## Chapter 4

## Patterns, Regular Expressions and Finite Automata

- $\Sigma$ : a finite alphabet
- A pattern is a string of symbols representing a set of strings in $\Sigma^{*}$.
- The set of all patterns is defined inductively as follows:

1. atomic patterns:
$\mathrm{a} \in \Sigma, \varepsilon, \varnothing$, \#, @.
2. compound patterns: if $\alpha$ and $\beta$ are patterns, then so are: $\alpha+\beta, \alpha \cap \beta, \alpha^{*}, \alpha^{+}, \sim \alpha$ and $\alpha \cdot \beta$.

- For each pattern $\alpha, L(\alpha)$ is the language represented by $\alpha$ and is defined inductively as follows:

1. $\mathrm{L}(\mathrm{a})=\{\mathrm{a}\}, \mathrm{L}(\varepsilon)=\{\varepsilon\}, \mathrm{L}(\varnothing)=\{ \}, \mathrm{L}(\#)=\Sigma, \mathrm{L}(@)=\Sigma^{*}$.
2. If $L(\alpha)$ and $L(\beta)$ have been defined, then

$$
\begin{aligned}
& L(\alpha+\beta)=L(\alpha) \cup L(\beta), \quad L(\alpha \cap \beta)=L(\alpha) \cap L(\beta) . \\
& L\left(\alpha^{+}\right)=L(\alpha)^{+}, L\left(\alpha^{*}\right)=L(\alpha)^{*}, \\
& L(\sim \alpha)=\Sigma^{*}-L(\alpha), L(\alpha \cdot \beta)=L(\alpha) \cdot L(\beta) .
\end{aligned}
$$

- We say that a string $x$ matches a pattern $\alpha$ iff $x \in L(\alpha)$.
- Some examples:

1. $\Sigma^{*}=\mathrm{L}(@)=\mathrm{L}\left(\right.$ \# $\left.^{*}\right)$
2. $L(x)=\{x\}$ for any $x \in \Sigma^{*}$
3. for any $x_{1}, \ldots, x_{n}$ in $\Sigma^{*}, L\left(x_{1}+x_{2}+\ldots+x_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
4. $\{x \mid x$ contains at least $3 a ' s\}=L(@ a @ a @ a @\}$
5. $\Sigma-\{a\}=\# \cap \sim a$
6. $\{x \mid x$ does not contain $a\}=(\# \cap \sim a)^{*}$
7. $\{x \mid$ every ' $a$ ' in $x$ is followed sometime later by $a$ ' $b$ ' $\}=$ $=\{x \mid$ either no ' $a$ ' in $x$ or $\exists$ ' $b$ ' in $x$ followed no ' $a$ ' $\}$ $=(\# \cap \sim a)^{*}+@ b(\# \cap \sim a)^{*}$

- Some interesting and important questions:

1. How hard is it to determine if a given input string $x$ matches a given pattern a ?
==> efficient algorithm exists
2. Can every set be represented by a pattern?
$==>$ no! the set $\left\{a^{n} b^{n} \mid n>0\right\}$ cannot be represented by any pattern.
3. How to determine if two given patterns $\alpha$ and $\beta$ are equivalent? (I.e., $L(\alpha)=L(\beta))--$ an exercise!
4. Which operations are redundant ?
$\square \varepsilon=\sim\left(\#^{+} \cap @\right)=\varnothing^{*} ; \quad \alpha^{+}=\alpha \cdot \alpha^{*}$
— \# = $a_{1}+a_{2}+\ldots+a_{n}$ if $\Sigma=\left\{a_{1}, . ., a_{n}\right\}$
$\square \alpha+\beta=\sim(\sim \alpha \cap \sim \beta) ; \alpha \cap \beta=\sim(\sim \alpha+\sim \beta)$
$\square$ It can be shown that $\sim$ is redundant.

- Recall that regular expressions are those patterns that can be built from: a $\in \Sigma, \varepsilon, \varnothing,+$, and *.
- Notational conventions:
$\square \alpha+\beta \rho$ means $\alpha+(\beta \rho)$
$\square \alpha+\beta^{*}$ means $\alpha+\left(\beta^{*}\right)$
प $\alpha \beta^{*}$ means $\alpha\left(\beta^{*}\right)$
Theorem 8: Let $\mathrm{A} \subseteq \Sigma^{*}$. Then the followings are equivalent:

1. $A$ is regular (I.e., $A=L(M)$ for some $F A M$ ),
2. $A=L(\alpha)$ for some pattern $\alpha$,
3. $A=L(\beta)$ for some regular expression $\beta$.
pf: Trivial part: (3) => (2).
(2) $=>$ (1) to be proved now!
(1) $=>$ (3) later.
(2) => (1) : Every set represented by a pattern is regular expression \& FAs Pf: By induction on the structure of pattern $\alpha$. Basis: $\alpha$ is atomic: (by construction!)
4. $\alpha=a$ :

5. $\alpha=\varepsilon$ :
6. $\alpha=\varnothing$ :
7. $\alpha=\#$ :
8. $\alpha=@=\#^{*}: \overbrace{}^{a, b, c, \ldots} \varepsilon$


Inductive cases: Let $M_{1}$ and $\mathbf{M}_{2}$ be any FAs accepting $L(\beta)$ and $L(\gamma)$, respectively.
6. $\alpha=\beta \gamma:=>L(\alpha)=L\left(M_{1} \cdot M_{2}\right)$
7. $\alpha=\beta^{*}:=>L(\alpha)=L\left(M_{1}{ }^{*}\right)$
8. $\alpha=\beta+\gamma, \alpha=\sim \beta$ or $\alpha=\beta \cap \gamma$ : By ind. hyp. $\beta$ and $\gamma$ are regular. Hence by closure properties of regular languages, $\alpha$ is regular, too.
9. $\alpha=\beta^{+}=\beta \beta^{*}$ : Similar to case 8.

Patterns, regular

## Some examples patterns \& their equivalent FAs

 expression \& FAs1. $(\mathrm{aaa})^{*}+(\mathrm{a} a \mathrm{aa})^{*}$
$\mathbf{M}=(\mathbf{Q}, \Sigma, \delta, S, F): \mathbf{a} N F A ; \mathbf{X} \subseteq \mathbf{Q}$ : a set of states; $\mu, \nu \in \mathbf{Q}$ : two states

- $\pi^{X}(\mu, v)=_{\text {def }}\left\{y \in \Sigma^{*} \mid \exists\right.$ a path from $\mu$ to $v$ labeled $y$ and all intermediate states $\in \mathbf{X}$ \}.
( Note: L(M) = ?
- $\pi^{x}(\mu, v)$ can be shown to be representable by a regular expr, by induction as follows:
Let $D(\mu, v)=\{a \mid(\mu-a \rightarrow v) \in \delta\}=\left\{a_{1}, \ldots, a_{k}\right\}(k \geq 0)$
$=$ the set of symbols by which we can reach from $\mu$ to $v$, then
Basic case: $\mathrm{X}=\varnothing$ :

$$
\begin{array}{rlrl}
1.1 \text { if } \mu \neq v: \pi^{\varnothing}(\mu, v) & =\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} & =L\left(a_{1}+a_{2}+\ldots+a_{k}\right) \text { if } k>0, \\
& =\{ \} & =L(\varnothing) & \text { if } k=0 .
\end{array}
$$

$$
1.2 \text { if } \mu=v: \pi^{\varnothing}(\mu, v)=\left\{a_{1}, a_{2}, \ldots a_{k}, \varepsilon\right\}=L\left(a_{1}+a_{2}+\ldots+a_{k}+\varepsilon\right) \text { if } k>0
$$

$$
=\{\varepsilon\}
$$

$$
=L(\varepsilon)
$$

$$
\text { if } \mathbf{k}=0
$$

3. For nonempty $X$, let $q$ be any state in $X$, then : $\pi^{\mathrm{X}}(\mu, v)=\pi^{\mathrm{X}-\{q\}}(\mu, v) \mathrm{U} \pi^{\mathrm{X}-\{q\}}(\mu, q)\left(\pi^{\mathrm{X}-\{q\}}(\mathrm{q}, \mathrm{q})\right)^{*} \pi^{\mathrm{X}-\{q\}}(\mathrm{q}, v)$.

By Ind.hyp.(why?), there are regular expressions $\alpha, \beta, \gamma, \rho$ with $\mathrm{L}([\alpha, \beta, \gamma, \rho])=\left[\pi^{X-\{q\}}(\mu, v), \pi^{X-\{q\}}(\mu, q),\left(\pi^{X-\{q\}}(q, q)\right), \pi^{X-\{q\}}(q, v)\right]$

Hence $\pi^{x}(\mu, v)=L(\alpha) \quad U L(\beta) \quad L(\gamma) \quad * L(\rho)$,

$$
=L\left(\alpha+\beta \gamma^{*} \rho\right)
$$

and can be represented as a reg. expr.

- Finally, $L(M)=\{x \mid s-x-->f, s \in S, f \in F\}$
$=\Sigma_{\mathbf{s} \in \mathrm{S}, \mathrm{f} \in \mathrm{F}} \pi^{\mathrm{Q}}(\mathrm{s}, \mathrm{f})$, is representable by a regular expression.


## Example (9.3): M :

- $\mathbf{L}(M)=p^{\{p, q, r\}}(p, p)=p^{\{p, r\}}(p, p)+p^{\{p, r\}}(p, q)\left(p^{\{p, r\}}(q, q)\right) * p^{\{p, r\}}(q, p)$
- $p^{\{p, r\}}(p, p)=$ ?
- $\mathbf{p}^{\{p, r\}}(\mathbf{p}, \mathbf{q})=$ ?
- $\mathbf{p}^{\{p, r\}}(\mathbf{q}, \mathbf{q})=$ ?
- $\mathbf{p}^{\{p, r\}}(\mathbf{q}, \mathrm{p})=$ ?

|  | 0 | 1 |
| :--- | :--- | :--- |
| $>p F$ | $\{p\}$ | $\{q\}$ |
| $q$ | $\{r\}$ | $\}$ |
| $r$ | $\{p\}$ | $\{q\}$ |

Hence $\mathbf{L}(\mathbf{M})=$ ?

- The previous method
$\square$ easy to prove,
$\square$ easy for computer implementation, but
$\square$ hard for human computation.
- The strategy of the new method:
$\square$ reduce the number of states in the target FA and
$\square$ encodes path information by regular expressions on the edges.
$\square$ until there is one or two states : one is the start state and one is the final state.

0 . Assume the machine $M$ has only one start state and one final state. Both may probably be identical.

1. While the exists a third state $p$ that is neither start nor final:
1.1 (Merge edges) For each pair of states ( $q, r$ ) that has more than 1 edges with labels $t_{1}, t_{2}, \ldots t_{n}$, respectively, than merge these edges by a new one with regular expression $t=t_{1}+$ $t_{2} \ldots+t_{n}$.
1.2 (Replace state $p$ by edges; remove state) Let $\left(p_{1}, \alpha_{1}, p\right), \ldots\left(p_{n}, \alpha_{n}, p\right)$ where $p_{j}!=p$ be the collection of all edges in $M$ with $p$ as the destination state, $\left(p, \beta_{1}, q_{1}\right), \ldots,\left(p, \beta_{m}, q_{m}\right)$ where $q j$ != $p$ be the collection of all edges with $p$ as the start state, and
$t$ be the label of the edge from $p$ to itself, Now the sate $p$ together with all its connecting edges can be removed and replaced by a set of $m \times n$ new edges :

$$
\left\{\left(p_{i}, \alpha_{i} t^{*} \beta_{j}, q_{j}\right) \mid i \text { in }[1, n] \text { and } j \text { in }[1, m]\right\} .
$$

The new machine is equivalent to the old one.

- Merge Edges:
- Replace state by Edges


Note: $\{p 1, p 2, p 3\}$ may intersect with $\{q 1, q 2\}$.
2. perform 1.1 once again (merge edges)
// There are one or two states now
3 Two cases to consider:
3.1 The final machine has only one state, that is both start and final. Then if there is an edge labeled $t$ on the sate, then $t^{*}$ is the result, other the result is $\varepsilon$.
3.2 The machine has one start state $s$ and one final state $f$. Let ( $\mathrm{s}, \mathrm{s} \rightarrow \mathrm{s}, \mathrm{s}$ ), ( $\mathrm{f}, \mathrm{f} \rightarrow \mathrm{f}, \mathrm{f}$ ), ( $\mathrm{s}, \mathrm{s} \rightarrow \mathrm{f}, \mathrm{f}$ ) and ( $\mathrm{f}, \mathrm{f} \rightarrow \mathrm{f}, \mathrm{f}$ ) be the collection of all edges in the machine, where ( $s \rightarrow f$ ) means the regular expression or label on the edge from sto f .
The result then is

$$
\left[(s \rightarrow s)+(s \rightarrow f)(f \rightarrow f)^{*}(f \rightarrow s)\right]^{*}(s \rightarrow f)(f \rightarrow f)^{*}
$$

Example

|  | 0 | 1 |
| :---: | :--- | :--- |
| $>p$ | $\{p, r\}$ | $\{q, r\}$ |
| $q$ | $\{r\}$ | $\{p, q, r\}$ |
| $r F$ | $\{p, q\}$ | $\{q, r\}$ |

1. another representation

|  | $p$ | $q$ | $r$ |
| :--- | :--- | :--- | :--- |
| $>p$ | 0 | 1 | 0,1 |
| $q$ | 1 | 1 | 0,1 |
| $r F$ | 0 | 0,1 | 1 |

Patterns, regular expression \& FAs
Merge edges

|  | $p$ | $q$ | $r$ |
| :--- | :--- | :--- | :--- |
| $>p$ | 0 | 1 | 0,1 |
| $\mathbf{q}$ | 1 | 1 | 0,1 |
| $\mathbf{r F}$ | 0 | 0,1 | 1 |


|  | $p$ | q | $\mathbf{r}$ |
| :--- | :--- | :--- | :--- |
| $>p$ | $\mathbf{0}$ | 1 | $0+1$ |
| $\mathbf{q}$ | 1 | 1 | $0+1$ |
| $\mathbf{r F}$ | 0 | $0+1$ | 1 |

Patterns, regular
remove q expression \& FAs


|  | $p$ | $r$ |
| :--- | :--- | :--- |
| $\mathbf{p p}$ | $0+11^{* 1}$ | $0+1+11^{*}(0+1)$ |
| $r F$ | $0+(0+1) 1^{*} 1$ | $1+(0+1) 1^{*}(0+1)$ |

Final result : $=\left[p \rightarrow p+(p \rightarrow r)(r \rightarrow r)^{*}(r \rightarrow p)\right]^{*} \quad(p \rightarrow r)(r \rightarrow r)^{*}$
$\left[\left(0+11^{*} 1\right)+\left(0+1+11^{*}(0+1)\right)\left(1+(0+1) 1^{*}(0+1)\right)^{*}\left(0+(0+1) 1^{*} 1\right)\right]^{*}$ $\left(0+1+11^{*}(0+1)\right)\left(1+(0+1) 1^{*}(0+1)\right)^{*}$

