Formal Language and Automata Theory

Chapter 4

Patterns, Regular Expressions and Finite Automata

Patterns and their defined languages

- \bullet Σ : a finite alphabet
- A pattern is a string of symbols representing a set of strings in Σ^* .
- The set of all patterns is defined inductively as follows:
 - 1. atomic patterns:

$$a \in \Sigma, \varepsilon, \emptyset, \#, @.$$

- 2. compound patterns: if α and β are patterns, then so are: $\alpha + \beta$, $\alpha \cap \beta$, α^* , α^+ , $\sim \alpha$ and $\alpha \cdot \beta$.
- For each pattern α , L(α) is the language represented by α and is defined inductively as follows:

1.
$$L(a) = \{a\}, L(\epsilon) = \{\epsilon\}, L(\emptyset) = \{\}, L(\#) = \Sigma, L(@) = \Sigma^*.$$

2. If $L(\alpha)$ and $L(\beta)$ have been defined, then

$$L(\alpha + \beta) = L(\alpha) \cup L(\beta), \quad L(\alpha \cap \beta) = L(\alpha) \cap L(\beta).$$

$$L(\alpha^+) = L(\alpha)^+, L(\alpha^*) = L(\alpha)^*,$$

$$L(\sim \alpha) = \Sigma^* - L(\alpha), L(\alpha \cdot \beta) = L(\alpha) \cdot L(\beta).$$

More on patterns

- We say that a string x matches a pattern α iff $x \in L(\alpha)$.
- Some examples:
 - 1. $\Sigma^* = L(@) = L(#^*)$
 - 2. $L(x) = \{x\}$ for any $x \in \Sigma^*$
 - 3. for any $x_1,...,x_n$ in Σ^* , $L(x_1+x_2+...+x_n) = \{x_1,x_2,...,x_n\}$.
 - 4. {x | x contains at least 3 a's} = L(@a@a@a@)
 - 5. Σ $\{a\}$ = # \cap ~a
 - 6. $\{x \mid x \text{ does not contain a}\} = (\# \cap \sim a)^*$
 - 7. $\{x \mid \text{every 'a' in x is followed sometime later by a 'b' } =$ $= \{x \mid \text{either no 'a' in x or } \exists \text{'b' in x followed no 'a' } \}$ $= (\# \cap \sim a)^* + @b(\# \cap \sim a)^*$

More on pattern matching

- Some interesting and important questions:
- 1. How hard is it to determine if a given input string x matches a given pattern a ?
 - ==> efficient algorithm exists
- 2. Can every set be represented by a pattern? ==> no! the set {aⁿbⁿ | n > 0 } cannot be represented by any pattern.
- 3. How to determine if two given patterns α and β are equivalent ? (I.e., $L(\alpha) = L(\beta)$) --- an exercise !
- 4. Which operations are redundant?

$$\square \ \varepsilon = \sim (\#^+ \cap @) = \varnothing \ ^* \ ; \quad \alpha^+ = \alpha \cdot \alpha^*$$

$$\Box$$
 # = $a_1 + a_2 + ... + a_n$ if $\Sigma = \{a_1, ..., a_n\}$

$$\Box \alpha + \beta = \sim (\sim \alpha \cap \sim \beta) ; \alpha \cap \beta = \sim (\sim \alpha + \sim \beta)$$

☐ It can be shown that ~ is redundant.

Equivalence of patterns, regular expr. & FAs

- Recall that regular expressions are those patterns that can be built from: $a \in \Sigma$, ϵ , \emptyset , +, · and *.
- Notational conventions:
 - $\square \alpha + \beta \rho \text{ means } \alpha + (\beta \rho)$
 - $\square \alpha + \beta^*$ means $\alpha + (\beta^*)$
 - $\square \alpha \beta^*$ means $\alpha (\beta^*)$

Theorem 8: Let $A \subseteq \Sigma^*$. Then the followings are equivalent:

- 1. A is regular (l.e., A = L(M) for some FA M),
- 2. A = $L(\alpha)$ for some pattern α ,
- 3. A = L(β) for some regular expression β .
- pf: Trivial part: (3) => (2).
 - (2) => (1) to be proved now!
 - (1)=>(3) later.

(2) => (1): Every set represented by a pattern is regular

Pf: By induction on the structure of pattern α .

Basis: α is atomic: (by construction!)

1.
$$\alpha = a$$
:

2.
$$\alpha = \epsilon$$
:

3.
$$\alpha = \emptyset$$
:

4.
$$\alpha = #$$
:

5.
$$\alpha = @ = #^*$$
:

Inductive cases: Let M_1 and M_2 be any FAs accepting $L(\beta)$ and $L(\gamma)$, respectively.

6.
$$\alpha = \beta \gamma : => L(\alpha) = L(M_1 \cdot M_2)$$

7.
$$\alpha = \beta^* :=> L(\alpha) = L(M_1^*)$$

8. $\alpha = \beta + \gamma$, $\alpha = \sim \beta$ or $\alpha = \beta \cap \gamma$: By ind. hyp. β and γ are regular. Hence by closure properties of regular languages, α is regular, too.

9. $\alpha = \beta^+ = \beta \beta^*$: Similar to case 8.

Some examples patterns & their equivalent FAs

1. $(aaa)^* + (aaaaa)^*$

(1)=>(3): Regular languages can be represented by reg. expmression & FAs

M = (Q, Σ , δ , S, F) : a NFA; X \subseteq Q: a set of states; $\mu,\nu\in$ Q : two states

- $\pi^{X}(\mu,\nu) =_{def} \{ y \in \Sigma^* \mid \exists \text{ a path from } \mu \text{ to } \nu \text{ labeled } y \text{ and all intermediate states } \in X \}.$
 - □ Note: L(M) = ?
- $\pi^{X}(\mu,\nu)$ can be shown to be representable by a regular expr, by induction as follows:

Let
$$D(\mu, \nu) = \{ a \mid (\mu - a \rightarrow \nu) \in \delta \} = \{a_1, ..., a_k\} \ (k \ge 0) \}$$

= the set of symbols by which we can reach from μ to ν , then

Basic case: $X = \emptyset$:

1.1 if
$$\mu \neq \nu$$
: $\pi^{\emptyset}(\mu,\nu) = \{a_1, a_2,...,a_k\} = L(a_1 + a_2 + ... + a_k)$ if $k > 0$,
= $\{\}$ = $L(\emptyset)$ if $k = 0$.

1.2 if
$$\mu = \nu$$
: $\pi^{\emptyset}(\mu, \nu) = \{a_1, a_2, ..., a_k, \epsilon\} = L(a_1 + a_2 + ... + a_k + \epsilon)$ if $k > 0$,
= $\{\epsilon\}$ = $L(\epsilon)$ if $k = 0$.

3. For nonempty X, let q be any state in X, then : $\pi^{X}(\mu,\nu) = \pi^{X-\{q\}}(\mu,\nu) \cup \pi^{X-\{q\}}(\mu,q) (\pi^{X-\{q\}}(q,q))^* \pi^{X-\{q\}}(q,\nu).$

By Ind.hyp.(why?), there are regular expressions α , β , γ , ρ with L($[\alpha, \beta, \gamma, \rho]$) = $[\pi^{X-\{q\}}(\mu, \nu), \pi^{X-\{q\}}(\mu, q), (\pi^{X-\{q\}}(q, q)), \pi^{X-\{q\}}(q, \nu)]$

Hence
$$\pi^{X}(\mu,\nu) = L(\alpha) U L(\beta) L(\gamma) * L(\rho),$$

= $L(\alpha + \beta\gamma^{*}\rho)$
and can be represented as a reg. expr.

Finally, L(M) = {x | s --x--> f, s ∈ S, f ∈ F }
 = ∑_{s∈S, f∈F} π^Q(s,f), is representable by a regular expression.

Some examples

Example (9.3): M:

- $L(M) = p^{(p,q,r)}(p,p) = p^{(p,r)}(p,p) + p^{(p,r)}(p,q) (p^{(p,r)}(q,q)) * p^{(p,r)}(q,p)$

	0	1
>pF	{p}	{q}
q	{r}	{}
r	{p}	{q}

Hence L(M) = ?

Another approach

- The previous method
 - ☐ easy to prove,
 - easy for computer implementation, but
 - hard for human computation.
- The strategy of the new method:
 - reduce the number of states in the target FA and
 - encodes path information by regular expressions on the edges.
 - until there is one or two states : one is the start state and one is the final state.

Steps

- Assume the machine M has only one start state and one final state. Both may probably be identical.
- 1. While the exists a third state p that is neither start nor final:
 - 1.1 (Merge edges) For each pair of states (q,r) that has more than 1 edges with labels $t_1,t_2,...t_n$, respectively, than merge these edges by a new one with regular expression $t = t_1 + t_2 ... + t_n$.
 - 1.2 (Replace state p by edges; remove state) Let

```
(p_1, \alpha_1, p),... (p_n, \alpha_n, p) where p_j!= p be the collection of all edges in M with p as the destination state,
```

 $(p,\beta_1, q_1),...,(p, \beta_m, q_m)$ where qj != p be the collection of all edges with p as the start state, and

t be the label of the edge from p to itself, Now the sate p together with all its connecting edges can be removed and replaced by a set of m x n new edges:

```
{ (p_i, \alpha_i t^* \beta_i, q_i) | i in [1,n] and j in [1,m] }.
```

The new machine is equivalent to the old one. Transparency No. 4-13

Merge Edges :

Replace state by Edges

Note: {p1,p2,p3} may intersect with {q1,q2}.

- 2. perform 1.1 once again (merge edges)
- // There are one or two states now
- 3 Two cases to consider:
 - 3.1 The final machine has only one state, that is both start and final. Then if there is an edge labeled t on the sate, then t^* is the result, other the result is ϵ .
 - 3.2 The machine has one start state s and one final state f. Let $(s, s \rightarrow s, s)$, $(f, f \rightarrow f, f)$, $(s, s \rightarrow f, f)$ and $(f, f \rightarrow f, f)$ be the collection of all edges in the machine, where $(s \rightarrow f)$ means the regular expression or label on the edge from s to f. The result then is

$$[(s \rightarrow s) + (s \rightarrow f) (f \rightarrow f)^* (f \rightarrow s)]^* (s \rightarrow f) (f \rightarrow f)^*$$

Patterns, regular expression & FAs

Example

	0	1
> p	{p,r}	{q,r}
q	{r}	{p,q,r}
rF	{p,q}	{q,r}

1. another representation

	р	q	r
> p	0	1	0,1
q	1	1	0,1
rF	0	0,1	1

Patterns, regular expression & FAs

Merge edges

	р	q	r
> p	0	1	0,1
q	1	1	0,1
rF	0	0,1	1

	р	q	r
> p	0	1	0+1
q	1	1	0+1
rF	0	0+1	1

Patterns, regular expression & FAs

remove	q
--------	---

	р	q	r
>p	0,	1	0+1,
	11*1		11* (0+1)
q	1	1,	0+1
rF	0,	0+1	1,
	(0+1) 1*1		(0+1)1*(0+1)

	р	q	r
>p	0	1	0+1
q	1	1	0+1
rF	0	0+1	1

Form the final result

	р	r
> p	0+11*1	0+1+11* (0+1)
rF	0+ (0+1) 1*1	1+ (0+1)1*(0+1)

Final result : =
$$[p \rightarrow p + (p \rightarrow r) (r \rightarrow r)^* (r \rightarrow p)]^* (p \rightarrow r) (r \rightarrow r)^*$$

$$[(0+11*1) + (0+1+11*(0+1)) (1+(0+1)1*(0+1))* (0+(0+1)1*1)]*$$

$$(0+1+11*(0+1)) (1+(0+1)1*(0+1))*$$