Chapter 3

Nondeterministic Finite Automata (NFA)

- An important notions(or abstraction) in computer science
- refer to situations in which the next state of a computation is not uniquely determined by the current state.
\square Ex: find a program to compute max(x, y):
(pr1: case $x \geq y=>$ print x;
$\square \quad y \geq x=>$ print y
- endcase;
- Then which branch will be executed when $x=y$?
[==> don't care nondeterminism
— Pr2: do-one-of \{
— \{if $x<y$ fail; print $x\}$,
— $\quad\{i f y<x$ fail, print $y\}\}$.
[==>The program is powerful in that it will never choose branches that finally lead to 'fail' -- an unrealistic model.
[==> don't know nondeterminism.
- a nondeterministic sorting algorithm:
- nondet-sort(A, n)
\square 1. for $\mathrm{i}=1$ to n do
(2. nondeterministically let k := one of $\{i, \ldots, n\}$;
[3. exchange $A[i]$ and $A[k]$
\square 4. endfor
[5 for $i=1$ to $n-1$ do if $A[i]>A[i+1]$ then fail;
© 6. return(A).
\square Notes: 1. Step 2 is magic in that it may produce many possible outcomes. However all incorrect results will be filtered out at step 5.
\square 2. The program run in time NTIME O(n)
— cf: $O(n \lg n$) is required for all sequential machines.
- Causes of nodeterminism in real life:
\square incomplete information about the state
\square external forces affecting the course of the computation
- ex: the behavior of a process in a distributed system
- Nondeterministic programs cannot be executed directly but can be simulated by real machine.
- Nondeterminism can be used as a tool for the specification of problem solutions.
- an important tool in the design of efficient algorithms
\square There are many problems with efficient nondeterministic algorithm but no known efficient deterministic one.
\square the open problem NP = P ?
- How to make DFAs become nondeterministic?
==> allow multiple transitions for each state-input-symbol pair
$\equiv=>$ modify the transition function δ.
- A NFA is a five-tuple $N=(Q, \Sigma, \delta, S, F)$ where everything is the same as in a DFA, except:
$\square S \subseteq Q$ is a set of starting states, instead of a single state.
$\square \delta$ is the transition function $\delta: Q \times \Sigma->2^{Q}$. For each state p and symbol $a, \delta(p, a)$ is the set of all states that N is allowed to move from p in one step under input symbol a.
— diagrammatic notation: p--a--> q

$$
\begin{aligned}
& \text { agrammatic notation: } p \text {--a--> } q \\
& \text { Note } \delta(p, a) \text { can be the empty set }
\end{aligned} \quad p \xrightarrow{a} q
$$

- The extended transition function Δ (multi-step version of δ) for NFA can be defined analogously to that of DFAs:
$\Delta: 2^{Q} \times \Sigma^{*}->2^{Q}$ is defined inductively as follows:

1. Basis: $\Delta(A, \varepsilon)=$ _A__ for every set of states $A(6.1)$
2. Ind. case: $\Delta(A, x a)=\cup_{q \in \Delta(A, x a)} \delta(q, a)$ for all $x \in \Sigma^{*}, a \in \Sigma$ (6.2) Note: Intuitively $q \in \Delta(A, x)$ means q can be reached from some state of A after scanning input string x.

- Note: Like DFAs, the extended transition function Δ on a NFA \mathbf{N} is uniquely determined by \mathbf{N}.
— pf: left as an exercise.
- $\mathbf{N}=(\mathbf{Q}, \Sigma, \delta, S, F):$ a NFA; $\quad x$: any string over Σ;
Δ : the extended transition function of N.

1. x is said to be accepted by N if $\Delta(S, x) \cap F \neq\{ \}$
\square i.e., x is accepted if there is an accept state $q \in F$ such that q is reachable from a start state under input string x (i.e., $q \in \Delta(S, x)$)
2. The set (or language) accepted by N, denoted $L(N)$, is the set of all strings accepted by N. i.e.,
$\square L(N)={ }_{\text {def }}\left\{x \in \Sigma^{*} \mid N\right.$ accepts $\left.x\right\}$.

- Two finite automata (FAs, no matter deterministic or nondeterministic) M and N are said to be equivalent if $L(M)=$ $\mathrm{L}(\mathrm{N})$.
- Under such definition, every DFA $M=(Q, \Sigma, \delta, \mathbf{s}, F)$ is equivalent to an NFA $N=\left(Q, \Sigma, \delta^{\prime},\{s\}, F\right)$ where
$\square \delta^{\prime}(p, a)=\{\delta(p, a)\}$ for every state p and input a.
- Problem: Does the converse hold as well ?
\square i.e. For every NFA N there is a DFA M s.t. $L(M)=L(N)$.
— Ans: \qquad

Ex: Find a NFA accepting $A=\left\{x \in\{0,1\}^{*} \mid\right.$ the fifth symbol counted from the right is 1$\}=\{010000,11111, \ldots\}$.
Sol: 1. (in diagram form)

2: tabular form:
3. tuple form: $(Q, \Sigma, \delta, S, F)=(\ldots, \ldots, \ldots, \ldots)$,$) .$

- Note: there are many possible computations on the input string: 010101, some of which reach the (only) final state (accepted or successful computation), some of which do not (fail).
- Since there exists an accepted computation, by definition, the string is accepted by the machine

Some properties about the extended transition function Δ

- Lem 6.1: $\Delta(A, x y)=\Delta(\Delta(A, x), y)$.
- pf: by induciton on |y|:

$$
\begin{align*}
& \text { 1. } \left\lvert\, \begin{array}{rlrl}
|y|=0 & =>\Delta(A, x \varepsilon)=\Delta(A, x)=\Delta(\Delta(A, x), \varepsilon) & --(6.1) . \\
\text { 2. } y=z c & =>\Delta(A, x z c)=U_{q \in \Delta(A, x z)} \delta(q, C) & --(6.2) \\
& =U_{q \in \Delta(\Delta(A, x), z)} \delta(q, c) & & - \text { ind. hyp. } \\
& =\Delta(\Delta(A, x), z c) & & --(6.2)
\end{array}\right.
\end{align*}
$$

- Lem 6.2Δ commutes with set union:
- i.e., $\Delta\left(U_{i \in I} A_{i}, x\right)=U_{i \in I} \Delta\left(A_{i}, x\right)$. in particular, $\Delta(A, x)=U_{p \in A}$ $\Delta(\{p\}, x)$
- pf: by ind. on $|x|$. Let $B=U_{i \in I} A_{i}$

1. $|x|=0 \Rightarrow \Delta\left(U_{i \in I} A_{i}, \varepsilon\right)=U_{i \in I} A_{i}=U_{i \in I} \Delta\left(A_{i}, \varepsilon\right)-(6.1)$
2. $x=$ ya $\Rightarrow \Delta\left(U_{i \in I} A_{i}, y a\right)=U_{p \in \Delta(B, y)} \delta(p, a) \quad-$ (6.2)
$=U_{p \in\left(U_{i \in I} \Delta(A i, y)\right)} \delta(p, a)--$ ind. hyp. $=U_{i \in I} U_{p \in \Delta(A i, x)} \delta(p, a)$-- set theory $=U_{i \in I} \Delta\left(A_{i}, y a\right) \quad$ (6.2)

- $\mathbf{N}=\left(Q_{N}, \Sigma, \delta_{N}, S_{N}, F_{N}\right)$: a NFA.
- $M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)\left(\right.$ denoted $\left.2^{N}\right)$: a DFA where
$\square Q_{M}=2 Q_{N}$
$\square \delta_{M}(A, a)=\Delta_{N}(A, a) \quad\left(=U_{q \in A} \delta_{N}(q, a)\right)$ for every $A \subseteq Q_{N}$.
$\square S_{M}=S_{N}$ and
$\square F_{M}=\left\{A \subseteq Q_{N} \mid A \cap F_{N} \neq\{ \}\right\}$.
\square note: States of M are subsets of states of N.
- Lem 6.3: for any $A \subseteq Q_{N}$. and x in $\Sigma^{*}, \Delta_{M}(A, x)=\Delta_{N}(A, x)$. pf: by ind on $|x|$. if $x=\varepsilon=>\Delta_{M}(A, \varepsilon)=A=\Delta_{N}(A, \varepsilon)$. -(def) if $x=y a=>\Delta_{M}(A, y a)=\delta_{M}\left(\Delta_{M}(A, y), a\right) \quad-\quad(d e f)=\delta_{M}\left(\Delta_{N}(A, y), a\right)-$ ind. hyp. $=\Delta_{N}\left(\Delta_{N}(A, y), a\right)-$ def of $\delta_{M}=\Delta_{N}(A, y a)$-- lem 6.1
Theorem 6.4: M and N accept the same set.
pf: $x \in L(M)$ iff $\Delta_{M}\left(s_{M}, x\right) \in F_{M}$ iff $\Delta_{N}\left(S_{N}, x\right) \cap F_{N} \neq\{ \}$ iff $x \in L(N)$.

1. NFA N accepting $A=\left\{x \in\{0,1\}^{*} \mid\right.$ the second symbol from the right is 1$\}=\left\{x 1 a \mid x \in\{0,1\}^{*}\right.$ and $\left.a \in\{0,1\}\right\}$.
sol:

2. DFA M equivalent to \mathbf{N} is given as :
3. some states of M are redundant in the sense that they are never reachable

from the start state and hence can be removed from the machine w/o affecting the languages accepted.

4. Copy the transition table (for reference)
5. add Row(S) to table,
/* where S is the set of start states */
6. $\mathrm{ToDO}=\{\mathrm{X} \mid \mathrm{X}$ in $\operatorname{Row}(\mathrm{S})$.tail $\}-\{\mathrm{S}\}$

$\{p\}$	$\{p\}$	$\{p, q\}$
$\{p, q\}$	$\{p, r\}$	$\{p, q, r\}$
$\{p, r\} F$	$\{p\}$	$\{p, q\}$
$\{q, r\}$	$\{r\}$	$\{r\}$
$\{p, q, r\} F$	$\{p, r\}$	$\{p, q, r\}$

3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.3 for(T in Row(S1).tail) \{ if(Itable.contains(T))
D = D U $\{T\}$;

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$

More example (step 0)

0. Copy the transition table
(for reference)

1. add Row(S) to table,
/* where S is the set of start states */
2. ToDO $=\{X \mid X$ in Row(S).tail $\}-\{S\}$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.2 for(T in Row(S1).tail) \{
if(Itable.contains(T))
D = D U \{T\} ;

More example (step 1)
Nondeterministic Finite Automata

NFA:

0. Copy the transition table (for reference)

1. add Row(S) to table,
/* where S is the set of start states */

- $\operatorname{row}(S)=\operatorname{row}(\{p, t\})=\operatorname{row}(p) \cup \operatorname{row}(t)$

2. $\operatorname{ToDO}=\{X \mid X$ in Row(S).tail $\}-\{S\}$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.2 for(T in Row(S1).tail) \{
if(!table.contains(T))
D = D U \{T\} ;

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$

Nondeterministic Finite
NFA: 0,1 $\bigcirc^{0,1} 00 \quad 1$

p q
0 . Copy the transition table (for reference)

1. add Row(S) to table,

Automata

More example (step 3.1,3.2)
Nondeterministic Finite
Automata

/* where S is the set of start states */
2. $\operatorname{ToDO}=\{X \mid X$ in $\operatorname{Row}(S) . t a i l l\}-\{S\} \quad \bullet \operatorname{row}(\{p, t, r\})=\operatorname{row}(p) \cup \operatorname{row}(t) \cup \operatorname{row}(r)$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.3 for(T in Row(S1).tail) \{ if(!table.contains(T)) $\mathrm{D}=\mathrm{D} \mathbf{U}\{\mathrm{T}\}$;

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$

More example (step 3.3)
Nondeterministic Finite
Automata

/* where S is the set of start states */
2. $\operatorname{ToDO}=\{X \mid X$ in Row(S).tail $\}-\{S\}$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.3 for(T in Row(S1).tail) \{
if(!table.contains(T))
D = D U \{T\};

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$

More example (step 3.1 \&3.2)
Nondeterministic Finite
Automata

/* where S is the set of start states */
2. $\operatorname{ToDO}=\{X \mid X$ in $\operatorname{Row}(S)$.tail $\}-\{S\}$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.3 for(T in Row(S1).tail) \{
if(!table.contains(T))
D = D U \{T\};

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$

More example (step 3.3)
Nondeterministic Finite Automata

2. $\operatorname{ToDO}=\{X \mid X$ in $\operatorname{Row}(S)$.tail $\}-\{S\}$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.3 for(T in Row(S1).tail) \{ if(!table.contains(T))
D = D U \{T\};

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$

More example (step 3.1\&2)

2. $\operatorname{ToDO}=\{X \mid X$ in Row(S).tail $\}-\{S\}$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.3 for(T in Row(S1).tail) \{
if(Itable.contains(T))
$\mathrm{D}=\mathrm{D} \mathbf{U}\{\mathrm{T}\}$;

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$

More example (step 3.3)
Nondeterministic Finite
Automata

2. $\operatorname{ToDO}=\{X \mid X$ in Row(S).tail $\}-\{S\}$
3. While (ToDO != \{\}) \{
3.1 S1 = ToDo.pop() ; // remove any element from D.
3.2 add(Row(S1)) to table
3.3 for(T in Row(S1).tail) \{ if(!table.contains(T))
$D=D U\{T\}$;

- Suppose p is a state and T is a set of states, then
$\operatorname{Row}(p)=(\{p\}, \delta(p, 0), \delta(p, 1))$
$\operatorname{Row}(T)=\cup_{p \in T} \operatorname{row}(p)=\left(T, \cup_{p \in T} \delta(p, 0), \cup_{\pi \in T} \delta(p, 1)\right)$
- if $r=(A, B, C)$ is a row, then r.tail $=\{B, C\}$
- Another extension of FAs, useful but adds no more power.
- An ε-transition is a transition with label ε, a label standing for the empty string ε.
- The FA can take such a

$$
\mathrm{p} \stackrel{\varepsilon}{\boldsymbol{\varepsilon}} \mathrm{q}
$$

transition anytime w/o reading an input symbol.
Ex 6.5 : The set accepted by the FA is $\{b, b b, b b b\}$.

Ex 6.6 : A NFA- ε accepting the set $\left\{x \in\{a\}^{*}| | x \mid\right.$ is dividable by 3 or 5 \}.

- real advantage of ε-transition:
\square convenient for specification

\square add no extra power
- $\mathbf{N}=(\mathbf{Q}, \Sigma, \delta, S, F):$ a NFA- ε, where
$\square Q, \Sigma, S$ and F are the same as NFA,
$\square \delta: Q \times(\Sigma U\{\varepsilon\})->2^{Q}$.
- The set Eclosure(A) is the set of ref. and transitive closure of the ε-transition of $A=$
$\left\{q \in Q \mid \exists \varepsilon\right.$-path $p-p_{1}-p_{2} \ldots-p_{n}$ with $p \in A$ and $\left.p_{n}=q\right\}$

Note: Eclosure(A) (abbreviated as EC(A)) = EC(EC(A)).

- The multistep version of δ is modified as follows:
$\square \Delta: 2^{\mathrm{Q}} \times \Sigma^{*} \rightarrow 2^{\mathrm{Q}}$ where, for all $\mathrm{A} \subseteq \mathbf{Q}, \mathrm{y} \in \Sigma^{*}, \mathrm{a} \in \mathrm{A}$
$\square \Delta(A, \varepsilon)=$ Eclosure (A)
$\square \Delta(A, y a)=U_{p \in \Delta(A, y)}$ Eclosure($\left.\delta(p, a)\right)$
- $L(N)=\{x \mid \Delta(S, x) \cap F \neq\{ \}\} / / T h e$ language accepted by N

Eclosure (A) is the set of states reachable from states of A without consuming any input symbols, (i.e., $q \in E c l o s u r e(A)$ iff $\exists p \in A$ s.t. $q \in \Delta\left(p, \varepsilon^{k}\right)$ for some $\left.k \geq 0\right)$.

- Eclosure(A) can be computed as follows:

1. Result $=\mathrm{A}$;
2. add all states in A to a queue //or stack!
3. while(! queue.empty()) \{
4. $s=$ queue.remove ();
5. for each $q \in \delta(s, \varepsilon)$ do
6. if (q£Result) \{ Result = Result $U\{q\}$;
7.

queue. add (q)
8. return Result

Note: We can precompute the reflexive\&transitive closure matrix T* of the ε-transition matrix T of the NFA, and use the result to get Eclosure $(A)=\left\{q \mid \exists p \in A\right.$ s.t. $\left.T^{*}(p, q)=1\right\}$ for every required set set $_{\text {Transparency No. } 3-25}$

2. NFA M with non ε-transitions removed

- $\mathrm{EC}(\{3,8\})$ is computed as follows:
- Intially (Result,Queue) $=(\{3,8\},[3,8])$
- $3 \rightarrow 6=>(\{3,8,6\},[8,6]) \quad 8 \rightarrow\{ \}=>(\{3,8,6\},[6])$
- $6 \rightarrow 1,7=>(\{3,8,6,1\},[1])=>(\{3,8,6,1,7\},[1,7])$
- $1 \rightarrow 2,4=>(\{3,8,6,1,7,2\},[7,2])=>(\{3,8,6,1,7,2,4\},[7,2,4])$
- $7 \rightarrow\}, 2 \rightarrow\{ \}, 4 \rightarrow\{ \}=>(\{3,8,6,1,7,2,4\},[])$

Nondeterministic Finite

The subset construction for NFA- ε

- $N=\left(Q_{N}, \Sigma, \delta_{N}, S_{N}, F_{N}\right)$: a NFA- ε, where $\delta_{N}: Q \times(\Sigma U\{\varepsilon\})->2^{Q}$.
- $M=\left(Q_{M}, \Sigma, \delta_{M}, S_{M}, F_{M}\right)$ (denoted 2^{N}): a DFA where
$\square Q_{M}=\left\{E C(A) \mid A \subseteq Q_{N}\right\}$
$\square \delta_{M}(A, a)=U_{q \in A} E C\left(\delta_{N}(q, a)\right)$ for every $A \in Q_{M}$.
$\square S_{M}=E C\left(S_{N}\right)$ and
$\square F_{M}=\left\{A \in Q_{M} \mid A \cap F_{N} \neq\{ \}\right\}$.
\square note: States of M are subsets of states of N.
- Lem 6.3: For any $A \subseteq Q_{N}$ and $x \in \Sigma^{*}, \Delta_{M}(A, x)=\Delta_{N}(A, x)$.
pf: by ind on $|x|$. if $x=\varepsilon=>\Delta_{M}(A, \varepsilon)=A=E C(A)=\Delta_{N}(A, \varepsilon)$. -(def)
if $x=y a=>\Delta_{M}(A, y a)=\delta_{M}\left(\Delta_{M}(A, y), a\right) \quad-\quad$ (def)

$$
\begin{aligned}
& =\delta_{M}\left(\Delta_{N}(A, y), a\right)-\text { ind. hyp. } \\
& =U_{q \in \Delta N(A, y)} E C\left(\delta_{N}(q, a)\right)-\text { def of } \delta_{M} \\
& =\Delta_{N}(A, y a)-\operatorname{def} \text { of } \Delta_{N}
\end{aligned}
$$

Theorem 6.4: M and N accept the same set.
pf: $x \in L(M)$ iff $\Delta_{M}\left(s_{M}, x\right) \in F_{M}$ iff $\Delta_{N}\left(E C\left(S_{N}\right), x\right) \cap F_{N} \neq\{ \}$ iff $x \in L(N)$

- If A and B are regular languages, then so are $A B$ and A^{*}.
- $M=\left(Q_{1}, \Sigma, \delta_{1}, S_{1}, F_{1}\right), N=\left(Q_{2}, \Sigma, \delta_{2}, S_{2}, F_{2}\right)$: two NFAs
- The machine $M \cdot N$, which firstly executes M and then executes N, can be defined as follows:
- $M \cdot N={ }_{\text {def }}(Q, \Sigma, \delta, S, F)$ where
$\square Q=\operatorname{disjoint~union~of~} Q_{1}$ and Q_{2},
- S = S_{1},
$\square \mathrm{F}=\mathrm{F}_{2}$,
$\square \delta=\delta_{1} U \delta_{2} U\left\{(p, \varepsilon, q) \mid p \in F_{1}\right.$ and $\left.q \in S_{2}\right\}$
- Lemma:
\square 1. $x \in L(M)$ and $y \in L(N)$ imply $x y \in L(M N)$
\square 2. $x \in L(M N)=>\exists y, z$ s.t. $x=y z$ and $y \in L(M)$ and $z \in L(N)$.
- Corollary: $L(M \bullet N)=L(M) \bullet L(N)$
- $M=\left(Q_{1}, \Sigma, \delta_{1}, S_{1}, F_{1}\right):$ a NFA
- The machine M^{*}, which executes M a nondeterministic number of times, can be defined as follows:
- $M^{*}=_{\text {def }}(Q, \Sigma, \delta, S, F)$ where
$\square Q=Q U\{s, f\}$, where s and f are two new states $\notin Q$
$\square S=\{s\}, \quad F=\{f\}$,
$\square \delta=\delta_{1} \cup\{(s, \varepsilon, f)\} \cup\left\{(s, \varepsilon, p) \mid p \in S_{1}\right\} \cup\left\{(q, \varepsilon, s) \mid q \in F_{1}\right\}$

Theorem: $\mathrm{L}\left(\mathrm{M}^{*}\right)=\mathrm{L}(\mathrm{M})^{*}$

