Chapter 2

Deterministic Finite Automata (DFA)

Finite Automata and regular sets (languages)

- States and transitions:

Ex: Consider a counter data structure (system):
[unsigned integer counter: pc; \{ initially pc = 0\}
\square operations: inc, dec;
==> The instantaneous state of the system can be identified by the value of the counter. Operations called from outside world will cause transitions from states to states and hence change the current state of the system.
Problem: how to describe the system :
Mathematical approach: CS = (S, O, T, s, F) where
$\mathrm{S}=$ The set of all possible states $=\mathbf{N}$
$\mathrm{O}=$ the set of all possible [types of] operations
$\mathrm{T}=$ the response of the system on operations at all possible states. (present state, input operation) --> (next state)

Example of a state machine

T can be defined as follows: T: SxO --> S s.t., for all x in S,
($T(x$, inc $)=x+1$ and $T(x, d e c)=x-1 ;\left\{0-1==_{\text {def }} 0\right\}$

- $s=0$ is the initial state of the system
- $F \subseteq S$ is a set of distinguished states, each called a final state. (we can use it to, say, determine who can get a prize)
- Graphical representation of CS:
- Note: The system CS is infinite in the sense that S (the set of all possible states) and Transitions (the set of possible transitions) are infinite. A system consists of only finitely many states and transitions is called a finite-state transition system. The mathematical tools used to model finite-state transition system are called finite automata.
- examples of state-transition systems: electronic circuits; digital watches, cars, elevators, etc.

Deterministic Finite automata (the definition)

- a DFA is a structure $M=(Q, \Sigma, \delta, s, F)$ where
$\square Q$ is a finite set; elements of Σ are called states
$\square \Sigma$ is a finite set called the input alphabet
$\square \delta: Q \times \Sigma$--> Q is the transition function with the intention that if M is in state q and receive an input a, then it will move to state $\delta(q, a)$.
De.g; in CS: $\delta(3, \mathrm{inc})=4$ and $\delta(3, \mathrm{dec})=2$.
C s in Q is the start state
\square F is a subset of Q; elements of F are called accept or final states.
- To specify a finite automata, we must give all five parts (maybe in some other forms)
- Other possible representations:
([state] transition diagram or [state] transition table

Example and other representations

Ex 3.1: $M_{1}=(Q, \Sigma, \delta, s, F)$ where
($Q=\{0,1,2,3\}, \Sigma=\{a, b\}, s=0, F=\{3\}$ and δ is defined by:
] $\delta(0, a)=1 ; \delta(1, a)=2 ; \delta(2, a)=\delta(3, a)=3$ and
] $\delta(q, b)=q$ if $q=\{0,1,2,3\}$.
— problem: Although precise but tedious and not easy to understand (the behavior of) the machine.

- Represent M_{1} by a table: =====>
- Represent M_{1} by a diagram:

state-transition diagram for M_{1}

	\mathbf{a}	\mathbf{b}
$>\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$
$\mathbf{3 F}$	$\mathbf{3}$	$\mathbf{3}$

Strings accepted by DFAs

- Operations of M_{1} on the input 'baabbaab':

0 b 0 a 1 a 2 b 2 b 2 a 3 a 3 b 3 -- execution path

- Since \mathbf{M}_{1} can reach a final state (3) after scanning all input symbols starting from initial state, we say the string 'baabbaab' is accepted by \mathbf{M}_{1}.
Problem: How to formally define the set of all strings accepted by a DFA ?
- Meaning of the transition function:

$$
q 1 \text {-- a --> q2 }[\text { or } \delta(q 1, a)=q 2] \text { means }
$$

if M is in state $q 1$ and the currently scanned symbol (of the input strings is a) then
\square 1. Move right one position on the input string (or remove the currently scanned input symbol)

- 2. go to state $\mathbf{q 2}$. [So M will be in state $\mathbf{q 2}$ after using up a)
- Now we extend δ to a new function Δ : $\mathbf{Q} \times \Sigma^{*}$--> \mathbf{Q} with the intention that: $\Delta(\mathrm{q} 1, \mathrm{x})=\mathrm{q} 2$ iff
starting from q1, after using up x the machine will be in state q2. --- Δ is a multi-step version of δ.
Problem: Given a machine M, how to define Δ [according to δ] ? Note: when string \mathbf{x} is a symbol (i.e., $|\mathbf{x}|=1$) then $\Delta(\mathbf{q}, \mathbf{x})=\delta(\mathbf{q}, \mathbf{x})$. for all state q, so we say Δ is an extension of δ.

The extended transition function Δ (cont'd)

- Δ can be defined by induction on $|x|$ as follows:
— Basis: $|x|=0$ (i.e., $x=\varepsilon$) $==>\Delta(q, \varepsilon)=q \quad--(3.1)$
\square Inductive step: (assume $\Delta(q, x)$ has been defined) then
— $\Delta(q, x a)=\delta(\Delta(q, x), a) \quad--(3.2)$
— --- To reach the state $\Delta(q, x a)$ from q by using up xa, first use up x (and reach $\Delta(q, x)$) and then go to $\delta((\Delta, q x)$,a) by using up a.
- Exercise: Show as expected that $\Delta(q, a)=\delta(q, a)$ for all a in Σ. pf: $\Delta(q, a)=\Delta(q, \varepsilon a)=\delta(\Delta(q, \varepsilon), a)=\delta(q, a)$.

Uniqueness of the extended transition funciton

- Note: Δ is uniquely defined by M, i.e., for every DFA M, there is exactly one function $f: Q x \Sigma^{*}-->Q$ satisfying property (3.1) and (3.2.)
[--- a direct result of the theorem of recursive definition.
pf: Assume \exists distinct f1 and f2 satisfy (3.1\&3.2).
Now let x be any string with least length s.t. $f 1(q, x) \neq f 2(q, x)$ for some state q.
$==>1 . x \neq \varepsilon$ (why ?)

2. If $x=y a==>$ by minimum of $|x|, f 1(q, y)=f 2(q, y)$, hence $f 1(q, y a)=\delta(f 1(q, y), a)=\delta(f 2(q, y), a)=f 2(q, y a)$, a contradiction. Hence $\mathbf{f 1}=\mathbf{f 2}$.

- $M=(Q, \Sigma, \delta, s, F):$ a DFA; $\quad x$: any string over Σ;
Δ : the extended transition function of M.

1. x is said to be accepted by M if $\Delta(s, x) \in F$ x is said to be rejected by M if $\Delta(s, x) \notin F$.
2. The set (or language) accepted by M, denoted $L(M)$, is the set of all strings accepted by M. i.e.,
$\square L(M)={ }_{\text {def }}\left\{x \in \Sigma^{*} \mid \Delta(s, x) \in F\right\}$.
3. A subset $A \subseteq \Sigma^{*}$ (i.e., a language over Σ) is said to be regular if A is accepted by some finite automaton (i.e., $A=L(M)$ for some DFA M).

Ex: The language accepted by the machine of Ex3.1 is the set $L(M 1)=\left\{x \in\{a, b\}^{*} \mid x\right.$ contains at least three $\left.a ' s\right\}$

Another example

Ex 3.2: Let $A=\left\{x a a a y \mid x, y \in\{a, b\}^{*}\right\}$

$$
=\left\{x \in\{a, b\}^{*} \mid x \text { contains substring aaa }\right\} .
$$

Then baabaaaab $\in A$ and babbabab $\notin A$.
An Automaton accept A: (diagram form)

Table form:

		a
-1	b	
>0	1	0
1	2	0
2	3	0
$3 F$	3	3

More on regular sets (Lecture 4)

- a little harder example:

Let $A=\left\{x \in\{0,1\}^{*} \mid x\right.$ represent a multiple of 3 in binary $\}$.
\square notes: leading 0 's permitted; ε represents zero.
[example:
[$\varepsilon, 0,00==>0 ; \quad 011,11, . .==>3 ; \quad 110==>6 ;$
ㅁ $1001==>9$ 9;
1100,.. ==> 12; 1111 => 15; ...

- Problem: design a DFA accepting A.
sol: For each bit string $x, s(x)=\#(x) \bmod 3$, where $\#(x)$ is the number represented by x. Note: s: $\{0,1\}^{*} \rightarrow\{0,1,2\}$
$\square E x: s(\varepsilon)=0 \bmod 3=0 ; s(101)=5 \bmod 3=2 ; \ldots$
$\square==>A=\{x \mid s(x)=0\}$
\square 1. $s(\varepsilon)=0$;
[$s(x 0)$ and $s(x 1)$ can be determined from $s(x)$ as follows:

a little harder example

- Since \#(x0) = 2 \#(x)
$==>s(x 0)=\#(x 0) \bmod 3=2(\#(x) \bmod 3) \bmod 3$
$=2 \mathrm{~s}(\mathrm{x}) \bmod 3$
==> $s(x)$ can be show as follows: (note: the DFA M defined by the table is also the automata accepting A)
- Exercise: draw the diagram form of the machine M accepting A.
- Fact: $L(M)=A$. (i.e., for all bit
 string x, x in A iff x is accepted by M)
pf: by induction on $|x|$. Basis: $|x|=0=>x=\varepsilon$ in A and is accepted by M. Ind. step: $x=y c$ where c in $\{0,1\}$
$=>\Delta(0, y c)=\delta(\Delta(0, y), c)=\delta(\#(y) \bmod 3, c)$
$=(2 \#(\mathrm{y}) \bmod 3+\mathrm{c}) \bmod 3=\#(\mathrm{xc}) \bmod 3$. QED $_{\text {Transparency No. 2-13 }}$

Some closure properties of regular sets

Issue: what languages can be accepted by finite automata?

- Recall the definitions of some language operations:
($A \cup B=\{x \mid x \in A$ or $x \in B\}$.
$\square A \cap B=\{x \mid x \in A / x \in B\}$
$\square \sim A=\Sigma^{*}-A=\left\{x \in \Sigma^{*} \mid x \notin A\right\}$
($A B=\{x y \mid x \in A \wedge y \in B\}$
$\square A^{*}=\left\{x_{1} x_{2} \ldots x_{n} \mid n \geq 0 \wedge x_{i} \in A\right.$ for $\left.0 \leq i \leq n\right\}$
\square and more ... ex: $A / B=\{x \mid \exists y \in B$ s.t. $x y \in A\}$.
- Problem: If A and B are regular [languages], then which of the above sets are regular as well?
Ans: \qquad .
- $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right), M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$: two DFAs

Define a new machine $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, s_{3}, F_{3}\right)$ where
$\square \mathbf{Q}_{3}=\mathbf{Q}_{1} \times \mathbf{Q}_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in \mathbf{Q}_{1}\right.$ and $\left.q_{2} \in \mathbf{Q}_{2}\right\}$
$\square \mathbf{s}_{3}=\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)$;

- $F_{3}=F_{1} x F_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1} \wedge q_{2} \in F_{2}\right\}$ and
$\square \delta_{3}: Q_{3} \times \Sigma$--> Q_{3} is defined to be

$$
\delta_{3}\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

for all $\left(q_{1}, q_{2}\right) \in Q, a \in \Sigma$.

- The machine M_{3}, denoted $M_{1} \times M_{2}$, is called the product of M_{1} and M_{2}. The behavior of M_{3} may be viewed as the parallel execution of M_{1} and M_{2}.
- Lem 4.1: For all $x \in \Sigma^{*}, \Delta_{3}((p, q), x)=\left(\Delta_{1}(p, x), \Delta_{2}(q, x)\right)$.

Pf: By induction on the length $|x|$ of x.
Basis: $|x|=0$: then $\Delta_{3}((p, q), \varepsilon)=(p, q)=\left(\Delta_{1}(p, \varepsilon), \Delta_{2}(q, \varepsilon)\right)_{\text {tranency No. 2-15 }}$

The product construction (cont'd)

Ind. step: assume the lemma hold for x in Σ^{*}, we show it holds for xa, where a in Σ.

$$
\begin{array}{rlrl}
\Delta_{3}((p, q), x a)=\delta_{3}\left(\Delta_{3}((p, q), x), a\right) & & \text {--- definition of } \Delta_{3} \\
& =\delta_{3}\left(\left(\Delta_{1}(p, x), \Delta_{2}(q, x)\right), a\right) & & \text {--- Ind. hyp. } \\
& =\left(\delta_{1}\left(\Delta_{1}(p, x), a\right), \delta_{2}\left(\Delta_{2}(q, x), a\right)\right. & & \text {--- def. of } \delta_{3} \\
& =\left(\Delta_{1}(p, x a), \Delta_{2}(p, x a)\right) \quad \text { QED } & & \text {--- def of } \Delta_{1} \text { and } \Delta_{2} .
\end{array}
$$

Theorem 4.2: $L\left(M_{3}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$. pf: for all $x \in \Sigma^{*}, x \in L\left(M_{3}\right)$
iff $\Delta_{3}\left(s_{3}, x\right) \in F_{3}$
iff $\Delta_{3}\left(\left(s_{1}, s_{2}\right), x\right) \in F_{3}$
iff $\left(\Delta_{1}\left(s_{1}, x\right), \Delta_{2}\left(s_{2}, x\right)\right) \in F_{3}=F_{1} x F 2$
iff $\Delta_{1}\left(s_{1}, x\right) \in F_{1}$ and $\Delta_{2}\left(s_{2}, x\right) \in F_{2}$
iff $x \in L\left(M_{1}\right)$ and $x \in L\left(M_{2}\right)$
iff $x \in L\left(M_{1}\right) \cap L\left(M_{2}\right)$. QED
--- def. of acceptance
--- def. of s_{3}
--- def. of F_{3}
--- def. of set product
--- def. of acceptance
--- def. of intersection.

Regular languages are closed under \mathbf{U}, \cap and \sim

Theorem: IF A and B are regular than so are $A \cap B, \sim A$ and $A U B$. pf: (1) A and B are regular
$\Rightarrow \exists$ DFA M_{1} and M_{2} s.t. $L\left(M_{1}\right)=A$ and $L\left(M_{2}\right)=B$-- def. of RL
$=>L\left(M_{1} \times M_{2}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)=A \cap B$--- Theorem 4.2
$==>A \cap B$ is regular. -- def. of RL.
(2) Let $M=(Q, \Sigma, \delta, s, F)$ be the machine s.t. $L(M)=A$.

Define $M^{\prime}=\left(\mathbf{Q}, \Sigma, \delta, s, F^{\prime}\right)$ where $F^{\prime}=\sim F=\{q \in Q \mid q \notin F\}$.
Now for all x in $\Sigma^{*}, x \in L\left(M^{\prime}\right)$
$<=>\Delta(s, x) \in F^{\prime}=\sim F \quad$--- def. of acceptance
$<=>\Delta(s, x) \notin F \quad$--- def of $\sim F$
$<=>x \notin L(M)$ iff $x \notin A$. -- def. of acceptance
Hence $\sim A$ is accepted by $L\left(M^{\prime}\right)$ and is regular !
(3). Note that $A U B=\sim(\sim A \cap \sim B)$. Hence the fact that A and B are regular implies $\sim A, \sim B,(\sim A \cap \sim B)$ and $\sim(\sim A \cap \sim B)=A U B$ are regular too.

