 
[x] => y  z  x => ya  za  xa => ya, za  [xa] 

 2. x  R iff [x]  F.  

 pf: =>: by definition of M ; 

  <=: [x]  F => $ y s.t. y  R and x  y => x  R. (property 2) 
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M   M and    M  are inverses  

Lemma 15.1: D([x],y) = [xy] 

pf: Induction on |y|.  Basis: D([x],e) = [x] =[xe]. 

      Ind. step: D([x],ya) = d(D([x],y),a) = d([xy],a) = [xya].  QED 

 

Theorem 15.2: L(M) = R. 

 pf: x  L(M)  iff  D([e],x)  F iff [x]  F iff x  R.  QED 

 

Lemma 15.3:  : a Myhill-Nerode relation for R, M: a DFA for R w/o 

inaccessible states, then 

 1. if we apply the construction   M to  and then apply M  

M to the result, the resulting relation M  is identical to  . 

 2. if we apply the construction M  M  to M and then apply   

M to the result, the resulting relation MM is identical to M. 
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M   M and   M  are inverses (cont’d) 

Pf: (of lemma 15.3) (1) Let M =(Q,S,d,s,F) be the DFA 

constructed as described above. then for any x,y in S*, 

     x M y iff D([e], x) = D([e],y) iff  [x] = [y] iff x  y.  

 (2) Let M = (Q, S ,d,s,F) and let MM  = (Q’, S , d’,s’,F’). Recall that 

 [x] = {y | y M x} = {y | D(s,y) = D(s,x) }  

 Q’ = {[x] | x  S*},     s’ = [e],  F’ = {[x] | x  R} 

 d’([x], a) = [xa]. 

  Now let f:Q’-> Q be defined by f([x]) = D(s,x). 

 1. By def., [x] = [y] iff D(s,x) = D(s,y), so f is well-defined 

and 1-1. Since M has no inaccessible state, f is onto. 

 2. f(s’) = f([e]) = D(s, e ) = s 

 3. [x]  F’ <=> x  R <=> D(s,x)  F <=> f([x])  F. 

 4. f(d’([x],a)) = f([xa]) = D(s,xa) = d(D(s,x),a) = d(f([x]), a) 

 By 1~4, f is an isomorphism from MM to M.  QED 
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Relations b/t DFAs and Myhill-Nerode relations 

Theorem 15.4: R: a regular set over S. Then up to isomorphism 

of FAs, there is a 1-1 correspondence b/t DFAs w/o 

inaccessible states accepting R and Myhill-Nerode relations 

for R. 

 I.e., Different DFAs accepting R correspond to different 

Myhill-Nerode relations for R, and vice versa. 

 We now show that there exists a coarsest Myhill-Neorde 

relation  R for any R, which corresponds to the unique 

minimal DFA for R. 

Def 16.1:  1 ,  2 : two relations.  If 1  2  (i.e., for all x,y, x 1 y 

=> x 2 y) we say 1 refines 2 .  

 Note:1.  If  1 and  2 are equivalence relations, then  1 refines 

 2 iff  every  1-class is included in a  2-class.  

 2. The refinement relation on equivalence relations is a partial 

order. (since  is ref, transitive and antisymmetric). 
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The refinement relation 

Note: 

 3. If , 1   2 ,we say 1 is the finer and 2  is the coarser of 

the two relations. 

    4. The finest equivalence relation on a set U is the identity 

relation IU = {(x,x) | x   U} 

   5. The coarsest equivalence relation on a set U is universal 

relation U2 = {(x,y) | x, y  U} 

 

Def. 16.1:  R: a language over S (possibly not regular). Define a 

relation R over S*  by 

        x R y iff  for all z  S* (xz  R <=> yz  R) 

i.e., x and y are related iff whenever appending the same string 

to both of them, the resulting two strings are either both in R 

or both not in R.  
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Properties of  R  

Lemma 16.2: Properties of R : 

 0. R  is an equivalence relation over S*. 

 1. R  is right congruent 

 2. R  refines R.  

 3. R the coarsest of all relations satisfying 0,1 and 2.   

 [4. If R is regular => R  is of finite index. ]  

Pf: (0) : trivial; (4) immediate from (3) and theorem 15.2. 

   (1) x R y => for all z  S* (xz  R <=> yz  R)  

                   =>  a  w  (xaw  R <=> yaw  R)  

                   =>  a  (xa R ya)   

  (2) x R y  => (x  R <=> y  R) 

  (3)  Let  be any relation satisfying 0~2. Then 

    x  y => z xz  yz   --- by ind. on |z| using property (1) 

         => z (xz  R <=> yz  R)  --- by (2)   => x R  y. 
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Myhill-Nerode theorem 

Thorem16.3: Let R be any language over S. Then the following 

statements are equivalent: 

 (a) R is regular; 

    (b) There exists a Myhill-Nerode relation for R; 

    (c) the relation R  is of finite index. 

 

pf: (a) =>(b) : Let M be any DFA for R. The construction M  M 

produces a Myhill-Nerode relation for R. 

     (b) => (c):  By lemma 16.2, any Myhill-Nerode relation for R is 

of finite index and refines R => R is of finite index.  

     (c)=>(a): If R is of finite index, by lemma 16.2, it is a Myhill-

Nerode relation for R, and the construction   M produce a 

DFA for R.  
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Relations b/t  R and collapsed machine 

Note: 1. Since  R is the coarsest Myhill-Nerode relation for a 

regular set R, it corresponds to the DFA for R with the fewest 

states among all DFAs for R. 

  (i.e., let M = (Q,...) be any DFA for R and M = (Q’,…) the DFA 

induced by R, where Q’ = the set of all  R-classes 

  ==> |Q| = | the set of  M-classes | >= | the set of R -classes | 

                = |Q’|. 

Fact: M=(Q,S,s,d,F): a DFA for R that has been collapsed (i.e., M 

= M/).  Then R = M  (hence M is the unique DFA for R with 

the fewest states). 

pf: x R  y iff  z  S* (xz  R <=> yz  R) 

   iff  z  S* (D(s,xz)  F <=> D(s,yz)  F)     

 iff  z  S* (D(D(s,x),z)  F <=> D(D(s,y),z)  F) 

  iff D(s,x)  D(s,y)   iff  D(s,x) = D(s,y) -- since M is collapsed 

    iff x M y     Q.E.D. 
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An application of the Myhill-Nerode relation 

 Can be used to determine whether a set R is regular by 

determining the number of R -classes. 

 Ex: Let A = {anbn | n  0 }. 

 If k  m => ak not A am, since akbk A but ambk  A .  

    Hence A  is not of finite index => A is not regular. 

 In fact A  has the following A-classes: 

   Gk = {ak}, k   0 

   Hk = {an+k bn | n  1 }, k  0 

   E = S* - Uk  0 (GkU Hk) = S* - {ambn | m  n  0 } 
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Uniqueness of Minimal NFAs 

 Problem: Does the conclusion that minimal DFA 

accepting a language is unique applies to NFA as 

well ? 

 Ans :  ? 
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Minimal NFAs are not unique up to isomorphism 

 Example: let L = { x1 | x ∈ {0,1} }* 

1. What is the minimum number k of states of all FAs 

accepting L ?   

Analysis : k ≠ 1. Why ? 

 

2. Both of the following two 2-states FAs accept L. 

   

 

 

 p q 

0,1 

1 
t s 

0 1 

1 

0 



The Myhill-Nerode theorem 

  Transparency No. 10-17 

Collapsing NFAs 

 Minimal NFAs are not unique up to isomorphism 

 Part of the Myhill-Nerode theorem generalize to NFAs based 

on the notion of bisimulation. 

 Bisimulation: 

Def: M=(QM,S, dM,SM,FM), N=(QN,S,dN,SN,FN): two NFAs, 

         : a binary relation from QM to QN.  

  For B  QN , define C (B) = {p   QM  | $q  B  p  q } 

  For A  QM, define  C (A) = {q  QN  | $P  A  p  q } 

     Extend  to subsets of QM and QN as follows: 

  A  B <=>def  A  C(B) and B   C(A) 

      iff  p  A $q  B s.t. p  q and  q  B $p  A s.t. p  q  
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QM QN 

A C(A) 

 

C(C(A)) 

q p 
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Bisimulation 

 Def B.1: A relation  is called a bisimulation if 

 1. SM  SN 

 2. if p  q then a  S, dM(p,a)  dN(q,a) 

 3. if p  q then p  FM iff  q  FN. 

 M and N are bisimilar if there exists a bisimulation between 

them. 

 For each NFA M, the bisimilar class of M is the family of all 

NFAs that are bisimilar to M. 

 Properties of bisimulaions: 

1.Bisimulation is symmetric: if   is a bisimulation b/t M and 

N, then its reverse {(q,p)|pq} is a bisimulation b/t N and M. 

2.Bisimulation is transitive: M 1 N and N 2 P => M 1 2 P 

3.The union of  any nonempty family of bisimulation b/t M 

and N is a bisimulation b/t M and N. 



The Myhill-Nerode theorem 

  Transparency No. 10-20 

Properties of bisimulations 

Pf: 1,2: direct from the definition. 

 (3): Let {i | i  I } be a nonempty indexed set of bisimulations b/t 
M and N.  Define  =def Ui  I  i. 

 Thus p  q  means  $i  I p  i q. 

1. Since I is not empty, SM  i  SN for some i  I, hence SM  SN  

2. If p  q  => $i  I p  i q => dM(p,a)  i dN(q,a) => dM(p,a)  dN(q,a)  

3. If p  q  => p  i q for some i => (p  FM <=> q  FN ) 

Hence  is a bisimulation b/t M and N. 

Lem B.3:  : a bisimulation b/t M and N. If A  B, then for all x in 
S*, D(A,x)  D (B,x). 

pf: by induction on |x|. Basis: 1. x = e  => D(A,e) = A  B = D(B,e). 

 2. x = a  : since A  C(B), if p  A => $q  B with p  q. => dM(p,a) 
 C(dN(q,a))  C (DN(B,a)). =>   DM (A,a) = Up  A dM (p,a)  
C(DN(B,a)).  

   By a symmetric argument, DN(B,a)  C(DM(A,a)).  

   So DM (A,a)  DN(B,a)).  
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Bisimilar automata accept the same set. 

3. Ind. case: assume DM(A,x)  DN(B,x). Then 

 DM(A,xa) = DM(DM(A,x), a)  DN(DN(B,x),a) = DN(B,xa).  Q.E.D. 

 

Theorem B.4: Bisimilar automata accept the same set. 

Pf: assume  : a bisimulation b/t two NFAs M and N. 

   Since SM  SN  => DM (SM,x)  DN (SN,x) for all x. 

   Hence for all x, x  L(M) <=> DM(SM, x)  FM  {} <=> DN(SN,x)  

FN  {}  <=> x  L(N).   Q.E.D. 

 

Def:  : a bisimulation b/t two NFAs M and N 

 The support of  in M is the states of M related by  to some 

state of N, i.e., {p  QM | p  q for some q  QN} = C(QN). 
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Autobisimulation 

Lem B.5: A state of M is in the support of all bisimulations 

involving M iff it is accessible. 

Pf: Let  be any bisimulation b/t M and another FA. 

 By def B.1(1), every start state of M is in the support of . 

 By B.1(2), if p is in the support of , then every state in d(p,a) is 

in the support of . It follows by induction that every 

accessible state is in the support of . 

 Conversely, since the relation B.3 = {(p,p) | p is accessible} is a 

bisimulation from M to M and all inaccessible states of M are 

not in the support of B.3. It follows that no inaccessible state 

is in the support of all bisimulations.   Q.E.D. 

 

Def. B.6: An autobisimulation is a bisimlation b/t an automaton 

and itself. 
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Property of autobisimulations 

Theorem B.7:  Every NFA M has a coarsest autobisimulation  

M , which is an equivalence relation. 

Pf: let B be the set of all autobisimulations on M. 

   B is not empty since the identity relation IM = {(p,p) | p 

in Q } is an autobisimulation. 

 1. let M  be the union of all bisimualtions in B. By Lem 

B.2(3),   M is also a bisimualtion on M and belongs to 

B.   So M is the largest (i.e., coarsest) of all relations 

in B. 

 2. M is ref. since for all state p (p,p)  IM   M . 

 3. M is sym. and tran. by Lem B.2(1,2).  

 4. By 2,3, M  is an equivalence relation on Q. 



The Myhill-Nerode theorem 

  Transparency No. 10-24 

Find minimal NFA bisimilar to a NFA 

 M = (Q,S,d,S,F) : a NFA. 

  Since accessible subautomaton of M is bisimilar to M under 

the bisimulation B.3, we can assume wlog that M has no 

inaccessible states. 

 Let   be M, the maximal autobisimulation on M.  

   for p in Q, let [p] = {q | p   q } be the  -class of p, and  

   let  «  be the relation relating p to its  -class [p], i.e., 

        «  Qx2Q =def  {(p,[p]) | p in Q } 

   for each set of states A  Q, define [A] = {[p] | p in A }. Then 

Lem B.8: For all A,B  Q, 

 1. A  C (B)  iff [A]  [B],   2. A  B iff [A] = [B],    3. A « [A] 

pf:1. A  C(B)  <=>p in A  q in B s.t. p  q  <=> [A]  [B] 

 2. Direct from 1 and the fact that A  B iff A  C(B) and B  C(A)  

  3. p  A => p  [p]  [A], B  [A] => $ p  A with p « [p] = B.                       
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Minimal NFA bisimilar to an NFA (cont’d) 

 Now define M’ = {Q’, S, d’, S’,F’} = M/ where 

 Q’ = [Q] = {[p] | p  Q}, 

 S’ = [S] = {[p] | p  S} ,   F’ = [F ] = {[p] | p  F} and 

 d’([p],a) = [d(p,a)],  

 Note that d’ is well-defined since  

    [p] = [q] => p  q => d(p,a)  d(q,a) => [d(p,a)] = [d(q,a)] 

    => d‘([p],a) = d‘([q],a) 

Lem B.9: The relation « is a bisimulation b/t M and M’. 

pf: 1. By B.8(3): S  [S] = S’. 

      2. If p « [q] => p  q => d(p,a)  d(q,a) 

           => [d(p,a)] = [d(q,a)] => d(p,a) « [d(p,a)] = [d(q,a)]. 

      3. if p  F => [p]  [F] = F’ and  

          if [p]  F’= [F] => $q  F with [q] = [p] => p  q => p  F. 

    By theorem B.4, M and M’ accept the same set. 

 



The Myhill-Nerode theorem 

  Transparency No. 10-26 

Autobisimulation  

Lem B.10: The only autobisimulation on M’ is the identity relation 

=. 

Pf: Let ~ be an autobisimulation of M’. By Lem B.2(1,2), the 

relation « ~ » is a bisimulation from M to itself. 

 1.  Now if there are [p]  [q] (hence not p  q ) with [p] ~ [q] 

=> p « [p] ~ [q] » q => p « ~ » q  => « ~ »  , a contradiction !. 

 On the other hand, if [p] not~ [p] for some [p] => for any [q], 

    [p] not~ [q] (by 1. and the premise) 

 => p not (« ~ » ) q for any q  (p « [p]  [q] » q ) 

 => p is not in the support of « ~ »   

 => p is not accessible,  a contradiction.  
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Quotient automata are minimal FAs 

 Theorem B11: M: an NFA w/t inaccessible states,  : maximal 

autobisimulation on M. Then M’ = M / is the minimal 

automata bisimilar to to M and is unique up to isomorphism. 

pf:  N: any NFA bisimilar to M w/t inaccessible states. 

       N’ = N/ N where N is the maximal autobisimulation on N. 

    => M’ bisimiar to M bisimilar to N bisimiar to N’. 

  Let  be any bisimulation b/t M’ and N’. 

 Under , every state p of M’ has at least on state q of  N’ with p 

 q  and every state q of N’ has exactly one state p of M’ with 

p  q. 

  O/w p  q  -1 p’  p =>   -1 is a non-identity autobisimulation 

on M, a contradiciton!.  

 Hence   is 1-1. Similarly, -1 is 1-1 =>  is 1-1 and onto and 

hence is an  isomorphism b/t M’ and N’.  Q.E.D. 
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Algorithm for computing maximal bisimulation 

 a generalization of that of Lec 14 for finding equivalent states 

of DFAs 

The algorithm: Find maximal bisimulation of two NFAs M and N 

 1. write down a table of all pairs (p,q) of states, initially 

      unmarked 

 2. mark (p,q) if p  FM and q  FN or vice versa. 

 3. repeat until no more change occur: if (p,q) is  

        unmarked and if for some a  S, either 

        $p’  dM(p,a) s.t.  q’  dN(q,a), (p’,q’) is marked, or 

        $q’  dN(q,a) s.t.  p’  dM(p,a), (p’,q’) is marked, 

      then mark (p,q). 

 4. define p  q iff (p,q) are never marked. 

 5. If SM  SN =>  is the maximal bisimulation 

       o/w M and N has no bisimulation. 


