Formal Language and Automata Theory

Chapter 2

Deterministic Finite Automata (DFA)

Transparency No. 2-1

Finite Automata and regular sets (languages)

States and transitions:

Ex: Consider a counter data structure (system):

- unsigned integer counter: pc; { initially pc = 0}
- operations: inc, dec;
- ==> The instantaneous *state* of the system can be identified by the value of the counter. Operations called from outside world will cause *transitions* from states to states and hence change the current state of the system.

Problem: how to describe the system :

Mathematical approach: CS = (S, O, T, s, F) where

- S = The set of all possible states = N
- **O** = the set of all possible [types of] operations
- T = the response of the system on operations at all possible states. (present state, input operation) --> (next state)

Example of a state machine

T can be defined as follows : T: SxO --> S s.t., for all x in S ,

 $\Box \quad T(x, inc) = x + 1 \text{ and } T(x, dec) = x - 1; \{0 - 1 =_{def} 0\}$

- s = 0 is the initial state of the system
- F ⊆ S is a set of distinguished states, each called a final state. (we can use it to, say, determine who can get a prize)
- Graphical representation of CS:
- Note: The system CS is infinite in the sense that S (the set of all possible states) and Transitions (the set of possible transitions) are infinite. A system consists of only finitely many states and transitions is called a *finite-state transition system*. The mathematical tools used to model finite-state transition system are called *finite automata*.
 - examples of state-transition systems: electronic circuits; digital watches, cars, elevators, etc. Transparency No. 2-3

Deterministic Finite automata (the definition)

- a DFA is a structure M = (Q, Σ , δ ,s,F) where
 - \Box Q is a finite set; elements of Σ are called states
 - $\Box\ \Sigma$ is a finite set called the input alphabet
 - □ δ :Qx Σ --> Q is the transition function with the intention that if M is in state q and receive an input a, then it will move to state δ (q,a).

 $\mathfrak{O}e.g$; in CS: $\delta(3, inc) = 4$ and $\delta(3, dec) = 2$.

- **I** s in Q is the start state
- F is a subset of Q; elements of F are called accept or final states.
- To specify a finite automata, we must give all five parts (maybe in some other forms)
- Other possible representations:
 - **[]** [state] transition diagram or [state] transition table

Example and other representations

Ex 3.1: $M_1 = (Q, \Sigma, \delta, s, F)$ where

 $\Box \quad Q=\{0,1,2,3\}, \Sigma=\{a,b\}, s=0, F=\{3\} and \delta is defined by:$

$$\delta(0,a) = 1; \delta(1,a) = 2; \delta(2,a) = \delta(3,a) = 3 \text{ and}$$

$$\Box \quad \delta(q,b) = q \text{ if } q = \{0,1,2,3\}.$$

- problem: Although precise but tedious and not easy to understand (the behavior of) the machine.
- Represent M_1 by a table: ====>
- Represent M_1 by a diagram:

state-transition diagram for M_1 note: the naming of states is not necessary

	a	b
>0	1	0
1	2	1
2	3	2
3F	3	3

Deterministic Finite Automata Strings accepted by DFAs **Operations of M**¹ **on the input 'baabbaab': M1**

0 b 0 a 1 a 2 b 2 b 2 a 3 a 3 b 3 -- execution path

Since M₁ can reach a final state (3) after scanning all input symbols starting from initial state, we say the string 'baabbaab' is accepted by M₁.
 Problem: How to formally define the set of all strings accepted by a DFA ?

The extended transition function Δ

Meaning of the transition function:

q1 -- a --> q2 [or δ(q1,a) = q2] means

if M is in state q1 and the currently scanned symbol (of the input strings is a) then

I. Move right one position on the input string (or remove the currently scanned input symbol)

2. go to state q2. [So M will be in state q2 after using up a)

Now we extend δ to a new function Δ: Q x Σ* --> Q with the intention that : Δ(q1,x) =q2 iff

starting from q1, after using up x the machine will be in state q2. --- Δ is a multi-step version of δ .

Problem: Given a machine M, how to define Δ [according to δ] ? Note: when string x is a symbol (i.e., |x| = 1) then $\Delta(q,x) = \delta(q,x)$. for all state q, so we say Δ is an extension of δ .

Transparency No. 2-7

The extended transition function △ (cont'd)

• Δ can be defined by induction on $|\mathbf{x}|$ as follows:

□ Basis:
$$|x|=0$$
 (i.e., $x = \varepsilon$) ==> $\Delta(q, \varepsilon) = q$ --- (3.1)

 \Box Inductive step: (assume $\Delta(q,x)$ has been defined) then

$$\Box \Delta(\mathbf{q}, \mathbf{xa}) = \delta(\Delta(\mathbf{q}, \mathbf{x}), \mathbf{a}) --- (3.2)$$

- □ ---- To reach the state $\Delta(q,xa)$ from q by using up xa, first use up x (and reach $\Delta(q,x)$) and then go to $\delta((\Delta,qx),a)$ by using up a.
- Exercise: Show as expected that $\Delta(q,a) = \delta(q,a)$ for all a in Σ . pf: $\Delta(q,a) = \Delta(q,\epsilon a) = \delta(\Delta(q,\epsilon),a) = \delta(q,a)$.

Uniqueness of the extended transition funciton

 Note: ∆ is uniquely defined by M, i.e., for every DFA M, there is exactly one function f:QxΣ* --> Q satisfying property (3.1) and (3.2.)

□ --- a direct result of the theorem of recursive definition.

pf: Assume \exists distinct f1 and f2 satisfy (3.1&3.2).

Now let x be any string with least length s.t. $f1(q,x) \neq f2(q,x)$ for some state q.

 2. If x = ya ==> by minimum of |x|, f1(q,y) = f2(q,y), hence f1(q,ya)=δ(f1(q,y),a) = δ(f2(q,y),a) = f2(q,ya), a contradiction.
 Hence f1 = f2. Languages accepted by DFAs

• $M = (Q, \Sigma, \delta, s, F)$: a DFA; x: any string over Σ ;

 Δ : the extended transition function of M.

- x is said to be *accepted* by M if ∆(s,x) ∈ F
 x is said to be *rejected* by M if ∆(s,x) ∉ F.
- 2. The set (or language) accepted by M, denoted L(M), is the set of all strings accepted by M. i.e.,

$$\Box L(M) =_{def} \{ x \in \Sigma^* \mid \Delta(s,x) \in F \}.$$

3. A subset $A \subseteq \Sigma^*$ (i.e., a language over Σ) is said to be *regular* if A is accepted by some finite automaton (i.e., A = L(M) for some DFA M).

Ex: The language accepted by the machine of Ex3.1 is the set $L(M1) = {x \in {a,b}^* | x \text{ contains at least three a's}}$

Another example

Ex 3.2: Let A = {xaaay | x,y ∈ {a,b}*}

= $\{x \in \{a,b\}^* \mid x \text{ contains substring aaa }\}$.

Then baabaaaab \in A and babbabab \notin A.

An Automaton accept A: (diagram form)

More on regular sets (Lecture 4)

• a little harder example:

Let A = { $x \in \{0,1\}^*$ | x represent a multiple of 3 in binary}.

 \square notes: leading 0's permitted; ϵ represents zero.

□ example:

Π

$$\epsilon, 0, 00 => 0;$$
 011,11,... => 3; 110 => 6;

- □ 1001 ==> 9; 1100,.. ==> 12; 1111 => 15; ...
- Problem: design a DFA accepting A.
- sol: For each bit string x, $s(x) = #(x) \mod 3$, where #(x) is the number represented by x. Note: $s: \{0,1\}^* \rightarrow \{0,1,2\}$
 - □ Ex: $s(\epsilon) = 0 \mod 3 = 0$; $s(101) = 5 \mod 3 = 2$;...

1. s(ε) = 0;

 \Box s(x0) and s(x1) can be determined from s(x) as follows:

Deterministic Finite Automata

a little harder example

- Since #(x0) = 2 #(x) $=> s(x0) = #(x0) \mod 3 = 2(#(x) \mod 3) \mod 3$ $= 2s(x) \mod 3$ 0 ==> s(x) can be show as follows: (note: the DFA M defined by the table >0F 0 is also the automata accepting A) 2 1 Exercise: draw the diagram form 2 1 of the machine M accepting A. s(x) s(x0) s(x1)
 - Fact: L(M) = A. (i.e., for all bit string x, x in A iff x is accepted by M)
 - pf: by induction on |x|. Basis: $|x| = 0 \Rightarrow x = \varepsilon$ in A and is accepted by M. Ind. step: x = yc where c in $\{0,1\}$

 $=> \Delta(0, yc) = \delta(\Delta(0, y), c) = \delta(\#(y) \mod 3, c)$

 $(2\#(y) \mod 3 + c) \mod 3 = \#(xc) \mod 3$. QED

Transparency No. 2-13

0

2

Some closure properties of regular sets

Issue: what languages can be accepted by finite automata ?

• Recall the definitions of some language operations:

$$\exists A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

$$\Box A \cap B = \{x \mid x \in A \land x \in B\}$$

 $\Box \quad \mathbf{A} = \Sigma^* - \mathbf{A} = \{ \mathbf{x} \in \Sigma^* \mid \mathbf{x} \notin \mathbf{A} \}$

$$\Box AB = \{xy \mid x \in A \land y \in B\}$$

- $\Box A^* = \{x_1 x_2 \dots x_n \mid n \ge 0 \land x_i \in A \text{ for } 0 \le i \le n\}$
- and more ... ex: $A / B = \{x \mid \exists y \in B \text{ s.t. } xy \in A \}$.
- Problem: If A and B are regular [languages], then which of the above sets are regular as well?

Ans: _____

The product construction

•
$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1), M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$$
: two DFAs
Define a new machine $M_3 = (Q_3, \Sigma, \delta_3, s_3, F_3)$ where
 $\square Q_3 = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$
 $\square s_3 = (s_1, s_2);$
 $\square F_3 = F_1 \times F_2 = \{(q_1, q_2) \mid q_1 \in F_1 \land q_2 \in F_2\}$ and
 $\square \delta_3: Q_3 \times \Sigma \longrightarrow Q_3$ is defined to be
 $\delta_3((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
for all $(q_1, q_2) \in Q$, $a \in \Sigma$.

 The machine M₃, denoted M₁xM₂, is called the *product* of M₁ and M₂. The behavior of M₃ may be viewed as the parallel execution of M₁ and M₂.

• Lem 4.1: For all $x \in \Sigma^*$, $\Delta_3((p,q),x) = (\Delta_1(p,x), \Delta_2(q,x))$. Pf: By induction on the length |x| of x.

Basis: $|\mathbf{x}| = 0$: then $\Delta_3((\mathbf{p},\mathbf{q}),\varepsilon) = (\mathbf{p},\mathbf{q}) = (\Delta_1(\mathbf{p},\varepsilon), \Delta_2(\mathbf{q},\varepsilon))$ Transparency No. 2-15 The product construction (cont'd)

Ind. step: assume the lemma hold for x in Σ^* , we show it holds for xa, where a in Σ .

$$\begin{split} \Delta_3((\mathbf{p},\mathbf{q}),\mathbf{x}\mathbf{a}) &= \delta_3(\Delta_3((\mathbf{p},\mathbf{q}),\mathbf{x}), \mathbf{a}) \\ &= \delta_3((\Delta_1(\mathbf{p},\mathbf{x}), \Delta_2(\mathbf{q},\mathbf{x})), \mathbf{a}) \\ &= (\delta_1(\Delta_1(\mathbf{p},\mathbf{x}),\mathbf{a}), \delta_2(\Delta_2(\mathbf{q},\mathbf{x}),\mathbf{a})) \end{split}$$

= $(\Delta_1(\mathbf{p},\mathbf{xa}), \Delta_2(\mathbf{p},\mathbf{xa}))$ QED

- --- definition of Δ_3
- --- Ind. hyp.
- --- def. of δ_3
- --- def of Δ_1 and Δ_2 .

Theorem 4.2:
$$L(M_3) = L(M_1) \cap L(M_2)$$
.
pf: for all $x \in \Sigma^*$, $x \in L(M_3)$
iff $\Delta_3(s_3,x) \in F_3$ ---- def. of acceptance
iff $\Delta_3((s_1,s_2),x) \in F_3$ ---- def. of s_3
iff $(\Delta_1(s_1,x), \Delta_2(s_2,x)) \in F_3 = F_1xF2$ ---- def. of set product
iff $\Delta_1(s_1,x) \in F_1$ and $\Delta_2(s_2,x) \in F_2$ ---- def. of set product
iff $x \in L(M_1)$ and $x \in L(M_2)$ ---- def. of intersection.

Deterministic Finite Automata

Transparency No. 2-17

Regular languages are closed under U, \cap and ~

Theorem: IF A and B are regular than so are $A \cap B$, $\sim A$ and AUB. pf: (1) A and B are regular $\Rightarrow \exists DFA M_1 and M_2 s.t. L(M_1) = A and L(M_2) = B -- def. of RL$ $= L(M_1 \times M_2) = L(M_1) \cap L(M_2) = A \cap B$ --- Theorem 4.2 ==> $A \cap B$ is regular. -- def. of RL. (2) Let M = (Q, Σ , δ ,s,F) be the machine s.t. L(M) = A. Define M' = (Q, Σ , δ ,s,F') where F' = \sim F = {q \in Q | q \notin F}. Now for all x in Σ^* , x \in L(M') $\langle = \rangle \Delta(s,x) \in F' = \langle F \rangle$ --- def. of acceptance <=> ∆(s,x) ∉ F --- def of ~F $\langle = \rangle x \notin L(M)$ iff $x \notin A$. -- def. of acceptance Hence ~A is accepted by L(M') and is regular ! (3). Note that AUB = \sim (\sim A $\cap \sim$ B). Hence the fact that A and B are regular implies $\sim A$, $\sim B$, ($\sim A \cap \sim B$) and $\sim (\sim A \cap \sim B) = AUB$ are regular too.